Magnetosphere origin of Fast Radio Bursts

- 1. Multi-messenger: neutrino emission?
- 2. Plasma effect on bunching mechanisms
- 3. Propagation in the magnetosphere

Yuanhong Qu

- University of Nevada, Las Vegas
 - **Outline:**

YITP June 07, 2022

管中窥豹 Look at a leopard through a tube

We need to collect observational results to predict the origin of FRB

Highly dispersed short radio pulse

Dispersion

 $t(\nu) - t(\infty) = (4.416 \text{ s}) \ \nu_{\text{GHz}}^{-2} \frac{\text{DM}}{10^3 \text{ pc cm}^{-3}}$

Brightness temperature

$$T_b \sim \frac{F_{\nu} D_A^2}{2\pi k \nu^2 \delta t^2} \simeq 10^{35} \text{ K} \left(\frac{F_{\nu}}{\text{Jy}}\right) \left(\frac{\nu}{\text{GHz}}\right)^{-2} \left(\frac{\delta t}{\text{ms}}\right)$$

Strong wave factor Luan & Goldreich 2014

$$a = \frac{eE_w}{m_e c\omega} = \frac{eL_{\rm frb}^{1/2}}{m_e c^{3/2} \omega r} \simeq 1.6 \times 10^4 \ L_{\rm frb,42}^{1/2} \nu_9^{-1} r_9^{-1}$$

Thornton et al. 2013

FRB Radiation Mechanisms

Kumar & Bosnjak. 2020 Kumar et al. 2017 Zhang. 2022 Yang & Zhang. 2018 Lu et al. 2020

Metzger et al. 2019 **Beloborodov. 2020**

Yuan et al. 2020

Waxman. 2017

Sironi et al. 2021

Plotnikov & Sironi. 2019

Zhang. 2020

FRB Radiation Mechanisms

Kumar & Bosnjak. 2020 Kumar et al. 2017 Zhang. 2022 **Yang & Zhang. 2018** Lu et al. 2020

Metzger et al. 2019 **Beloborodov. 2020**

Yuan et al. 2020

Waxman. 2017

Sironi et al. 2021

Plotnikov & Sironi. 2019

Zhang. 2020

Neutrino emission from FRB-emitting magnetars? Qu & Zhang 2022 (2111.04121)

Photomeson interaction

 $p\gamma \to \Delta^+ \to n\pi^+ \to n\nu_\mu\mu^+ \to n\nu_\mu e^+\nu_e\bar{\nu}_\mu$

Metzger et al. 2020 (shock acceleration)

FRB 200428

Neutrino emission from FRB-emitting magnetars? Qu & Zhang 2022 (2111.04121)

Diffuse background neutrino fluence spectrum for all FRB-emitting magnetars

Radiation produced inside the magnetosphere model

Magnetar

$R_{\star} = 10^6 \text{ cm}$

Light cylinder

Coherent emission

 $E \sim N e^{i\phi}$ $S \sim N^2$

 $\sim 10^{10}$ cm

Radiation produced inside the magnetosphere model

Can FRB photons be suppressed by pair plasma?

 $R_{\star} = 10^{6} \text{ cm}$

Light cylinder

The 1st question is

- Gil et al. 2004
- Lyubarsky. 2021

 $\sim 10^{10}$ cm

 $E \sim N e^{i\phi}$ $S \sim N^2$

Physical conditions for significant plasma suppression

$\omega_p \gg \omega_{\rm FRB} \Rightarrow \xi \gg 10^2$

Parallel electric field is required

 $N^2 P_e = Ne E_{\parallel} c$ Kumar & Bosnjak. 2020

Critical parallel electric field

 $E_{c,\parallel} \simeq \frac{eN}{\lambda_{\text{FRB}}^2} \simeq (2.7 \times 10^7 \text{ esu}) \xi_2 B_{\star,15} P^{-1} \hat{r}_2^{-3} \nu_9^{-4}$

$$E_{\parallel} < E_{c,\parallel}$$

Qu & Zhang 2021 (2111.12269)

This scenario can interpret the narrow spectra of FRBs Yang et al. 2020

Plasma effect on coherent radio emission mechanism Qu & Zhang 2021 (2111.12269) $d(\gamma m_e v)$ Electrons can only stay at Landau levels in strong magnetic fields $= eE_{\theta}$ dt $\nabla \times (\nabla \times E) + c^{-2} \partial_t^2 E = -4\pi c^{-2} \partial_t (j_{\text{bunch}} + j_{\text{plasma}})$ \oplus $n = n_0 + \delta n$ Perturbation is needed Bunch Æ \bigcirc $f_{\rm cur} = \gamma \zeta \left(\frac{\omega_c'}{\omega_p'}\right)^2 \left(1 - \frac{\gamma^2}{\Gamma_{\rm cur}^2}\right) \simeq 1.4 \times 10^{-3} \gamma_1^2 \zeta_2 \rho_8^{-2} \Gamma_{\rm cur,2.38}^4 B_{\star,15}^{-1} P \hat{r}_2^3 \qquad P = f_{\rm cur} P_e \simeq 10^{-3} P_e$

Radiation produced inside the magnetosphere model

$$R_{\star} = 10^6 \text{ cm}$$

Light cylinder

The 2nd question is

$$\tau = \int n_e \sigma dl \le 1$$

Beloborodov. 2021a **Beloborodov. 2021b**

 $\sim 10^{10}$ cm

Classical scattering theory

for the EM X-mode photons

Herold, H. 1979

Classical scattering theory

$$E_w > B_{bg} \Rightarrow a > \frac{\omega}{a}$$

Herold, H. 1979

Classical theory is invalid when $E_w \gg B_{bg}$

 $\sigma \simeq a^2 \sigma_{\rm T}$

Within the magnetosphere

Emission point

r_{em}

 $\omega_{\rm FRB} \ll \omega_p \ll \omega_B$

 $E_w \sim r^{-1}$

 $B_{\rm bg} \sim r^{-3}$

Magg

Within the magnetosphere

 $\omega_{\rm FRB} \ll \omega_p \ll \omega_B$

Magan

FRB can propagate freely

Emission point

r_{em}

10

Light cylinder

Standard NS magnetosphere scenario

Angle between k-B is important to cross section

Fiducial value: P = 1 s $R_{\text{FRB}} = 10^8$ cm $\theta_{\text{max}} \sim 10$ degree ~ 0.2 rad

Maximum angle θ_R

Transformation to the plasma co-moving frame Qu, Kumar & Zhang 2022 (2204.10953)

Numerical Results

$\theta'_B = 10^{-1}$ rad

New turning point $\frac{\omega'_B}{\omega'} = a\theta'_B$

Numerical Results

 $\theta'_B = 10^{-2}$ rad

Numerical Results

$\theta'_B = 10^{-3}$ rad

Smaller θ_B , smaller cross section

Within the magnetosphere

 $\omega_{\rm FRB} \ll \omega_p \ll \omega_B$

Magg

FRB can propagate freely

Emission point

r_{em}

101

FRB 08 cm

$\min(R_{\omega}, R_{lc})$ 4.8 × 10° cm

Turning point

 $\max(R_{\theta_B}, R_E)$

Bog

Ew cm

Strong wave effect dominates!

Light cylinder

Characteristic radius

Characteristic radius

Estimation of maximum multiplicity

FRB pulse

FRB energy goes to pairs

Mag

V.C.Z.

Optical depth as a function of γ_p and θ_B

Optical depth as a function of γ_p and θ_B

Optical depth as a function of γ_p and θ_B

diagnosis on the radio emission site in magnetars.

2. The plasma suppression effect can be ignored in the bunching mechanisms.

Summary

- 1. The detection or non-detection of neutrino may provide a

3. FRB can propagate freely in the magnetar magnetosphere.