The Physical Mechanisms of Fast Radio Bursts

Bing Zhang

University of Nevada, Las Vegas (UNLV)

Feb. 9, 2021

YITP International Molecule-type Workshop Fast Radio Bursts: A Mystery Being Solved? Feb. 6-19, 2021, Online Zoom meeting

Lorimer talk

Petroff, Hessels & Lorimer, 2019, A&AR Cordes & Chatterjee, 2019, ARAA Katz, 2016, 2018; Popov et al. 2018 **Zhang 2020 (Nature, 587, 45)** Xiao, Wang & Dai, 2021, SCMPA

- Short duration: milli-seconds (compact objects) $l_{eng} \sim cw = (3 \times 10^7) \text{ cm } (w/\text{ms})$
- Repetition:
 - At least some FRB sources repeat (Arecibo; CHIME; FAST ...);
 - Maybe the majority of, if not all, FRBs repeat (Ravi 2019, rate argument);
 - Some have very high repetition rate (Di Li's talk)
 - No-detection of repeated bursts following some bright events (Petroff et al. 2015)

- Periodicity:
 - No periodicity above 10ms for FRB 121102 (Y. Zhang et al. 2018)
 - ~16-day period of FRB 180916.J0158+65 (CHIME/FRB Collaboration 2020)
 - ~157-day period of FRB 121102 (Rajwade et al., 2020)?
 - Frequency-dependence of active phase (Pastor-Marazuela et al., 2020; Pleunis et al. 2020)

Pastor-Marazuela et al. 2020

- Typical frequency (300 MHz to 8 GHz)
- Spectral index: -10 top +14 (FRB 121102)
- Internal structure & scattering tail
- Frequency down drifting (sad trombone)

Champion et al. 2016

FRB 121102 Hessels et al. 2019 FRB 180814.J0422+73 CHIME/FRB collaboration 2019

- Mixed polarization properties:
- ~100% linear polarization for some, low polarization degree for some others
- Constant polarization angle in each burst in some sources (FRB 121102); varying polarization angle in each burst in some other sources (FRB 180301)
- Large rotation measure (RM) for FRB 121102, regular or low RM for some others. Secular & short-term variations

$$\Delta \theta = \frac{2\pi e^3}{m^2 c^2 \omega^2} \int_0^d n B_{\parallel} ds. \quad \mathsf{RM} = \int_0^d n B_{\parallel} ds$$

 $⁽L = Q^2 + U^2)$

Michilli et al. 2017

Dispersion measure (pc cm⁻³)

• Excess dispersion measure (DM)

DM =
$$\int_{0}^{D_z} \frac{n_e(l)}{1 + z(l)} dl$$
,

- Redshifts:
 - From DM: z << 1 to z > 3;
 - Measured: 0.1-0.7

Zhang, 2018, ApJL, 867, L21

Macquart et al. 2020, Nature, 581, 391

• Luminosity and energetics

$$L_{p} \simeq 4\pi D_{\rm L}^{2} S_{\nu,p} \nu_{c} = (10^{42} \text{ erg s}^{-1}) 4\pi \left(\frac{D_{\rm L}}{10^{28} \text{ cm}}\right)^{2} \frac{S_{\nu,p}}{\text{Jy}} \frac{\nu_{c}}{\text{GHz}},$$

$$E \simeq \frac{4\pi D_{\rm L}^{2}}{(1+z)} \mathcal{F}_{\nu} \nu_{c} = (10^{39} \text{ erg}) \frac{4\pi}{(1+z)} \left(\frac{D_{\rm L}}{10^{28} \text{ cm}}\right)^{2} \frac{\mathcal{F}_{\nu}}{\text{Jy} \cdot \text{ms}} \frac{\nu_{c}}{\text{GHz}},$$

- Isotropic peak luminosity: $10^{38} 10^{46}$ erg/s
- Isotropic energy: $10^{35} 10^{43}$ erg
- These numbers are smaller by a factor of $f_b \equiv \Delta \Omega / 4\pi$ if FRBs are beamed; the total number of bursts may increase by the same factor (if isotropic).
- Brightness temperature (imaginary temperature if radiation is from a blackbody)

$$T_b \simeq \frac{S_{\nu,p} D_{\rm A}^2}{2\pi k (\nu w)^2} = (1.2 \times 10^{36} \text{ K}) \left(\frac{D_{\rm A}}{10^{28} \text{ cm}}\right)^2 \frac{S_{\nu,p}}{\text{Jy}} \left(\frac{\nu}{\text{GHz}}\right)^{-2} \left(\frac{w}{\text{ms}}\right)^{-2}$$

Radiation mechanism must be Coherent!

FRB observational properties (global)

- High Galactic latitudes (extragalactic), isotropic but non-Euclidean (cosmological)
- High observed event rate: ~ $(10^3 10^4) \text{ day}^{-1}$ all sky (larger by a factor of $f_b^{-1} = 4\pi/\Delta\Omega$ if FRBs are beamed)
- Large event rate density: $3.5^{+5.7}_{-2.4} \times 10^4 \,\text{Gpc}^{-3} \,\text{yr}^{-1}$ above $10^{42} \,\text{erg s}^{-1}$ (larger by a factor of $f_b^{-1} = 4\pi/\Delta\Omega$ if FRBs are beamed)
- Energy/luminosity function:
 - Power law: $dN/dE \propto E^{-\alpha}, \alpha \sim 1.8$ Luo et al. 2018, 2020; Lu & Piro 2019
 - More complicated functions: Lu et al. 2020
 - Cutoff at the high end? Luo et al. 2020
 - New component in the low end? D. Li et al. 2021
- Redshift distribution: not known
 - Tracking star formation rate?
 - Tracking compact object merger?
 - No evolution model disfavored

Relatives of FRBs

FRBs

GRBs

radio pulsars

Lessons from GRBs

 $\vec{\Omega}$

- Many GRB models (>110) reinvented for FRBs (>50).
- Relativistic outflow; internal vs. external shocks
- Some ideas (not observationally confirmed) on coherent radio emission
 - Synchrotron masers •

Lyubarsky, Waxman, Beloborodov, Metzger, Sironi ...

Metzger talk, Sironi talk

Metzger et al. 2019

Meszaros 2001

Lessons from radio pulsars

Components of FRB Models

Components of FRB Models

Coherent Radiation Mechanisms

Talks by Lu, Kumar, Metzger & Sironi

GRB-like: from Metzger et al. 2019

 R_{n}

R_{ei}

 $-v_w \Delta T \longrightarrow$

Pulsar-like models GRB-like models

Beaming angle	Likely narrow	Likely wide
Radio efficiency	Relatively high	Relatively low
High energy counterparts	 Moderately bright X-ray / gamma- ray emission 	 bright X-ray / gamma-ray / optical emission
Polarization properties	 High (up to 100%) linear polarization degree Non-varying (straight field lines, slow rotation) or diverse swings of polarization angles (inner magnetosphere) 	 No polarization (low-B version) High (up to 100%) linear polarization degree & constant polarization angle (high-B version)

Polarization properties as a clue: Polarization angle swings

FRB 180301 Luo et al. 2020, Nature, 586, 693; also K. J. Lee's talk

Detected with FAST

Diverse polarization angle swings: A magnetospheric origin!

FRB 121102 Li et al. 2020, submitted; also D. Li's talk

Challenges to GRB-like models:

- * Very high repetition rate
- * Short waiting time
- * ~47-day burst energetics is at least 1% of a magnetar's magnetic energy

One plausible magnetospheric mechanism: Coherent radiation by bunches

Katz, Kumar & Lu, Yang & Zhang ...

- Mechanism invoked in early pulsar theories (Ruderman & Sutherland 1975)
 - Criticized:
 - Melrose: bunch formation and maintenance?
 - Lyubarsky et al: Plasma effect
 - Pulsar radio data consistent with model
- Revived for FRBs:
 - Kumar et al. (2017): Requirement of E_{\parallel}
 - Yang & Zhang (2018): 3D coherent bunches
 - Kumar & Bosnjak (2020): Alfven-wave induced E_{\parallel} , see also Chen et al. (2020)
 - Lu, Kumar & Zhang (2020): Unified magnetar model for all FRBs
 - Yang et al. (2020): Charge separation, bunch maintenance, plasma effect removed, narrow spectrum

Kumar & Bosnjak (2020)

Yang et al. 2020, ApJL, 901, L13

Time-frequency down-drifting Wang et al., 2019, ApJL, 876, L15

Hessels et al; CHIME/FRB Collaboration

- Radius-to-frequency mapping
- Difficult to "re-calibrate" in the shock models

Components of FRB Models

FRB 200428-SGR Association

CHIME/FRB Collaboration 2020; Bochenek et al. 2020; Li+ 20; Mereghetti+ 20; Ridnaia+ 20; Tavani+ 20

At least some FRBs are produced by magnetars!

FRB 200428-SGR Association

How?

Lu, Kumar & Zhang, 2020, MNRAS, 498, 1397

Other ideas:

Margalit et al. 2020 (Metzger talk Sironi talk)

Dai (2020)

Lu talk & Kumar talk

FRB-SGR burst non-associations

Lin et al. 2020, Nature, 587, 7832; also L. Lin's talk

Twenty-Nine GBM bursts did not have associated radio emission: Stringent flux/fluence upper limits

FRB-SGR burst non-associations

Lin et al. 2020, Nature, 587, 7832

Three possibilities:

- Narrow beaming
- Narrow spectrum, wrong frequency
- Special SGR burst
 Insight/HXMT
 Integral
 Konus/Wind
 AGILE
 - Nicer

Slow Radio Bursts (SRBs) Zhang, 2021, ApJL, 907, L17

Doppler factor & transformation:

$$\mathcal{D}(\theta) = egin{cases} \mathcal{D}_{ ext{on}} = rac{1}{\Gamma(1-eta)} \simeq 2\Gamma, & heta \leqslant heta_j, \ \mathcal{D}_{ ext{off}} = rac{1}{\Gamma(1-eta\cos(\Delta heta))}, & heta > heta_j, \end{cases}$$

$$\begin{split} \nu &= \mathcal{D}\nu', \\ \Delta t &= \mathcal{D}^{-1} \Delta t', \\ L_{\nu} &= \mathcal{D}^{3} L_{\nu'}', \end{split} \qquad \qquad \mathcal{R}_{\mathcal{D}} \equiv \frac{\mathcal{D}_{\text{on}}}{\mathcal{D}_{\text{off}}} > 1 \end{split}$$

Slow Radio Bursts (SRBs)

Zhang, 2021, ApJL, 907, L17

Closure relations:

relationships among specific fluence, width & observing frequency between FRBs and SRBs

Power-law spectrum:

Gaussian spectrum:

$$L_{\nu'}'(\nu') = L_{\nu'}'(\nu_0') \left(\frac{\nu'}{\nu_0'}\right)^{-\alpha}$$

$$\left(\frac{\mathcal{F}_{\nu}^{\text{SRB}}}{\mathcal{F}_{\nu}^{\text{FRB}}}\right) \left(\frac{w^{\text{SRB}}}{w^{\text{FRB}}}\right)^{2+\alpha} \left(\frac{\nu^{\text{SRB}}}{\nu^{\text{FRB}}}\right)^{\alpha} = 1,$$

$$L_{\nu'}'(\nu') = L_{\nu'}'(\nu'_0) \exp\left[-\frac{1}{2}\left(\frac{\nu'-\nu'_0}{\delta\nu'}\right)^2\right],\,$$

$$\left(\frac{\mathcal{F}_{\nu}^{\text{SRB}}}{\mathcal{F}_{\nu}^{\text{FRB}}}\right) \left(\frac{w^{\text{SRB}}}{w^{\text{FRB}}}\right)^{2} \times \exp\left[\frac{1}{2} \left(\frac{\nu^{\text{FRB}}}{\delta\nu^{\text{FRB}}}\right)^{2} \left(\frac{w^{\text{SRB}}\nu^{\text{SRB}}}{w^{\text{FRB}}\nu^{\text{FRB}}} - 1\right)^{2}\right] = 1$$

Slow Radio Bursts (SRBs) Zhang, 2021, ApJL, 907, L17

Example bursts from SGR J1935+2154:

	F_{ν} (Jy ms)	w (ms)	ν (GHz)	SRB of FRB 200428 ?	SRB of typical FRB ?
FRB 200428	1.5 M	0.61	1.52		
typical FRB	100 M	1	1.2		
BSA/LPI burst	308	340	0.111	Yes (PL)	Yes (PL or Gaussian)
FAST weak burst (Zhang et al.)	0.06	1.97	1.25	Yes (Gaussian)	Yes (Gaussian)
Wb B1 (Kirsten et al.)	112	0.427	1.324	No	No
Wb B2 (Kirsten et al.)	24	0.219	1.324	No	No

Slow Radio Bursts (SRBs) Zhang, 2021, ApJL, 907, L17 $\Delta \theta_{\rm max} \simeq \frac{1}{\Gamma} \left[\left(\frac{\mathcal{F}_{\nu}^{\rm FRB}}{\mathcal{F}_{\nu,\rm th}} \right)^{1/(2+\alpha)} - 1 \right]^{1/2}$ $\simeq \frac{1}{\Gamma} \left(\frac{\mathcal{F}_{\nu}^{\text{FRB}}}{\mathcal{F}_{\nu}} \right)^{1/(4+2\alpha)} = \frac{\xi}{\Gamma} \gg \frac{1}{\Gamma},$ $\mathcal{R}_{\Delta\Omega} \equiv \frac{\Delta\Omega^{\text{SRB}}}{\Delta\Omega^{\text{FRB}}} \simeq \frac{\pi [(\theta_j + \Delta\theta_{\text{max}})^2 - \theta_j^2]}{\pi \theta_j^2}$ **SRB** $= \left(\frac{\Delta\theta_{\max}}{\theta_i}\right)^2 + 2\left(\frac{\Delta\theta_{\max}}{\theta_i}\right)$ Waves charge starvation $= \left(\frac{\xi}{\Gamma\theta_{\pm}}\right)^{2} + \left(\frac{2\xi}{\Gamma\theta_{\pm}}\right).$ Comptonized hard X-rays $\theta_j \gg \xi/\Gamma$ less SRBs $\theta_i \ll \xi/\Gamma$ more SRBs $\frac{\text{CORe}}{(\rho \ge 10^{14} \text{ g cm}^{-3})}$ None detection of abundant SRBs disfavor the beaming hypothesis

Open Questions

- Where is FRB emission generated (magnetosphere or shock)? What is the coherent mechanism?
- Are there engines other than magnetars that power FRBs? If so, what could be the plausible sources?
- Are there genuinely non-repeating FRBs? If so, what could be the plausible sources?

The Most Conservative Picture: A Unified Picture for FRBs within the Framework of Magnetar Engines

The Most Speculative Picture for FRBs

Are there genuinely non-repeating FRBs? Ai, Gao & Zhang, 2021, ApJ, 906, L5

If there is an observed maximum repeater fraction, then likely there are! CHIME: $F_{\rm r,obs} \sim 0.013$ at $t \sim 400$ d

Summary

- Coherent radio emission models
 - Location: magnetosphere vs. shocks
 - Coherent mechanism: bunched curvature radiation vs. plasma instabilities (long way to go)
- Source models
 - Most conservative: magnetars do it all
 - Most speculative: repeaters and non-repeaters; multiple progenitors in both categories; GW connection
- Prospects
 - Observations:
 - Galactic FRBs hold the key to identify sources
 - Searching for SRBs from magnetars may offer clue regarding beaming
 - Multi-messenger observations/data analyses hold the key to identify/ eliminate models
 - Theory:
 - Debate on coherent mechanism will continue (cf. pulsar field)
 - Magnetar physics: physics of other systems (with observational breakthroughs made in the future)