FRB Conference at YITP, Kyoto Feb 15, 2021

Multi-Wavelength Constraints on the Outflow Properties of Extremely Bright Millisecond Radio Bursts from Galactic Magnetar SGR 1935+2154

SY, K. Kashiyama, K. Murase 2021 (under review, arXiv: 2008.03634)

SHOTARO YAMASAKI (Hebrew University of Jerusalem)

Observational Summary of April 28 Event

Coherent Radio Bursts

STARE2 @1.4 GHz (Bochanek+20)

CHIME @600 MHz (CHIME/FRB+20)

E_{radio, iso} ~ 10³⁵ erg @10 kpc (in btw. Crab giant radio pulses and cosmological FRBs)

Hard X-ray Burst: Temporal Properties

 There are four co-detections of the hard X-ray burst associated with the coherent radio burst

(Li+20; Ridnaia+20; Mereghetti+20; Tavani+20)

Hard X-ray spikes (~10 ms) within entire duration of 0.3-0.5 s

Hard X-ray burst: Spectral Properties

From Konus-Wind paper (Ridnaia+20)

- E_{peak}~50-100 keV is the hardest among typical magnetar bursts with E_{X, iso}~10⁴⁰ erg (Younes+20; Ridnaia+20; Li+20; Mereghetti+20)
- Typical magnetar bursts from SGR 1935+2154 do NOT always accompany coherent radio bursts (Lin+20)

Arrival Time Difference

- Arrival time difference btw. radio and X-ray bursts Δt_{x,radio} <~10 ms
- Assuming a single outflow, the intrinsic emission regions cannot be separated by more than ~ Γ² c Δt_{x,radio}

Interpreting X-ray observations

A Classic Model for Magnetar Flares

(see Kaspi & Beloborodov 17; Enoto+20 for recent reviews)

- Flare fluence distributes continuously over 8 orders of magnitude (e.g. Cheng+96; Gogus+01; Nakagawa+07)
- X- and gamma-ray emission from recurrent bursts (short bursts & pulsating tails of giant flares) → evaporating "trapped" fireball

Trapped fireball = A optically-thick photon-pair plasma (e[±]) confined by strong magnetic pressure

(Thompson & Duncan 95)

Spectral Modification of Trapped FB Emission

 "Trapped fireball" emission should be reprocessed by magnetospheric e[±] (Lyubarsky 02)

SY, Lyubarsky, Granot, Gogus 20

 A toy model for resonant scattering successfully explains typical magnetar flare spectra (SY+20)

Hard X-ray Burst Spectrum: Possible Interpretation

Global Picture

Trapped Fireball Properties

Assumptions

- TD95 model
- Photon diffusion at surface layer of trapped FB with T_{obs} ~ 10 keV

Observational facts

- X-ray energy budget E_{X,obs} ~ 10⁴⁰ erg
- X-ray burst duration t_{X,obs} <~ 1 s

Inferred FB properties

- Mean FB temperature T₀ ~ 200-300 keV
- FB size $R_0 \sim 10^5$ cm

Constraints on the Outflow Properties

Global Picture

Outflow Models

Relativistic outflow models in the context of GRBs:

- Leptonic outflow (Grimusrud & Wassermann 98; Li & Sari 02)
 - $-e^{\pm} + photons$
 - Non-equilibrium effects on pair number density
- **Baryonic outflow** (Grimusrud & Wassermann 98; Nakar+05)
 - $-e^{\pm} + protons + photons$
 - Free parameter η (degree of baryon load)
- Magnetic outflow (Drenkhahn 02; Drenkhahn & Spruit 02)
 - $-e^{\pm}$ + magnetic energy
 - Free parameter σ_0 (initial magnetization)
 - Magnetic reconnection above light-cylinder radius (~10¹⁰ cm)
- Initial outflow properties are set based on trapped FB parameters (T₀ = 200 keV, r₀ = 10⁵ cm, E_{flow} = 10³⁹ erg)
- Assume energy dissipation occurs within the outflow

Limits on Radio Emission Radius

1. Plasma cutoff frequency (upper limit on r_{radio})

Plasma cutoff condition (written as a function of plasma frequency) limits the radio wave propagation:

 $\omega_{\rm p,obs}(r_{\rm radio}) \lesssim \omega_{\rm obs},$

Assuming that coherent radio emission is generated via synchrotron maser

(Iwamoto+17 &19; Metzger+19; Plotnikov & Sironi 2019)

$$\omega_{p,\text{obs}} pprox \Gamma \, \omega_p \max[1, \sigma^{1/2}]$$
 where $\omega_p \equiv \sqrt{\frac{4\pi n'_e e^2}{m_e}}$

 Time delay between hard X-ray and coherent radio bursts (upper limit on r_{radio})

$$r_{
m radio\,(X)} \lesssim \Gamma^2 c \Delta t_{
m X, radio}$$
 where $\Delta t_{
m X, radio} \lesssim 10 \, {
m ms}$

Limits on Hard X-ray Emission Radius

Based on Matsumoto, Nakar & Piran 19

 Compactness limit (lower limit on r_x)

> Hard spectrum with E_{peak} ~80 keV suggests source must be optically-thin to Thomson scattering on e[±] pairs $\rightarrow r_X \sim > 10^8$ cm (generic)

 Fast-cooling condition (upper limit on r_x)

Very bright emission with L_X ~> 10⁴¹ erg/s

 $\rightarrow t_{cool} < t_{dyn}$

Pure Leptonic Outflow (E_{radiation}/E_{matter} >>1)

- Evolution is uniquely determined by initial outflow conditions
- $r_X \sim 10^8 10^{11} \text{ cm} << r_{radio} \sim 10^{12} 10^{14} \text{ cm}$
- Predicted duration does not match the observations
- \rightarrow A pure leptonic outflow may be disfavored

Baryonic Outflow with $\eta = E_{radiation} / E_{matter}$

Flow acceleration is limited by the critical baryon load parameters

Baryonic Outflow with $\eta = E_{radiation} / E_{matter}$

Conditions for radio emission

 $r_{
m radio} \gtrsim r_{
m cutoff} \propto r_0 T_0^2 \,
u_{
m obs,9}^{-1} \, \eta^{-1/2}$ $r_{
m radio} \lesssim \Gamma_{\infty}^2 c \Delta t_{
m X, radio} \propto \Delta t_{
m X, radio}$

• Upper limit on the baryon load:

 $\eta \gtrsim 6.2 \times 10^3$ $\times r_{0,5}^{5/4} \left(\frac{kT_0}{200 \text{ keV}}\right) \nu_{\text{obs},9}^{-2} \left(\frac{\Delta t_{\text{X,radio}}}{10 \text{ ms}}\right)^{-2}$

 $\rightarrow A mildly clean flow (\eta \sim>10^4)$ might be favored

Magnetic Outflow with $\sigma_0 = (E_{Poynting}/E_{matter})_0$

Flow slowly evolves as Γ (r) \propto r^{1/3} from $\Gamma_0 \sim \sigma_0^{1/2}$ (at light cylinder radius) up to $\Gamma_{\infty} \sim \sigma_0^{3/2}$

Magnetic Outflow with $\sigma_0 = (E_{Poynting}/E_{matter})_0$

Conditions for radio emission

 $egin{aligned} r_{
m radio} \gtrsim r_{
m cutoff} \propto r_0^{-1/2} \, E_{
m flow}^{1/2} \,
u_{
m obs,9}^{-1} \ r_{
m radio} \lesssim \Gamma_\infty^2 c \Delta t_{
m X, radio} \propto \Delta t_{
m X, radio} \, \sigma_0^3 \end{aligned}$

Lower limit on magnetization

$$\sigma_0 \gtrsim 99 \\ \times r_{0,5}^{-1/6} E_{\text{flow},39}^{1/6} \nu_{\text{obs},9}^{-1/3} \left(\frac{\Delta t_{\text{X,radio}}}{10 \text{ ms}}\right)^{-1/3}$$

→ A highly Poynting-dominated flow ($\sigma_0 > 10^3$) might be favored

Summary

Soft X-ray = trapped FB, whereas hard X-ray & radio bursts = outflow?

Trapped fireball

• Thermal X-ray emission can be interpreted by a classical trapped fireball model with E_{FB} ~10⁴⁰ erg, R₀~1km, kT₀~200-300 keV

Outflow properties:

- Non-thermal X-ray spikes must be generated at $r_X \sim > 10^8$ cm
- Outflow need to accelerate up to $\Gamma \sim > 10^2$ within the magnetosphere and dissipation should occur at 10^{12} cm $<\sim r_{radio,X} <\sim 10^{14}$ cm
- Requirements for radio emission set $\eta > 10^4$ and $\sigma_0 \sim > 10^2$
- $m_b <\sim 10^{14}$ g for this event from SGR 1935+2154 (This work) is much smaller than $m_b <\sim 10^{20}$ –10²³ g for SGR 1806–20 giant flare (Nakar+05; Granot+06)
- Outflow generation with different η and σ_0 may be the reason for the rarity of April 28 event?