

Lee, Ata, Khrykin+2021 (arXiv: 2109.00386)

Constraining the Cosmic Baryon Distribution with FRB foreground Maps

Ilya S. Khrykin Khee-Gan Lee, Metin Ata, et al. YITP Workshop: Fast Radio Bursts and Cosmic Transients 2022

THE FINE FLAN - TEAM

IPMU

Metin Ata (Kavli IPMU)

Ilya Khrykin (Kavli IPMU)

Yuxin Huang (Kavli IPMU)

K.G. Lee (Kavli IPMU)

Ryan Shannon (Swinburne)

Nicolas Tejos (PUCV)

External Collaborators

J.Xavier Prochaska (UCSC)

Sunil Simha (UCSC)

Jeff Cooke (Swinburne)

Adam Batten (Swinburne)

Motivation: the "missing" baryons

At z < 2, about 20-30% of baryons are unaccounted for.

Finding where these "missing" baryons are located is crucial for understanding IGM/galaxy evolution and feedback mechanisms

De Graff+2019

Fast Radio Bursts as tracers of the Cosmic Web

Lorimer+2007

- bright millisecond radio transients of unknown nature of extragalactic origin (Lorimer+2007, Thornton+2013)
- wavelength-dependent time delay of the components frequencies is described by the characteristic "dispersion measure" (DM)
- DM is a measure of the integrated electron column densities along the line-of-sight - for ionized medium this means DM also probe baryons

Fast Radio Bursts as tracers of the Cosmic Web

The Mcquart Relation

$$f_{\text{cosmic}} \rangle = \int_0^{z_{\text{frb}}} \frac{c f_{\text{d}} \rho_b(z) m_p (1 - Y_{\text{He}}/2)}{H_0 (1 + z)^2 \sqrt{\Omega_m (1 + z)^3 + \Omega_\Lambda}} dz$$

 $\langle DM \rangle$

The "missing" baryons are found, but little is known about their distribution:

in the diffuse gas tracing
Cosmic Web or

inside the hot galactic halos?

 but then what is the extent of these halos?

Mcquart+2020

Fast Radio Bursts as tracers of the Cosmic Web

$$DM_{obs} = \int n_e(s) ds$$

$DM_{obs} = DM_{MW} + DM_{igm} + DM_{halo} + DM_{host}$

Step 1. Creation of the mock dataset

1. Calculate the DM_{igm} from the Millennium density fields along the path of the FRB assuming $f_{igm} = 0.8$: $DM_{igm} = \int n_{e,igm}(s) ds \propto f_{igm} \int n_{lss}(s) ds$

2. Calculate DM_{halo} contribution. Each f/g galactic halo is described by the mNFW profile extending to r_{max} . The total mass of baryons in the halo is $M_{halo}^b \equiv f_{hot} \cdot \frac{\Omega_b}{\Omega_m} M_{halo}$ We assume $r_{max}/r_{200} = 1.4$, $f_{hot} = 0.75$

Model parameters: f_{igm} , r_{max} , f_{hot}

Step 2. Using Henriques+2015 lightcones, we generate f/g galaxy catalogs to be used for reconstructing the underlying density field along the FRBs line-of-sight

Galaxy positions in the mock spectroscopic surveys

ARGO - Bayesian density reconstruction code (Ata+2015,2017)

Metin Ata (Kavli IPMU)

Example ARGO reconstructed underlying density field from Millennium simulations

ARGO yields N=50 realizations of the density field, allowing robust estimate of the uncertainties

Example $\mathrm{DM}_{\mathrm{igm}}$ contributions from ARGO realizations of the density field

The f/g Galactic Halos Component (DM_{halo})

DM contributions as functions of model parameters

Changing the fraction of baryons inside the diffuse IGM $DM_{igm} = func(f_{igm})$

Changing the extent of the f/g galactic halos

 $DM_{halo} = func(r_{max})$

Changing the fraction of baryons inside the hot CGM of f/g galactic halos $\mathrm{DM}_{\mathrm{halo}} = func(f_{\mathrm{hot}})$

Mock data is constructed from Millennium mock FRB catalogs:

$$DM_{data} = DM_{igm}^{true}(f_{igm} \equiv 0.8) + DM_{halo}^{true}(r_{max} \equiv 1.4, f_{hot} \equiv 0.75) \rangle + \langle DM_{host}(z) \rangle$$

Model is given by ARGO density reconstructions and NFW model of f/g halos

$$DM_{model} = \langle DM_{igm}(f_{igm}) \rangle + \langle DM_{halo}(r_{max}, f_{hot}) \rangle + \langle DM_{host}(z) \rangle$$

$$\langle \mathrm{DM}_{\mathrm{host}}(z) \rangle = 100 \text{ pc } \mathrm{cm}^{-3} \cdot \left(1 + z_{\mathrm{frb}}\right)^{-1}$$

The joint likelihood for an ensemble of FRB:

$$\log \mathscr{L}_{\text{joint}} \propto \sum_{i}^{N_{\text{frb}}=30} \frac{\left(\text{DM}_{\text{data},i} - \text{DM}_{\text{model},i}\right)^2}{\sigma_i^2}$$
$$\sigma_i^2 = \sigma_{\text{argo},i}^2 + \sigma_{\text{halo},i}^2 + \sigma_{\text{MW}}^2$$

 $f_{\text{igm}} \in [0.00, 1.00]$ $r_{\text{max}}/r_{200} \in [0.05, 2.00]$ $f_{\text{hot}} \in [0.05, 1.00]$

MCMC inference on the mocks (preliminary results)

 $f_{\rm igm} = 0.77^{+0.09}_{-0.10}$ $N_{\rm frb} = 30$ $0.01 \leq z_{\rm frb} \leq 0.50$ $\langle DM_{host} \rangle = 97.71^{+17.89}_{-17.80}$ 200 $\langle DM_{\text{host}}^{120}$ 100 50 ~10% precision on $f_{\rm igm}$ 50 $r_{\rm max}/r_{200} = 1.32^{+0.36}_{-0.27}$ ~25% precision on $r_{\rm max}$ 2.0~15% precision on $f_{\rm hot}$ $r_{\rm max}/r_{200}$ 0.0 $f_{\rm hot} = 0.72^{+0.17}_{-0.17}$ 1.00.8 $\overset{0.0}{\stackrel{\mathrm{bot}}{\not \to}}$ 0.20.0 $2.0 \ 0.0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0$ $0.0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0$ 50 100 150 200 0.0 1.00 $\langle \mathrm{DM}_{\mathrm{host}} \rangle$ $f_{\rm igm}$ $r_{\rm max}/r_{200}$ $f_{\rm hot}$

Connecting the extent of the f/g halos and $f_{\rm hot}$ to the $f_{\rm cgm}$

MCMC inference on the mocks (preliminary results)

Cosmic baryons as tracers of the galaxy feedback mechanisms

Effect of different feedback prescriptions on the mass fraction of cosmic baryons located in the IGM/CGM (estimated in SIMBA hydrodynamical simulations)

Sorini+2021

FRB foreground mapping on AAT (FLIMFLAM)

FLIMFLAM = FRB Line-of-sight Ionization Measurement From Lightcone AAOmega Mapping

Yuxin Huang (Kavli IPMU)

2dF-AAOmega fiber spectrograph at 3.9m Anglo-Australian Telescope

FLIMFLAM goal: spectroscopic observations of galaxies in the f/g of N=30 localized FRBs at 0.1 < z < 0.5 with limiting magnitudes $19.2 < r_{AB} < 20.6$

~40 observational nights for the sample of 30 FRBs

Yuxin Huang (Kavli IPMU)

First preliminary results of the FLIMFLAM observational campaign

- Using hydrodynamical simulations and semi-analytical prescriptions we created mock FRB dispersion measures and f/g galaxy catalogs
- We applied ARGO state-of-the-art Bayesian algorithm to reconstruct the underlying density fields, allowing to measure the line-of-sight dispersion measures of the mock FRBs to a factor of ~2-3x better accuracy than allowed by cosmic variance.
- Applying MCMC algorithm to the mock samples of N=30 FRBs at 0.1 < z < 0.5 we can achieve ~10% precision on estimating the fraction of baryons in the diffuse Cosmic Web, as well as ~10-20% accuracy on f/g halos parameters.
- We began observational campaign FLIMFLAM at 3.9m AAT, aimed to obtain spectroscopic maps of the foregrounds of N=30 FRBs and measure baryon distribution
- Future facilities (4m-class DESI and WEAVE, as well as 8m-class Subaru PSF and MOONS) will allow to push foreground mapping to higher redshifts, potentially even measuring the stages of HeII reionization (z~3)