SUSY-SUSY サブグループ

岩本 蘭藤 伊部 今井 大河内 太田 角田 菅井 中野 中山 森田

Special Thanks:浅井さん

SUSY-SUSY サブグループ

SUSY が見つかっていない現状をふまえ、それでも SUSY が本当で あった際に想定され得る可能性について横断的に議論しました。

各項目のバランスは全然考えずに議論してしまいましたがご了承下さい。

また、文献や図の出所等全く記していませんがこちらも議論のための スライドだということでご了承下さい。

Current Status of SUSY models

squark mass	SUSY	Higgs	Naturalness	GUT	10 years from now?	備考
higher than 100TeV	DM ?? wino<3TeV Higgsino <2TeV	much heavier than 125GeV	何それ?	Gaugino がTeV scale なら unification は OK	現段階で Higgs mass への制限か ら less favored. もし stopping gluino なんかが見 つかったら大騒ぎ。	もはや SUSY じゃな い?
10-100TeV	DM ?? wino<3TeV Higgsino <2TeV	125GeV in MSSM	何それ?	Gaugino がTeV scale なら unification は OK	Gaugino searches. Cosmic ray?	High energy model は シンプル。やれるこ とが少ないかも
TeV	焦らずもう少し 待ちましょう	素敵な something or Large A-term	I%で済む領域が 残っているか? low scale mediation が有利	得に問題無い	いわゆる SUSY search で少し づつ削られて行く 最終的には IOTeV scenario に 合流?	g-2 はまだ説明可 能!
Light Stop, Higgsino	まずは gluino ITeV 以下での軽い stop search! Same Sign Muon ?	素敵な something	Two-loop を考える と gluino は ITeV 以 下でないと O(10)% は難しそう	Model Dependent	stop direct production では何 処まで行けるか?	stop を軽くする際の fine-tuning に注意。 g-2 はまだ説明可 能!
縮退?	LHC search での穴	素敵な something	TeV 以内で見つかれ ば文句無し?	基本的に gaugino の GUT relation は邪魔。 例外) Mirage Mediation	ISR jet で何処までいけるか? ISR photon とか? soft lepton とか?	縮退を実現する High energy model はほとん どない。 大穴の一つ?
番外色々?	LHC で見つか らないように もっと手の込ん だ模型?	素敵な something?	Little Higgs とか他の 模型との組み合わ せ?	Dual Unification とか?	見やすくて意外な模型なら Welcome! SUSY を隠す模型を作り続け る人が出てくるか?	

Current Status of SUSY models

squark mass	SUSY	Higgs	Naturalness	GUT	10 years from now?	備考
higher than 100TeV	DM ?? wino<3TeV Higgsino <2TeV	much heavier than 125GeV	何それ?	Gaugino がTeV scale なら unification は OK	現段階で Higgs mass への制限か ら less favored. もし stopping gluino なんかが見 つかったら大騒ぎ。	もはや SUSY じゃな い?
10-100TeV	DM ?? wino<3TeV Higgsino <2TeV	125GeV in MSSM	何それ?	Gaugino がTeV scale なら unification は OK	Gaugino searches. Cosmic ray?	High energy model は シンプル。やれるこ とが少ないかも
TeV	焦らずもう少し 待ちましょう	素敵な something or Large A-term	I%で済む領域が 残っているか? low scale mediation が有利	得に問題無い	いわゆる SUSY search で少し づつ削られて行く 最終的には IOTeV scenario に 合流?	g-2 はまだ説明可 能! Higgs グループにおま かせ
Light Stop, Higgsino	まずは gluino ITeV 以下での軽い stop search! Same Sign Muon ?	素敵な something	Two-loop を考える と gluino は ITeV 以 下でないと O(10)% は難しそう	Model Dependent	stop direct production では何 処まで行けるか?	stop を軽くする際の fine-tuning に注意。 g-2 はまだ説明可 能!
縮退?	LHC search での穴	素敵な something	TeV 以内で見つかれ ば文句無し?	基本的に gaugino の GUT relation は邪魔。 例外) Mirage Mediation	ISR jet で何処までいけるか? ISR photon とか? soft lepton とか?	縮退を実現する High energy model はほとん どない。 大穴の一つ?
番外色々?	LHC で見つか らないように もっと手の込ん だ模型?	素敵な something?	Little Higgs とか他の 模型との組み合わ せ?	Dual Unification とか?	見やすくて意外な模型なら Welcome! SUSY を隠す模型を作り続け る人が出てくるか?	

まだ LSP-DM を期待するなら LSP は TeV 領域 (see next topic) (DM search and Gaugino search @ LHC は期待できる?)

この領域は naive には Higgs が重い Higgs Mass 125GeV が本当なら less favored

簡単に軽くする方法?

4点に負の寄与、large A-term or Hard Breaking etc.

$$\delta \lambda \simeq \frac{6}{(4\pi)^2} y_t^4 \left(\frac{X_t^2}{m_{\tilde{t}}^2} - \frac{1}{12} \frac{X_t^4}{m_{\tilde{t}}^4} \right),$$

[わざわざ軽くしたいかどうかは疑問...]

Stable gluino ?

 $\tau_{gluino} = 5 \times 10^{-9} \sec x (m_{gluino} / \text{TeV})^5 \times (10^4 \text{ TeV} / m_{squark})^4$

Current limit 1091 GeV for stable gluino R-hadron: R[±] <u>ぼ d</u> u Stable R-hadron

10-100TeV SUSY

理論的には極めてシンプル

Wino DMの場合

- Fermi : m_{wino}>400GeV WMAP, BBN : m_{wino}>200GeV
 Planck : m_{wino} >500GeV
- Gluino > 3TeV LHCで生成困難 但しAMSB relationを変更すればLHCで生成可能

Higgsino mass~Wino massの場合 XENON100 : m_{Higgsino} >400GeV 2-3年後 : m_{Higgsino} >800GeV

Wino DMでない場合 m_{wino} ~200-300GeVでもOK LHCで発見可能 $ilde{W} ilde{W} ilde{j}$ charged track 200-20 event@14TeV, 100fb-1

10-100TeV SUSY

SUSY Search @ LHC

Conventional なスペクトラムでの ITeV 付近までの領域の多くが excluded.

SUSY @ TeV

SUSY Search @ LHC

SUSY Search @ LHC

もう少しで見つかることを期待...

ただし、Higgs 125GeV が本当の場合、conventional な model / parameter space ではないことが起こっていると考えられる。 Higgs 125GeV を実現する方法と照らし合わせて考えて行く必要がある。 SUSY-Higgs group のトーク

Naturalness conditions

$$\sqrt{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2} \lesssim 600 \,\text{GeV} \frac{\sin\beta}{(1 + x_t^2)^{1/2}} \left(\frac{\log\left(\Lambda/\,\text{TeV}\right)}{3}\right)^{-1/2} \left(\frac{m_h}{120 \,\text{GeV}}\right) \left(\frac{\Delta^{-1}}{20\%}\right)^{-1/2}$$
$$\mu \lesssim 200 \,\text{GeV} \left(\frac{m_h}{120 \,\text{GeV}}\right) \left(\frac{\Delta^{-1}}{20\%}\right)^{-1/2}$$

I. Light Stop / Light Higgsino

2. Degenerate SUSY spectrum

今日のルール

I. Stop mass² に複数の起源があって cancel させる模型は考えない (light stop tuning!)

→ stop だけ違う性質(対称性、余剰次元中の局在性など)
 を持ってるはず

2. Gluino mass からの fine-tuning にも注意する $M_3 \lesssim 900 \,\text{GeV} \sin \beta \left(\frac{\log (\Lambda/\text{TeV})}{3}\right)^{-1} \left(\frac{m_h}{120 \,\text{GeV}}\right) \left(\frac{\Delta^{-1}}{20\%}\right)^{-1/2}.$

→ Low Scale Mediation t Favored

Anomalous U(1) symmetry

ex) charge assignment

	U(I)
Φ	- 1
Qı	q
Q ₂	q
Q3	0

motivated by unsuppressed y_t

 $W = y_t < \Phi > {}^0H_uQ_3T_3$

Anomalous U(I) symmetry \rightarrow Non-vanishing FI-term $\xi \sim O(I/I0) \times M_{PL}$

$$V_{U(1)} = g^2/2 (\xi^2 - |\Phi|^2 + q |Q_1|^2 +)^2$$

 $V_{\text{soft}} = m_{\Phi}^2 |\Phi|^2$

$$< \xi^2 - |\Phi|^2 > = m_{\Phi}^2$$

I,2 世代だけ重く出来る $\Delta m_{Q1,2}^2 = g^2 q m \phi^2$ 後は gluino が ITeV になる程度の Gauge Mediation 等と組み合わせれば出来上がり!

Light Stop 2 : Flavored Mediation

Gauged Flavor symmetry を使った Gauge Mediation 効果

Squark たちに新しい soft mass

GMSB by SM gauge. + GMSB by SU(2) gauged flavor sym.

I,2世代 squark だけ重い!
$$m_{SM}^2$$
 + m_{flavor}^2

例) Craig, McCullough and Thaler (2012.Jan)

SU(3)_F→ SU(2)_F → $\frac{3}{2}$ ^{(massive (m_V^2)に}

第3世代の
$$m_{flavor}^2 \to 0$$

 $\tilde{m}_q^2 = q_q^2 q_\Phi^2 \left(\frac{\alpha'}{2\pi}\right)^2 \left|\frac{F}{M}\right|^2 f(\delta), \quad \delta \equiv \frac{M_V^2}{M^2}$ 0.2
 0.0
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4

I,2 世代への GMSB

GMSB by G_B gauge sym. $ilde{m}_{1,2}^2 \gg ilde{m}_3^2$ Stopを軽く出来る

Bonus: Extra D-termの寄与 Higgsを重く出来る

Light Stop 4 : Extra Dimension Larsen, Nomura & Roberts; cf. N.Okada & T.Yamada

SUSY bulk RS model + <u>SUSY breaking @UV brane</u>

SUSY br. @UV brane + gaugino med. (?)

Warped XD: high scale $\Lambda_{SUSY} \Rightarrow$ low scale Λ_{comp} 微妙なことは背景計量へ?

(Finite threshold corrections...)

SU(2)L as a Seiberg dual

SU(4) 6-flavor model (approximate conformal)

一応Yukawa を Higher dimensional operator で書ける Running で持ち上げる予定? The leading contribution to the composite soft masses are controlled by chiral symmetry (Arkani-Hamed, Rattazzi '98)

$$\mathcal{L} = \int d^{4}\theta \left(\mathcal{Q}^{\dagger} Z e^{V} \mathcal{Q} + \bar{\mathcal{Q}}^{\dagger} Z e^{V} \bar{\mathcal{Q}} \right) \qquad \begin{array}{l} \mathcal{Q} \to e^{A} \mathcal{Q} , \qquad \bar{\mathcal{Q}} \to e^{A} \bar{\mathcal{Q}} \\ Z \to e^{-A - A^{\dagger}} , \qquad \Lambda_{h} \to e^{2F/bA} \Lambda_{h} \end{array}$$
$$Z = 1 - \theta^{2} B - \bar{\theta}^{2} B - \theta^{2} \bar{\theta}^{2} (m_{UV}^{2} - |B|^{2})$$

$$m_M^2 = 2 \frac{3N - 2F}{b} m_{UV}^2$$
, $m_q^2 = -\frac{3N - 2F}{b} m_{UV}^2$

 m_{IR}^2 of composites are vanishing for F = 3/2 N! [up to O(m⁴/ Λ^2) correction...]

Stops and Higgs can be light!

$$\begin{split} m_{el} &\sim M_3 \sim \text{few} \cdot \text{TeV} \\ \Lambda &\sim 5 - 10 \text{ TeV} \\ m_{comp} &\sim \frac{m_{el}^2}{\Lambda} \sim M_1 \sim M_2 \sim A \sim \text{few} \cdot 100 \text{ GeV} \\ f &\sim 100 \text{ GeV} \\ T &\sim f^2 m_{el} \sim \text{few} \cdot 10^7 \text{ GeV}^3 \\ \mathcal{F} &\sim \text{few} \cdot \text{ TeV} \\ \mu_{\text{eff}} &= y \langle S \rangle \sim A \\ \tan \beta &\sim \mathcal{O}(1) \end{split}$$

Interesting bonus

$$\begin{split} W \supset y P(\mathcal{H}\bar{\mathcal{H}} - \mathcal{F}^2) + y S(H_u H_d - f^2) \\ + y Q_3 H_u \bar{t} + y H_u \mathcal{H} \phi_u + y H_d \bar{\mathcal{H}} \phi_d \ . \end{split}$$

Higgs Mass can be raised up by SH_uH_d
$$V_h = y^2/4 \, \sin^2 2\beta \, (\, H^{\dagger}H \,)^2 \\ m_h^2 = m_{h(MSSM)}^2 + y^2 \, \sin^2 2\beta \, v^2 \quad (v = 174 \text{GeV}) \end{split}$$

MCSSM: benchmark spectra

Table 3: Light superpartners and Higgs particles for benchmark spectra 1 and 2 with a \tilde{t} NLSP. All other superpartners are above 1 TeV.

gluino mass ~ 1.5 TeV

Light Stop:まとめ

- •Anomalous U(I) model
- •Flavored Mediation
- •Extra Dimensional Models

M_{1,2generation} >> M_{3rd} ~ M_{gaugino}

[Sbottom が軽い場合は gluino > 900GeV]

Light Stop:まとめ

Multi-jet search

J. Bramante, J.Kumar, B. Thomas (2011)

- Simple Model : gluino, stop, n1 (massless for simplicity)
 - $t^1 \rightarrow t + N1 \rightarrow jj_{b^+} N1$
- $g \rightarrow t + t^{1} \rightarrow tt + N1 \rightarrow jjjj + N1$ 1200 $\mathcal{L}_{int}=10 \text{ fb}^{-1}$ • N_j > 8 1100 • ∉_T > 300 GeV 1000 Mg [GeV] No leptons 900 800 • √s = 7 TeV, 10fb-1 700 5 σ --- Red 600 3σ --- Orange 500 400 600 800 1000 1200 $m_{\tilde{t}_1}$ [GeV] 因に今日の arXiv:1203.4813 "Stop the Top Background of the Stop Search " M_{T2} with on-shell W $\tilde{\chi}_1^0$ → Direct stop search で 650-700GeV (8TeV 20fb⁻¹)

SUSY particle が縮退している模型

なかなか High Energy Motivated な模型はなかなか無い

特例) Mirage Mediation: Mirage@TeV

Talk by H.P.Nills, 山口さん; Paper by Choi-Jeong-Kobayashi-Okumura in PRD [hep-ph/0612258]

Iwamoto points (MIRAGE MEDIATION calc. by ISAJET 7.82)

[このparameter の α は前のpage の α とは定義が違います]

R-parity violation??

$$W_{\mathcal{R}_{p}} = \frac{1}{2} \lambda_{ijk} L_{i} L_{j} \bar{E}_{k} + \lambda'_{ijk} L_{i} Q_{j} \bar{D}_{k} + \frac{1}{2} \lambda''_{ijk} \bar{U}_{i} \bar{D}_{j} \bar{D}_{k},$$

Not to wash out B-asymmetry

 $\lambda, \lambda', \lambda'' \lesssim \mathcal{O}(10^{-7})$.

Endo, Hamaguchi, Iwamoto, arXiv:0912.0585

Missing E_T search is no more optimal... (= the LSP is no more DM candidate)

Leptonic RPV : multilepton final state Hadronic RPV : a lot of jets

Figure 2: 95% C.L. limits for RPV couplings λ_{122} , λ_{123} , λ_{233} and Hadronic-RPV scenarios as a function of the squark and gluino masses for a SUSY topology described in the text. The observed limits, along with limits expected in the absence of signal are shown, along with the uncertainty in the expectation. Masses to the left of the curves are excluded. For the H-RPV scenario gluino masses below ~ 500 GeV/c² are allowed for reasons explained in the text. The previous limit on λ_{122} , obtained with 35 pb⁻¹, is shown as a dotted line on the left plot.

SUSY が見えない場合でも H-PRV はしぶとく生き残りそう...

Current Status of SUSY models

squark mass	SUSY	Higgs	Naturalness	GUT	10 years from now?	備考
higher than 100TeV	DM ?? wino<3TeV Higgsino <2TeV	much heavier than 125GeV	何それ?	Gaugino がTeV scale なら unification は OK	現段階で Higgs mass への制限か ら less favored. もし stopping gluino なんかが見 つかったら大騒ぎ。	もはや SUSY じゃな い?
10-100TeV	DM ?? wino<3TeV Higgsino <2Te	I25GeV in MSSM	何それ?	Gaugino がTeV scale なら unification は OK	Gaugino searches. Cosmic ray?	High energy model は シンプル。やれるこ とが少ないかも
TeV	もう 焦らずもう少し 待ち Hap	素献る something Py Large A-term	1%で済む領域か 残っているか? low scale mediation が有利	小たりこう 得に問題無い	いわゆる SUSY search で少し づつ削られて行く 最終的には 10TeV scenario に 合流?	g-2 はまた説明可 能! Higgs グループにおま かせ
Light Stop, Higgsino	まずは gluino ITeV 以下でまい 9 search! Same Sign Muon ?		Two-loop を考える さくいっに 15 f 下でないと O(10)% は難しそう	っこで何か	が見えるでと	stop を軽くする際の Inggring に注意。 g-2 はまだ説明可 能!
縮退!	男行 LHC search での穴	しまし 素敵な something	ノよう TeV 以内で見つかれ ば文句無し?	<u>基本的に gaugino の GUT</u> relation は邪魔。 例外) Mirage Mediation	<u>ISR jet で何処までいけるか?</u> ISR photon とか? soft lepton とか?	縮退を実現する High energy model はほとん どない。 大穴の一つ?
番外色々?	LHC で見つか らないように もっと手の込ん だ模型?	素敵な something?	Little Higgs とか他の 模型との組み合わ せ?	Dual Unification とか?	見やすくて意外な模型なら Welcome! SUSY を隠す模型を作り続け る人が出てくるか?	