注) 引用している数値の referenceが適当なので 迷ったら2011-2012の 国際会議のスライドを見 てください。

# Flavor and CP (LHCとCosmology以外)

#### 遠藤 基 (東京大学)

#### 基研研究会 標準模型を超えた素粒子理論へ向けて 2012.3.20

#### 新しい物理のヒント

|                 | SMからのずれ | NPのスケール               |
|-----------------|---------|-----------------------|
| ニュートリノ振動        | 証拠      | RΗν                   |
| 初期宇宙            | 証拠      | >TeV                  |
| 暗黒物質            | 証拠      | 熱史次第                  |
| 大統一理論           | 示唆      | ~10 <sup>16</sup> GeV |
| ヒエラルキー問題        | 示唆      | TeV?                  |
| μ粒子異常磁気能率       | 示唆      | TeV                   |
| フレーバー・CP        | ?       | TeV                   |
| Top AFB         | ?       | TeV                   |
| EWP, <i>ν</i> , | ?       | ?                     |
| 宇宙線 (e+,e-)     | ?       | TeV                   |
| DMの直接検出         | ?       | ~GeV                  |

### Muon g-2

# Muon g-2

#### g-factor deviates from 2 due to radiative corrections



#### $> 3\sigma$ deviation

cf.  $a_{\mu}(\text{EW}) = 1.5 \times 10^{-9}$ 

| HMNT (06)                             | · • •                    |                | ,<br> <br> <br> <br>       |    |     |
|---------------------------------------|--------------------------|----------------|----------------------------|----|-----|
| JN (09)                               | <br>  <b>  </b>          |                | <br> <br> <br> <br>        |    |     |
| Davier et al, $\tau$ (10)             | <br> <br> <br> <br>      | <br>  <b> </b> | <b> 1</b>                  |    |     |
| Davier et al, $e^+e^\pm$ (10)         | <b>–</b>                 | ₽              | <br> <br> <br> <br>        |    |     |
| JS (11)                               | <b> 1</b>                |                |                            |    |     |
| HLMNT (10)                            | F                        |                | 1<br>1<br>1<br>1           |    |     |
| (HLMNT (11)                           | ⊨                        |                | <br> <br> <br> <br> <br>   |    |     |
| ··· experiment ·····                  | :                        |                |                            | ·  |     |
| BNL                                   | ,<br>1<br>1<br>1<br>1    |                | ,<br>,<br>,<br>,<br>,<br>, |    |     |
| BNL (new from shift in $\lambda$ )    | <br> <br> <br> <br> <br> |                | <br> <br> <br> <br> <br>   |    |     |
|                                       |                          |                |                            |    |     |
| $a_{\mu} \times 10^{10} \pm 11659000$ | 70 18                    | 30 19          | 90 20                      | )0 | 210 |

#### SM Prediction

SM = QED + EW + Had (LO + HO + HLbL)

**Exp:** 116592089 (63)  $[\times 10^{-11}]$ 



 $a_{\mu}^{\exp}$  $a_{\mu}^{SM}$  $= (26.1 \pm 8.0) \cdot 10^{-10}$ 

#### SM Prediction

SM = QED + EW + Had (LO + HO + HLbL)



#### Hadronic light-by-light scattering in the muon g - 2: Summary

| Contribution                        | BPP            | HKS, HK         | KN        | MV         | BP, MdRR     | PdRV         | N, JN        | FGW          |
|-------------------------------------|----------------|-----------------|-----------|------------|--------------|--------------|--------------|--------------|
| $\pi^0,\eta,\eta^\prime$            | $85\pm13$      | $82.7 \pm 6.4$  | 83±12     | $114\pm10$ | _            | $114 \pm 13$ | $99\pm16$    | $84{\pm}13$  |
| axial vectors                       | $2.5{\pm}1.0$  | $1.7 \pm 1.7$   | _         | $22\pm5$   | _            | $15\pm10$    | $22\pm5$     | _            |
| scalars                             | $-6.8{\pm}2.0$ | _               | _         | _          | _            | $-7\pm7$     | $-7\pm 2$    | _            |
| $oldsymbol{\pi},oldsymbol{K}$ loops | $-19{\pm}13$   | $-4.5{\pm}8.1$  | _         | _          | _            | $-19 \pm 19$ | $-19{\pm}13$ | _            |
| $\pi,K$ loops + subl. $N_{m{C}}$    | —              | —               | —         | 0±10       | —            | _            | —            | _            |
| other                               | —              | —               | —         | —          | —            | —            | —            | $0\pm 20$    |
| quark loops                         | 21±3           | $9.7{\pm}11.1$  | —         | —          | —            | 2.3          | $21\pm3$     | $107 \pm 48$ |
| Total                               | 83±32          | $89.6 \pm 15.4$ | $80\pm40$ | $136\pm25$ | $110 \pm 40$ | $105 \pm 26$ | $116 \pm 39$ | $191 \pm 81$ |

#### Some results for the various contributions to $a_{\mu}^{ m LbyL;had} imes 10^{11}$ :

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, Nyffeler '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = Nyffeler '09, JN = Jegerlehner, Nyffeler '09; FGW = Fischer, Goecke, Williams '10, '11 (used values from arXiv:1009.5297v2 [hep-ph], 4 Feb 2011)

- Pseudoscalar-exchange contribution dominates numerically (except in FGW). But other contributions are not negligible. Note cancellation between  $\pi$ , *K*-loops and quark loops !
- PdRV: Do not consider dressed light quark loops as separate contribution ! Assume it is already taken into account by using short-distance constraint of MV '04 on pseudoscalar-pole contribution. Added all errors in quadrature ! Like HK(S). Too optimistic ?
- N, JN: New evaluation of pseudoscalars. Took over most values from BPP, except axial vectors from MV. Added all errors linearly. Like BPP, MV, BP, MdRR. Too pessimistic ?
- FGW: new approach with Dyson-Schwinger equations. Is there some double-counting? Between their dressed quark loop (largely enhanced !) and the pseudoscalar exchanges.



Crystal Ball detector (1988)

#### Future Prospects

E821: 116592089(63)  $\times 10^{-11}$  (0.54ppm)

$$\sigma_{\rm stat} = 0.46 \text{ppm}$$
  $\sigma_{\rm syst} = 0.28 \text{ppm}$ 

Hadronic VP: KLOE-2, VEPP-2000, Super-B factories LbL: err reduced to 10% level in ~5years [INT workshop]

- ▶ E989 (3× smaller error)  $\rightarrow \sim 5\sigma$
- ▶ E989+new HLBL theory  $\rightarrow \sim 6\sigma$

Blum, Fundamental Physics at the Intensity Frontier

▶ E989+new HLBL +new HVP (50% reduction)  $\rightarrow \sim 8\sigma$ 

### New Physics

challenge to explain the deviation:

$$a_{\mu}(\text{NP}) \sim \frac{\alpha_{\text{NP}}}{4\pi} \frac{m_{\mu}^2}{m_{\text{NP}}^2} \iff a_{\mu}(\text{EW}) \sim \frac{\alpha_2}{4\pi} \frac{m_{\mu}^2}{m_W^2}$$

note: muon mass due to chirality flip

- current discrepancy is as large as  $a_{\mu}(EW)$
- light new particle or large coupling
- enhancement required for NP in TeV scale

# Heavy Photon

• kinetic mixing with  $U(1)_{Y}$ 

$$\mathcal{L} = \frac{\epsilon}{2} F^Y F'$$

• behave as photon for  $a_{\mu}$  [Pospelov]



• also light scalar, Z', ...



Figure from slide by Essig at "Fundamental Physics at the Intensity Frontier"

### SUSY

- muon g-2 requires
  - small soft mass
  - large tanβ

$$\Delta a_{\mu} \sim \frac{\alpha_2}{4\pi} \frac{m_{\mu}^2}{m_{\rm soft}^2} \frac{\tan\beta}{\tan\beta}$$

 tension: Higgs mass of ~125GeV





# Leptonic flavor or CP violation

### LFV and EDM

New Physics searches in rare (SM suppressed) processes



... currently no excesses in measurements

#### **Charged-Lepton Flavour Violation**



Lepton-Photon 2011 – Mumbai, India

Andreas Hoecker – Charged-Lepton Flavour Physics

### $\tau LFV$



http://www.slac.stanford.edu/xorg/hfag/tau/HFAG-TAU-LFV.htm

#### CP violation: EDM

$$\mathcal{L}_{\text{eff}} = \frac{g_s^2}{32\pi^2} \bar{\theta} \, G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} - \sum_{i=u,d,s,e,\mu} i \frac{d_f}{2} \bar{\psi}_i (F \cdot \sigma) \gamma_5 \psi_i - \sum_{i=u,d,s} i \frac{d_f}{2} g_s \bar{\psi}_i (G \cdot \sigma) \gamma_5 \psi_i + \frac{1}{3} w \, f^{abc} G^a_{\mu\nu} \tilde{G}^{\nu\rho,b} G^{\mu,c}_{\rho} + \sum_{i,j} C_{ij} \, (\bar{\psi}_i \psi_i) (\bar{\psi}_j i \gamma_5 \psi_j) + \cdots ,$$





| particle  | exp [ecm]                        |
|-----------|----------------------------------|
| electron  | 1.6 x 10 <sup>-27</sup> (90%)    |
| muon      | 1.9 x 10 <sup>-19</sup> (95%)    |
| tau       | 4.6 x 10 <sup>-17</sup> (95%)    |
| proton    | 0.54 x 10 <sup>-23</sup>         |
| neutron   | 2.9 x 10 <sup>-26</sup> (90%)    |
| mercury   | 3.1 x 10 <sup>-29</sup> (95%)    |
| strong CP | <del>θ</del> < 10 <sup>-10</sup> |

#### Neutrino

#### Status

- (total) mass ≤ O(0.1-1)eV
   [cf. cosmology, 0v2β]
   Daya-Bay result on U<sub>e3</sub>
   sin<sup>2</sup> 2θ<sub>13</sub> = 0.092(0.016)(0.005)
- future targets
  - CP violation
  - mass spectrum

cf. MINOS anti-neutrino anomaly disappeared

| parameter                                              | best fit $\pm 1\sigma$                                                                                               |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| $\Delta m_{21}^2 \left[ 10^{-5} \mathrm{eV}^2 \right]$ | $7.59^{+0.20}_{-0.18}$                                                                                               |
| $\Delta m_{31}^2 \left[ 10^{-3} \mathrm{eV}^2 \right]$ | $2.50^{+0.09}_{-0.16} \\ -(2.40^{+0.08}_{-0.09})$                                                                    |
| $\sin^2 \theta_{12}$                                   | $0.312^{+0.017}_{-0.015}$                                                                                            |
| $\sin^2 \theta_{23}$                                   | $\begin{array}{c} 0.52^{+0.06}_{-0.07} \\ 0.52 \pm 0.06 \end{array}$                                                 |
| $\sin^2 \theta_{13}$                                   | $\begin{array}{c} 0.013\substack{+0.007\\-0.005}\\ 0.016\substack{+0.008\\-0.006}\end{array}$                        |
| δ                                                      | $\begin{pmatrix} -0.61^{+0.75}_{-0.65} \end{pmatrix} \pi \\ \begin{pmatrix} -0.41^{+0.65}_{-0.70} \end{pmatrix} \pi$ |

[Schwetz, Tortola, Valle, 1108.1376]

### Hadron Physics

#### Status

- almost all results provide constraints
  - stringent bound from  $K-\bar{K}$



- chirality flip is enhanced in a class of NP (SUSY)
  - caution: when you read literature, some of them discard this effect...

**B** Physics

Rare decays (induced by CKM):  $B_d \to X_s \gamma$ ,  $B_{d,s} \to \mu \mu$ •  $Br(\bar{B} \to X_s \gamma) \ [\bar{B} = \bar{B}^0 \text{ or } B^-]$ 

$$\begin{cases} \operatorname{Br}(\bar{B} \to X_s \gamma)^{\exp} = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4} \\ \operatorname{Br}(\bar{B} \to X_s \gamma)^{\mathrm{SM}} = (3.15 \pm 0.23) \times 10^{-4} \end{cases}$$

→ 
$$-0.29 \times 10^{-4} < \Delta Br(\bar{B} \to X_s \gamma) < 1.09 \times 10^{-4}$$
 @2 $\sigma$ 

$$\begin{split} |A(b \rightarrow s\gamma)|^2 &= |A^{\rm SM}({\rm LO}) + A^{\rm SM}({\rm HO}) + A^{\rm NP}({\rm LO}) + A^{\rm NP}({\rm HO})|^2 \\ &= |A^{\rm SM}({\rm LO}) + A^{\rm SM}({\rm HO})|^2 \\ &+ 2{\rm Re}[A^{\rm SM}({\rm LO})^*A^{\rm NP}({\rm LO})] \\ &+ 2{\rm Re}[A^{\rm SM}({\rm NLO})^*A^{\rm NP}({\rm LO})] \\ &+ 2{\rm Re}[A^{\rm SM}({\rm LO})^*A^{\rm NP}({\rm NLO})] + \dots \end{split}$$

Rare decays (induced by CKM):  $B_d \rightarrow X_s \gamma$ ,  $B_{d,s} \rightarrow \mu \mu$ 

•  $\operatorname{Br}(\bar{B} \to X_s \gamma) \ [\bar{B} = \bar{B}^0 \text{ or } B^-]$ 

• 
$$\operatorname{Br}(B_q \to \mu \mu) \quad [q = d, s]$$
  
 $\begin{cases} \operatorname{Br}(B_d \to \mu \mu)^{\exp} < 1.03 \times 10^{-9} & [\operatorname{SM}: (0.1 \pm 0.01) \times 10^{-9}] \\ \operatorname{Br}(B_s \to \mu \mu)^{\exp} < 4.5 \times 10^{-9} & [\operatorname{SM}: (3.2 \pm 0.2) \times 10^{-9}] \end{cases}$ 



sensitive to scalar exchange e.g. large tan $\beta$  enhancement in SUSY



Black line: CMS exclusion limit with 1.1 fb<sup>-1</sup> data Red line: CMS exclusion limit with 4.4 fb<sup>-1</sup> data

#### before LHCb 1fb<sup>-1</sup>



#### new LHCb result

# **B-B** Oscillation

Rare decays (induced by CKM):  $B_d \rightarrow X_s \gamma$ ,  $B_{d,s} \rightarrow \mu \mu$ 

•  $\operatorname{Br}(\bar{B} \to X_s \gamma) \ [\bar{B} = \bar{B}^0 \text{ or } B^-]$ 

• 
$$\operatorname{Br}(B_q \to \mu \mu) \quad [q = d, s]$$

**B** meson oscillation:  $B_q^0 \leftrightarrow \bar{B}_q^o$ 

$$|\psi(t)\rangle = a(t)|B_0\rangle + b(t)|\bar{B}_0\rangle + \dots$$



 $i\frac{\partial}{\partial t} \begin{bmatrix} a(t) \\ b(t) \end{bmatrix} = \begin{bmatrix} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{21} - \frac{i}{2}\Gamma_{21} & M_{22} - \frac{i}{2}\Gamma_{22} \end{bmatrix} \begin{bmatrix} a(t) \\ b(t) \end{bmatrix}$  M,  $\Gamma$ : Hermit note: CPT

mass eigenstates:  $|B_{H,L}\rangle = p|B_0\rangle \pm q|\bar{B}_0\rangle$  $\Delta M \equiv M_H - M_L \sim 2|M_{12}| \quad \Delta \Gamma \equiv |\Gamma_H - \Gamma_L| \sim 2|\Gamma_{12}|$ 

#### **CP** Violations

Rare decays (induced by CKM):  $B_d \to X_s \gamma, \, B_{d,s} \to \mu \mu$ 

•  $\operatorname{Br}(\bar{B} \to X_s \gamma) \ [\bar{B} = \bar{B}^0 \text{ or } B^-]$ 

• 
$$\operatorname{Br}(B_q \to \mu \mu) \quad [q = d, s]$$

B meson oscillation:  $B_q^0 \leftrightarrow \bar{B}_q^o$ 

- CP violations
  - direct CPV ( $B \rightarrow K\pi$ )
  - indirect CPV (semileptonic)
  - interference ( $B \rightarrow J/\psi K$ )

$$\left(B^0 \to f_{\rm CP} \leftarrow \bar{B}^0\right)$$



#### Status

#### mass difference

 $\Delta m_d(\exp) = 0.507 \pm 0.004 \text{ps}^{-1} [\text{SM} : 0.543 \pm 0.091 \text{ps}^{-1}]$  $\Delta m_s(\exp) = 17.63 \pm 0.11 \text{ps}^{-1} [\text{SM} : 17.30 \pm 2.6 \text{ps}^{-1}]$ 

width difference of B<sub>s</sub>

 $\Delta \Gamma_s(\exp) = 0.116 \pm 0.019 \text{ps}^{-1} \quad [\text{SM}: 0.087 \pm 0.021 \text{ps}^{-1}]$ 

• CP violating phase of B<sub>s</sub> ( $\phi_s = -\arg M_{12}^s/\Gamma_{12}^s$ )

 $\phi_s(\exp) = -0.001 \pm 0.105$ rad [SM :  $-0.037 \pm 0.002$ rad]

#### c.f. lifetime

 $\left. \frac{\tau_{B_s}}{\tau_{B_d}} \right|_{\exp} = 1.001 \pm 0.014 \quad [SM: 0.996 - 1.000]$ 

#### B<sub>s</sub> Status



### Anomalies in B physics

Belle, BaBarの結果(LHCbとかも含む)

- •CKM fit: Br(B<sub>u</sub>  $\rightarrow \tau \nu$ ) or sin 2 $\phi_1$
- ・B  $\rightarrow$  K  $\pi$  の direct CP violation LHCbがSMを示唆  $\rightarrow$  今回は話しません
  - B  $\rightarrow$  K\*II $\infty$ FB asymmetry

Tevatronの結果を間接的にLHCbが否定的

• like-sign dimuon charge asymmetry (for  $B_s - \overline{B}_s$  oscillation)



# $\mathsf{Br}(\mathsf{B}\to\tau\,\nu)$

・SMではtree levelの崩壊:  $2\sigma$ 以上のずれ (sin2 $\phi$ 1を固定)



# $\mathsf{Br}(\mathsf{B}\to\tau\,\nu)$

・SMではtree levelの崩壊:  $2\sigma$ 以上のずれ (sin2 $\phi$ 1を固定)





$$\mathcal{B}(B \to \tau \nu) = \frac{G_F^2 m_B \tau_B}{8\pi} m_\tau^2$$
$$\times \left[1 - \frac{m_\tau^2}{m_B^2}\right]^2 f_{B_d}^2 |V_{ub}|^2$$

$$\frac{\mathcal{B}(B \to \tau \nu)}{\mathcal{B}(B \to \tau \nu)|_{\text{SM}}} = \left[1 - \frac{m_B^2}{m_{H^{\pm}}^2} \tan^2 \beta\right]^2$$

charged Higgsがある?

# Heavy Higgs @ LHC

#### not include Moriond 2012



# Contribution to $B \rightarrow D \tau \nu$


# $B \rightarrow \tau \nu \text{ or } \sin 2\phi_1$

Fit without  $|V_{ub}|$  and grayed data  $\rightarrow$  next slide

NP in B<sub>d</sub> mixing

**NP** in  $B \rightarrow \tau \nu$ 



#### Tension in Vub

#### determination

- inclusive:  $B \to X_u \ell \nu$ 

 $|V_{ub}|_{\rm incl} = (4.27 \pm 0.38) \times 10^{-3}$ 

- exclusive:  $B \to \pi \ell \nu$ 

 $|V_{ub}|_{\text{excl}} = (3.12 \pm 0.26) \times 10^{-3}$ 

#### $\rightarrow$ 2-3 $\sigma$ tension could be hint of NP in RH current

"Inclusive and exclusive V<sub>ub</sub> are the most complicated calculations that enter the fits..." Lunghi, KEK Flavor Factory WS **Table 1:**  $|V_{ub}|$  (in units of  $10^{-5}$ ) from inclusive  $\overline{B} \to X_u \ell \overline{\nu}_\ell$  measurements. The first uncertainty on  $|V_{ub}|$  is experimental, while the second includes both theoretical and HQE parameter uncertainties. The values are listed in order of increasing  $f_u$  (0.19 to 0.90).

| Ref.                                                                                                            | BLNP                                                                                                            | GGOU                                                                                                                                 | DGE                                                                                             |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| [108] 3<br>[111] 4<br>[110] 4<br>[109] 4                                                                        | $     383 \pm 45 \pm 33      428 \pm 29 \pm 37      418 \pm 24 \pm 30      464 \pm 43 \pm 30 $                  | $368 \pm 43 \pm 32$<br>not avail.<br>$405 \pm 23 \pm 27$<br>$453 \pm 42 \pm 26$                                                      | $358 \pm 42 \pm 27$<br>$404 \pm 27 \pm 29$<br>$406 \pm 27 \pm 27$<br>$456 \pm 42 \pm 26$        |
| $ \begin{bmatrix} 119 \end{bmatrix} 4 \\ [113] 4 \\ [113] 3 \\ [113] 4 \\ [113] 4 \\ [115] 4 \\ \end{bmatrix} $ | $423 \pm 45 \pm 30$<br>$432 \pm 28 \pm 30$<br>$365 \pm 24 \pm 26$<br>$402 \pm 19 \pm 28$<br>$436 \pm 26 \pm 22$ | $\begin{array}{c} 414 \pm 44 \pm 34 \\ 422 \pm 28 \pm 34 \\ 343 \pm 22 \pm 28 \\ 398 \pm 19 \pm 27 \\ 441 \pm 26 \pm 13 \end{array}$ | $420 \pm 44 \pm 21  426 \pm 28 \pm 21  370 \pm 24 \pm 28  423 \pm 20 \pm 19  446 \pm 26 \pm 16$ |
| Z                                                                                                               | $420 \pm 16 \pm 23$                                                                                             | $427 \pm 16 \pm 18$                                                                                                                  | $433 \pm 15 \pm 17$                                                                             |

[PDG]

#### Tension in V<sub>ub</sub>

#### determination

- inclusive:  $B \to X_u \ell \nu$ 

$$|V_{ub}|_{\rm incl} = (4.27 \pm 0.38) \times 10^{-3}$$

 $\overline{\eta}$ 

0.2

- exclusive:  $B \rightarrow \pi \ell$  $|V_{ub}|_{\text{excl}} = (3.12 \pm 0.26)$ 

#### $2-3\sigma$ tension could be hint of NP in RI

"Inclusive and exclusive V<sub>ub</sub> are complicated calculations that en Lunghi, KEK Flavor Table 1:  $|V_{ub}|$  (in units of  $10^{-5}$ ) from inclusive  $\overline{B} \to X_u \ell \overline{\nu}_\ell$  measurements. The first uncertainty on  $|V_{ub}|$  is experimental, while the second includes both theoretical and HQE parameter uncertainties. The values are listed in order of increasing  $f_u$  (0.19 to 0.90).



### $B \rightarrow \pi ACP \text{ of } B \rightarrow K\pi$



Figure from slide by Kwon at LP2011

[Standard Model]







CP violation (common)



difference of CP violation

**Topological decomposition** 

$$A(K^{+}\pi^{-}) = -P' - T'e^{i\phi_{3}}$$
$$\sqrt{2}A(K^{+}\pi^{0}) = -(P' + P'_{ew}) - (T' + C')e^{i\phi_{3}}$$

Naive estimation

$$P' > T', P'_{ew} > C' \quad [1 : O(10^{-1}) : O(10^{-2})]$$
  
$$\Delta A_{CP} \simeq 2|P'_{ew}/P'| |T'/P'| \sin(\delta_T + \delta_{ew}) \sin\phi_3$$
  
$$-2|C'/P'| \sin\delta_C \sin\phi_3 \quad (\ll 0.1)$$

Implications

larger C' with strong phase or larger P'ew with large CP phase

Color-suppressed Tree (C')

C' is sensitive to subleading corrections (c.f. pQCD) Br( $B \rightarrow \pi^0 \pi^0$ ) imply larger C, though Br( $B \rightarrow \rho^0 \rho^0$ ) is consistent

Sum rule: RHS  $\approx 0$  cf.  $A_{CP}^{+-} \equiv A_{CP}(B \to K^+\pi^-)$  $-A_{CP}^{0+} + A_{CP}^{00} + A_{CP}^{+0} - A_{CP}^{+-} \approx 2|P'_{ew}/P'| |T'/P'| \sin(\delta_T + \delta_{ew}) \sin\phi_3$ 

~0 C' C', P<sub>ew</sub>' ~0.1 (exp) ~O(10<sup>-2</sup>) [SM]

If C' (Pew) is larger, sum rule is satisfied (violated)

 $S_{CP}(B \rightarrow K^0 \pi^0)$ も面白い [see Fleischer, Jager, Pirjol, Zupan]

# like-sign dimuon charge asymmetry

・ $p\bar{p} \rightarrow \mu \mu XX$  event ・ $\mu^+\mu^+ \mathcal{E}\mu^-\mu^-$ の非対称性

$$A_{sl}^b = \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

- ・SMではBq-Ēq mixingに よりeventが生じる
- ・AsymmetryはCPの破れ

$$A_{sl}^b \simeq 0.5a_{sl}^d + 0.5a_{sl}^s$$



# like-sign dimuon charge asymmetry

・ $p\bar{p} \rightarrow \mu \mu XX$  event ・ $\mu^+\mu^+ \mathcal{E}\mu^-\mu^-$ の非対称性

$$A_{sl}^b = \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

- ・SMではBq-Ēq mixingに よりeventが生じる
- ・AsymmetryはCPの破れ

$$A_{sl}^b \simeq 0.5a_{sl}^d + 0.5a_{sl}^s$$



# like-sign dimuon charge asymmetry

- ・BdとBsでmuonのimpact
  parameter分布が異なる
  (振動周期の違いを利用)
  ・impact parameter毎に
- dimuon evente fit
- ・B<sub>s</sub>の方にSMからのずれの 傾向がある



#### Status of B<sub>s</sub> mixing

B<sub>s</sub> mixingのCPの破れはB<sub>s</sub>→J/ $\psi \phi$ にも寄与する



LHCb indicates SM --- tight bounds on mixing!

### Global fit of Bd and Bs

#### Not include results of Moriond 2012

see 1008.1593 for details





#### Charm CP Violation

## **CP** violation

- charm CP is approximately conserved because of the dominance of the first two generations
  - direct and indirect CPV are expected to be tiny
  - large CP violation is a sign of new physics
- D meson mixing and indirect CP violation
  - oscillation is measured (10 $\sigma$ ), but no CP violation
  - long-distance contributions dominate mixing



#### D meson Oscillation



 $x = \Delta m_D / \Gamma_D \quad y = \Delta \Gamma_D / 2\Gamma_D$ 

### Direct CP Violation

- ・time-integrated CP asymmetryの測定 "A<sub>CP</sub>" = (CPV in decay) + (CPV in mixing)
- ・mixingによるCPの破れの大きさが制限されている
- ・大きなCPの破れはdirect CP violationのはず

$$\Delta A_{\rm CP} \equiv A_{\rm CP} (K^+ K^-) - A_{\rm CP} (\pi^+ \pi^-)$$
  
= (-0.67 ± 0.16)% ~~4 \sigma from zero

LHCb, CDF

### Direct CP Violation

• LHCb

 $\Delta A_{\rm CP} = (-0.82 \pm 0.21 \pm 0.11)\%$ 

• CDF

 $\Delta A_{\rm CP} = (-0.62 \pm 0.21 \pm 0.10)\%$ 

• world average

$$\left[\Delta A_{\rm CP}^{\rm dir} = (-0.67 \pm 0.16)\%\right]$$

~4 $\sigma$  from zero



# SM Prediction

 CP violation in singly Cabibbo-suppressed decay is expected to be small

**SCS CPV:** 
$$\mathcal{O}\left(\operatorname{Im}\left[\frac{V_{cb}^*V_{ub}}{V_{cd}^*V_{ud}}\right]\frac{\alpha_s}{\pi}\right) \sim 0.01\%$$

- conventional method is not reliable
  - long-distance effects dominate in mixing
  - branching ratios are not explained by B method
  - 1/m<sub>c</sub> expansion breaks down because  $m_D \simeq \Lambda_{QCD}$
- approach
  - fit topological amplitudes based on  $SU(3)_F$ /isospin
  - large uncertainty in CPV (b-penguin) [O(0.1)%?]

# Top FB Asymmetry Top Charge Asymmetry

# SM Prediction

 No FB/charge asymmetry at leading order in QCD



- asymmetry arises at NLO
- top quarks are preferentially emitted "forward"

Figures from slide by Rodrigo at Moriond 2012



#### **Tevatron Results**

- lepton + jet mode of top-anti-top decay
- $\approx 2\sigma$  excess for inclusive data
- excess tends to be enhanced in large  $M_{tt}$  and  $\Delta y$

| parton/production level asymmetry in % (except for green) Preliminary |              |                           |                                 |                    |  |  |
|-----------------------------------------------------------------------|--------------|---------------------------|---------------------------------|--------------------|--|--|
| Selection                                                             | NLO (QCD+EW) | CDF, 5.3 fb <sup>-1</sup> | D0, 5.4 fb <sup>-1</sup>        | CDF, 8.7 fb-1      |  |  |
| Inclusive                                                             | 6.6          | 15.8 ± 7.4                | 19.6 ± 6.5                      | 16.2 ± 4.7         |  |  |
| $M_{tt}$ < 450 GeV/c <sup>2</sup>                                     | 4.7          | —11.6 ± 15.3              | 7.8 ± 4.8<br>(Bkg. Subtracted)  | 7.8 ± 5.4          |  |  |
| $M_{tt} \ge 450 \text{ GeV/c}^2$                                      | 10.0         | 47.5 ± 11.2               | II.5 ± 6.0<br>(Bkg. Subtracted) | 29.6 ± 6.7         |  |  |
| ∆y  < 1.0                                                             | 4.3          | 2.6 ± 11.8                | 6.1 ± 4.1<br>(Bkg. Subtracted)  | 8.8 ± 4.7          |  |  |
| ∆y  ≥ 1.0                                                             | 13.9         | 61.1 ± 25.6               | 21.3 ± 9.7<br>(Bkg. Subtracted) | 43.3 ± 10.9        |  |  |
| $\Delta y = y_t - y_{\bar{t}}$                                        |              |                           | From slide by Mietl             | icki, Moriond 2012 |  |  |



# LHC

- No FB asymmetry in symmetric collider
- charge asymmetry: rapidity difference bet. t and  $\overline{t}$
- cut to enhance  $q\bar{q}$  production
  - invariant mass of t and  $\overline{t}$
  - large rapidity region (gg is more central)

$$A_{C}^{\Delta} = \frac{N(\Delta > 0) - N(\Delta < 0)}{N(\Delta > 0) + N(\Delta < 0)} \qquad \Delta = |\eta_{t}| - |\eta_{\bar{t}}|, |y_{t}| - |y_{\bar{t}}| \text{ or } y_{t}^{2} - y_{\bar{t}}^{2}$$

$$\xrightarrow{q} \quad \overrightarrow{q} \quad$$

From slide by Rodrigo, Moriond 2012

#### Correlation

- strong correlation between A<sub>FB</sub>[TVT] and A<sub>C</sub>[LHC]
- other constraints not considered in figures
  - dσ/dM<sub>tt</sub>, same-sign top, dijet, ...



## 今回話してないもの

- EW precision関連
  - recent update: TevatronでW mass
  - jet asymmetry dataとlepton asymmetry data のそれぞれでfitすると互いに~3σのずれ
  - ▶ 実験そのものやQCD correctionの寄与は?
  - など詳しくはPDGのreviewを見てください
- Lepton universality
  - LEPのW→I $\nu$  (via e+e-→W+W-)のcouplingの 大きさが $\tau$ に関してだけ2.8 $\sigma$ ずれてる
  - しかし他の測定はSM consistent

# 今回話してないもの

- LSND/MB (+reactor, Gallium) anomaly
  - excess of anti-  $\nu_{\,\rm e} \rightarrow \,\Delta {\rm m}^2$  ~ 1eV^2
  - MB weakly supports LSND for anti  $\nu_{\,\rm e},$  but excludes for  $\nu_{\,\rm e}$ 
    - (also excess of E < 475MeV in MB)</p>
  - less  $\nu_{\,e}$  flux in reactor and GALLEX, SAGE
  - may imply sterile neutrino(s) [3+2,CPV?]
    - severe constraints from disappearance data and cosmology
    - cannot explain MB, E < 475MeV</p>

#### どれが"正しい"ヒントか?

|                 | SMからのずれ | NPのスケール               |
|-----------------|---------|-----------------------|
| ニュートリノ振動        | 証拠      | RΗν                   |
| 初期宇宙            | 証拠      | >TeV                  |
| 暗黒物質            | 証拠      | 熱史次第                  |
| 大統一理論           | 示唆      | ~10 <sup>16</sup> GeV |
| ヒエラルキー問題        | 示唆      | TeV?                  |
| μ粒子異常磁気能率       | 示唆      | TeV                   |
| フレーバー・CP        | ?       | TeV                   |
| Top AFB         | ?       | TeV                   |
| EWP, <i>ν</i> , | ?       | ?                     |
| 宇宙線 (e+,e⁻)     | ?       | TeV                   |
| DMの直接検出         | ?       | ~GeV                  |

# Message

- ・いろいろなモードでSMからのずれらしきものが 見つかっている
- ・信じられるかどうかにはSMの理解が重要
- New Physicsだとすれば、LHC、cosmologyや 他の実験でどのように見えるか

#### Backup

#### **Electroweak Precision**

## Fit Result Updated

- SM predictions are compared with data
  - radiative correction

$$M_W^2 \left( 1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} (1 + \Delta r)$$

top, Higgs

- W mass updated by Tevatrons
- SM works very well
  - NP is constrained



#### Current Result



latest Higgs results ATLAS 117.5 - 118.5GeV 122.5 - 129GeV CMS 114.5 - 127.5GeV

@95%
## Lepton or Hadron

- worse fit in jet data
- fits are good with
  - only lepton asym.
  - only jet asym.
    - differ by  $\sim 3\sigma$
- analysis of jet angular distribution may need revision [Hagiwara,Kirilin]

(or experimental?)



## Lepton or Hadron

- worse fit in jet data
- fits are good with
  - only lepton asym.
  - only jet asym.
    - differ by  $\sim 3\sigma$
- analysis of jet angular distribution may need revision [Hagiwara,Kirilin]

(or experimental?)



#### Leptonic Asym Fit



## Leptonic non-universality

#### Status

- test of  $W\ell\nu$  coupling for  $\ell = e, \mu, \tau$  [SN : ur iversal]
- consistent with universality perfectly in

 $[\mu \to e\nu\nu, \tau \to e\nu\nu, \tau \to \mu\nu\nu], [\pi \to e\nu, \pi \to \mu\nu, \tau \to \pi\nu], \dots$ 

• LEP measurements of  $e^+e^- \rightarrow W^+W^-$ 

$$B(W \rightarrow e \nu_e), B(W \rightarrow \mu \nu_{\mu}), B(W \rightarrow \tau \nu_{\tau})$$

| Experiment | $B(W  ightarrow e v_e)$ [%] | $B(W  ightarrow \mu   u_{\mu})$ [%] | B(W - | $\overline{\tau} v_{\tau}$ ) [% |
|------------|-----------------------------|-------------------------------------|-------|---------------------------------|
| ALEPH      | $10.78 \pm 0.29^{*}$        | $10.87 \pm 0.26^{*}$                | 11.25 | ±0.38*                          |
| DELPHI     | $10.55 \pm 0.34^{*}$        | $10.65 \pm 0.27^{*}$                | 11.46 | ±0.43*                          |
| L3         | $10.78 \pm 0.32^{*}$        | $10.03 \pm 0.31^*$                  | 11.89 | $\pm 0.45^{*}$                  |
| OPAL       | $10.40 \pm 0.35$            | $10.61 \pm 0.35$                    | 11.1  | $\pm 0.48$                      |
| LEP        | $10.65\pm0.17$              | $10.59\pm0.15$                      | 11.4  | $\pm 0.22$                      |

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP}} = 1.077 \pm 0.026 \qquad \dots 2.8\sigma!?$$

#### Status



# LSND/MiniBoone Anomaly (Reactor&Gallium)

#### Neutrino Anomalies

- LSND [LANL]: excess of anti- $v_e$  (anti- $v_\mu \rightarrow$  anti- $v_e$ )
  - $\Delta m^2 \sim 1 eV^2$ : inconsistent with sol. and atm.
- MiniBoone [FNAL]: appearance of  $v_e$  and anti- $v_e$ 
  - small excess in anti- $v_e$  for E > 475MeV
  - no excess in  $v_e$  for E > 475MeV
  - (small) excess in (anti-) v<sub>e</sub> for E < 475MeV (inconsistent with LSND oscillation)</li>



### Neutrino Anomalies

- Reactor anomaly
  - anti-v<sub>e</sub> flux is less than expectation  $(2.5\sigma)$
  - distance to reactor: 10-100m
- Gallium anomaly [GALLEX, SAGE]
  - detect neutrino via  $^{71}Ga$  +  $v_e \rightarrow ^{71}Ge$  +  $e^{-}$  from radioactive sources
  - v<sub>e</sub> flux is less than expectation (R=0.86±0.06)
- All these anomalies may imply sterile neutrino(s)
  - 3+2: CP violation can solve v-anti-v tension
  - constraints from disappearance and cosmology
  - MiniBoone low-energy excess is not explained