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The photonic background
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Matter calculations

PRECISION COSMOLOGY....
First numerical CMB calculation (to go through recombination)

PRIMEVAL ADIABATIC PERTURBATION
IN AN EXPANDING UNIVERSE*

P. J. E. PEEBLEST
Joseph Henry Laboratories, Princeton University
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J. T. Yut
Goddard Institute for Space Studies, NASA, New York
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ABSTRACT

The general qualitative behavior of linear, first-order density perturbations in a Friedmann-Lemaitre
cosmological model with radiation and matter has been known for some time in the various limiting
situations. An exact quantitative calculation which traces the entire history of the density fluctuations is
lacking because the usual approximations of a very short photon mean free path before plasma re-
combination, and a very long mean free path after, are inadequate. We present here results of the direct
integration of the collision equation of the photon distribution function, which enable us to treat in detail
the complicated regime of plasma recombination. Starting from an assumed initial power spectrum well
before recombination, we obtain a final spectrum of density perturbations after recombination. The
calculations are carried out for several general-relativity models and one scalar-tensor model. One can
identify two characteristic masses in the final power spectrum: one is the mass within the Hubble radius
¢t at recombination, and the other results from the linear dissipation of the perturbations prior to re-
combination. Conceivably the first of these numbers is associated with the great rich clusters of galaxies,
the second with the large galaxies. We compute also the expected residual irregularity in the radiation
from the primeval fireball. If we assume that (1) the rich clusters formed from an initially adiabatic
perturbation and (2) the fireball radiation has not been seriously perturbed after the epoch of recombina-
tion of the primeval plasma, then with an angular resolution of 1 minute of arc the rms fluctuation in
antenna temperature should be at least §7/7 = 0.00015.

+
1965+5. . o
The possible discovery of radiation from the primeval fireball opens a promising lead

toward a theory of the origin of galaxies. This primeval radiation would serve, first, to
fix an epoch at which nonrelativistic bound systems like galaxies can start to develop
(Peebles 1965a), and second, to impress on the power spectrum of initial density fluctua-
tions characteristic lengths and masses (Gamow 1948; Peebles 1965a, 1967a; Michie
1967; Silk 1968). These characteristic features in the power spectrum hopefully result
from all the complicated details of the evolution of the Universe after the initial power
spectrum is arbitrarily set at some very early epoch. If one can make a reasonable argu-
ment for a coincidence of these features with observed phenomena, it will provide an
important encouragement and guide to the further development of the theory. A more

direct observational test of these processes might be provided by the residual small-scale
fluctuations in the microwave background (Peebles 1965b; Sachs and Wolfe 1967; Silk
1968 Wolie 1969; Longair and Sunyaev 1969), if we assume that this radiation has not

been further scattered (Dautcourt 1969).

I. INTRODUCTION
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According to Zel’dovich (1967) there are two kinds of perturbations that are of inter-
est: initial isothermal perturbations and initially adiabatic perturbations. It has been

suggested that the globular clusters are the remnants of an isothermal perturbation in
the early Universe (Peebles and Dicke 1968; Peebles 1969). Our purpose here is to discuss
in some detail the evolution of adiabatic density fluctuations in the primeval-fireball
nicture
An initially adiabatic perturbation evolves through four regimes: (¢) When the age ¢
of the Universe is much less than \/¢c, where N is the characteristic scale of the perturba-
tion, a fractional perturbation ép/p to the total mass density grows with time, but the
entropy per nucleon is conserved (hence adiabatic). (b)) When A < ¢, the perturbation
oscillates like an acoustic wave. (¢) As the Universe expands through the recombination
phase, the photon mean free path becomes comparable to A, and the oscillating wave is
attenuated, leaving some residual perturbation in the matter distribution. (d) When
T < 2500° K, recombination is sufficiently complete that radiation drag on the matter
may be neglected, and the residual perturbation may start to grow into bound systems
like protogalaxies.
. . oo o
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V Lifshitz (1946). The very complicated regime (¢) has been considered by a number of
people in a variety of approximations, with the general conclusion that initially adiabatic
perturbations on a characteristic mass scale <10'-10'3 R, are strongly attenuated.
This problem was first considered in approximations to first order in the photon mean
free time {, independently by Michie (1967), Peebles (1967¢), and Silk (1968). It has
since been considered by Bardeen (1968) in the first twenty moments of the radiation
distribution function, and by Field (1970a), who solves the problem to all orders in .
when the expansion of the Universe may be neglected. However, these approximation
schemes run afoul of the enormous variation and rate of variation of the photon mean
free path through the epoch of recombination. As a result, previous workers on this
subject (Peebles 1967a; Michie 1967; Silk 1968; Field and Shepley 1968) could give only
qualitative estimates of the different characteristic masses involved here. To obtain a
m a cription of the evolution through this complicated phase of recombina-
tion, we have resorted to direct numerical integration of the collision equation for the
photon distribution function.

The more quantitative results of the present calculation are compared with the earlier
estimates in § VII. We also discuss there the possible significance of these results. In
§ IT we derive the differential equations to be integrated. It is impractical to integrate
the collision equation numerically in the very early Universe because the photon mean
free path ¢, is so short, but here it becomes a good approximation to describe the radia-
tion as a fluid with viscosity. This description of the radiation was used in all the previous
work (Lifshitz 1946; Michie 1967; Silk 1968; Field and Shepley 1968), and is indeed a
good approximation in this early epoch. The fluid description of radiation is equivalent
to an expansion and integration of our collision equation to first order in . In § III we
give the resulting equations valid to first order in ¢, and we present solutions to these
approximate equations under various limiting conditions. These results are used to start
the numerical integration and to check numerical accuracy. In § IV we consider the
residual perturbation to the microwave background. The numerical integrations are
described in §§ V and VI.

b) Assumptions and Approximations

In the following calculations we use either conventional general-relativity theory,
with cosmological constant A equal to zero, or the scalar-tensor theory (Brans and Dicke
1961). We start from a homogeneous, isotropic cosmological model, in which the present

parameters are
Hy'=1X100years, To=27°K. ¢y
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Acoustic Oscillations
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Acoustic Oscillations
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Generating the primordial fluctuations:
When and How?

* Then the Inflation “framework” came along in 1979-1980 (Guth; Starobinsky),
followed by Kazanos, Linde, Sato, Steinhardt, etc....

* This class of models proposes that

— theinitial conditions for the standard Hot Big Bang model were set during a phase of very fast
expansion (with ~constant expansion rate for >~50 e-folds), dominated by the energy density
of the (quantum) vacuum, which at the end of that phase decays into matter and radiation.
The existence of such a phase solves a number of cosmological conundrums (Monopoles,
Flatness, Homogeneity...).

— During that period, unavoidable quantum fluctuation of the vacuum energy density (which
sources the metrics) are expanded to cosmological scales and leave a quasi scale invariant
spectrum of curvature perturbations. These will later initiate the growth to complexity which,
13.8 billions later, is visible in the sponge-like topology of the large scale structures of the
Universe which are revealed by the inhomogeneities of the galaxy distribution.

— Generic predictions follow (flat spatial geometry, adiabatic initial fluctuations, quasi Gaussian
distributed, quasi scale invariant, but not quite, etc...) but with considerable variations in the
implementation and detailed properties. Of particular note, first calculation of vacuum
quantum fluctuations during a de Sitter phase by Mukanov and Chibisov in 1981.

— During the early phase of the Universe., before 380 000 years, adiabatic fluctuations oscillate
like acoustic fluctuations under the influence of the photon pressure, before the time when
photons cease to interact with electrons and the Universe becomes neutral and transparent.

* Later on, other proposals to seed the growth of structure, but all are still related to
fluctuations of the vacuum (Topological defects, and lately, bouncing models).
Thus we may be the the children of the stars, but ultimately, we are children of the
guantum vacuum/!
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The primordial Universe, ultimate laboratory
for fundamental physics
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1988 (Pre-COBE), Berkeley, Fermilab, Princeton...

Where the Wild Things Are
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Theorists precomputed possible
Imprints in various scenarii

— T —

Gamow, Peebles, Yu, Sachs & Wolf,
Sunyaeyv, Zeldovich, Silk, Vittorio,
Wilson, Mukhanov, Chibisov, Bardeen,
Linde, Bond, Efstathiou, Bouchet,
Bennett, Gott, Kaiser, Stebbins, Allen,
Shellard, Seljack, Zaldariaga,
Kamionkowski, Hu, ...

For different models and their
cosmological parameters, which turn
out to encode the content and
determine the dynamics of the
Universe and the origin of its large
scale structures!
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March 1996 presentation, Unesco (Paris),
for an ultimate T anisotropies cosmological mission

COBRAS/SAMBA

s

COBRAS/SAMBA

- Candidate to become the next medium-sized mission
in ESA’s Horizon 2000 Scientific Programme
- Selection: June 1996

- Launch: 2004-2005

| Lesa

~3 years Phase A Study - Final Presentation

COBRAS/SAMBA

r

Truscers

The spacecraft

Phase A Study - Final Presentation

COBRAS/SAMBA
4 e . N
Model Payload Characteristics
Telescope 1.5 m Diam. Gregorian; shared focal plane; system emissivity 1%
Viewing direction offset 70 degrees from spin axis.

Center Frequency (GHz) | 315 | 53 | 90 | 125 | 143 | 217 | 353 | s45 | 857
Detector Technology [ HEMT radio receiver arrays [ Bolometer arrays

Detector Temperature ~100 K 0.1-0.15 K

Cooling Requirements Passive Cryocooler + Dilution system

[ Number of Detectors 4 [ [ 26 | 12 [ 8 ' T 2] 2

| Angular Resolution 30 18 | 12 12 103 | 7.1 | 44 | 44 | 44
(arcmin)

| Optical Transmission T 1 03 | 03 | 03 | 03 | 03
Bandwidth(AV/v) | 015 | 015 | 015 | 015 | 037 | 037 | 037 | 037 | 037 |
AT/ T Sensitivity per 7.8 7.5 14.4 354 1.2 2.0 12.1 76.6 4166

res. element (14 months,

16, 10 units)

@ esa Phase A Study - Final Presentation
L J
COBRAS/SAMBA
4 A

Component separation

Input Recovered

Phase A Study - Final Presentation




March 1996 selection, Unesco (Paris)

COBRAS/SAMBA

[

This plot was showing the
typical amplitude of CMB
fluctuations within different
ranges of angular scales
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i Accuracy of recovery of fundamental parameters
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Boldly targeting per cent
accuracy on cosmological
parameters, or surprises. ..
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HFI Spider Web Bolometers & PSBs

@P’F'ina] Release FON R G ’/;-  Electrical Leads
,i._!".' 1908 BR 8576Hz 2730-35-15 / iz : ‘»‘ V 4 N
v :
[a8; ' =
Ll
: i
S
: -HEEE« S i
it
e i saanana Supports
WA\ ) ? =l g
P AN . N/ / : . WO
857 GHz SpiderWeb Bolometer 145 GHz PolarSensitiveBolometers

HFI flight bolometers have been built by Caltech/JPL,
integrated into pixels and tested in Cardiff,
integrated into HFI — notably: IAS + JFET (Rome) + REU (CESR) + DPU (LAL)
and then tested at instrument level @ IAS, Orsay.
(and all their data is collected/processed @ IAP, Paris)
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Bolometers @ 100mK
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Birth of the Cool

H F i PLANCK
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Slow revelation...
1 PLANG)

Planck scanning (Survey 1)
2009—08—21

Image credit: ESA/Planck/C.North



Very cold, very stable, a very long time...
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a Data Processmg

> Phy5|cs - CMB sky - Frequency skies = TOI
» TOIl = frequency maps = CMB maps = Physics

» One needs to write and verify a model of TOI = f(Physics) and
to “invert” it and to assess errors (or to sample parameters).
— The frequency response is measured on the ground.

— The optical response is measured on the ground, modelled, and
partially verified on planets, Crab, etc.

— The detector chain response is measured on ground
— A full simulation phase was built (MC)...

» One uses templates (Thermometers, foreground tracers) and
redundancy

» Many Interesting challenges: optimality/speed, propagation of
separation errors, exploration of large dimensionality spaces... in addition
to herding a large cat population, and taming surprises in the data

- - s v v v w - - -
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Planck 2015 Temperature maps

M ™ )‘\_\

i (Intensities expressed as

i - equivalent thermodynamic
(pla.esac.esa.int) ol il et T L flgctuations atthatf¥equency)

AN_2AR2 CHy: AT (4% ) RAR and RRY CHo ennnfans h




... leads to many

Peeling off foreground | eaa
scientific progresses...

emissions... (inc. CIB)
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N\ . -
-g?_) Planck 2015 T anisotropies map

eSa- T & & - v - Lmrs - i m L] I I /=W a pA I z 4 F .

Well described
statistically by an

(One of 4) - homogeneous and
isotropic Gaussian
field

—300 K 300
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-':':‘ COBE/DMR T anlsotroples map = L

We have essentially finished mining the cosmological Temperature anisotropies '«’:ﬁ{?’
revealed by DMR (and improved upon by WMAP)
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Planck 2015 Polarisation
& Galactic foregrounds

30 GHz Synchrotron

Lots of information to
understand better our cradle,
with details inaccessible
in other galaxies

Thermal dust

357 GHz in magnetic field

Lines indicate the
magnetic field direction,
Colors indicate the

emission intensity
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Filtered at 20 arcmin (and large scales excluded)

(polarisation direc’gions superimposed on T anisotropies)



What we already knew (from WMAP)

HOT (Dec 23 2018): WMAP team was awarded the 3M$ 2018 Breakthrough Prize in Fundamental Physics
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The gravitational effects of intervening matter bend the path of CMB light on its way from the
early universe to the Planck telescope. This “gravitational lensing” distorts our image of the CMB
(smoothing on the power spectrum, and correlations between scales)
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The (grey) masked area is where foregrounds are too strong to allow an accurate reconstruction

rage 3/ curopean >pace Agency
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Making contact between theories & measurements

The harmonic modes

Alm — d2 T( )Yﬁn (ﬁ)
obey, for a statistically homogeneous and isotropic field,
< Qg Qprny > = Clp 007 Oy

The temperature angular power spectrum is estimated in practice by

The bi- and tri-spectra may be used to test for NG, NB: biposh coefft.

Similar expressions for polarisation (on spin 2 harmonics)
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TT, EE, BB, ®® — 2017 status
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AL T I BEWs

1114 000
Modes

measured
with TT,

60 000 with
TE (not
shown)

96 000 with
EE

... and
10’s in BB
and @O

+ weak
constraints
with B
and EB
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WHAT DID THE
CMB TEACH US
SO FAR?




N\
A : : :
2 Conclusions/CMB Anisotropies post-Planck

w = -

» The LCDM model fits all CMB data in T, E, B, ¢.

— No need for an extension. A lavish source of unique constraints /
papers...

— Same model parameters, determined at the per cent level, also
fit other data (BAO, and also BBN, SN1a...).

— Some tensions (anomalies, SZ, HO, WL), whose meaning remains
unclear as of now.
» T anisotropies information essentially exhausted (but
much still to learn on foregrounds, e.g. from SZ).

» A new field, CMB lensing, has emerged (observationally).

» Much untapped and unique source of information
remains in the CMB polarisation anisotropies (millions of

modes).

"Cosmic Microwave Background & Cosmology, then and now" Frangois R. Bouchet - YITP Colloquium, 07/02/2018
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The Planck power spectrum of

Temperature anisotropies

Angular scale

90° 0.5° 0.2° 0.1° 0.07°
6000 [ ' ' | ]
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4000f 5 ° -

° oo
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®o000e
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2 500 1000 1500 2000 2500
Multipole moment, ¢

Page 47 European Space Agency

2013
data
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= “CMB-Hand-Wave” code

» Normalisation of P(k) & Amplitude at low-ell.

» Logarithmic Slope of P(k) < ratio low/high-ell.

» Acoustic Horizon € localisation of 1st peak (H,)
» Density of matter €<-contrast between peaks.

» Density of baryons €< ratio of odd/even peak
amplitudes.

» Optical depth to reionisation: mostly EE bump.
» Etc.. (think non-std Neutrinos)

» There are degeneracies (more or less lifted with
increasing precision).

» This is now textbook physics. See, eg Mukanov book.

"Cosmic Microwave Background & Cosmology, then and now" Frangois R. Bouchet - YITP Colloquium, 07/02/2018
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Theory confronts data

Angular scale

90 0.5° 0.2° 0.1° 0.07°
6000 | | | | 1
6 parameter base ACDM model
5000 B Planck (CMB+lensing)
Parameter Best fit 68 % limits
4000 Q. 0022242 0.02217 +0.00033 1
Nx QM. 0.11805  0.1186 +0.0031
=3000| 1006yc o oo 1.04150  1.04141 £0.00067 -
@“ T 0.0949 0.089 £ 0.032
Ny L 0.9675 0.9635 +0.0094 |
000 F NS 3.098 3.085 £ 0.057
1000
02 500 1000 1500 2000 2500
2013 Multipole moment, /¢

data

Page 50 European Space Agency
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s Base ACDM model with 6 parameters
“ I PLANG

esa- O - WIEY A W EE WS | & 4 i == H N /JFES Syl = I e W = LF S EpE 1 AW 5 _ -

’

3 parameters to set (though General Relativity) the dynamics of the universe,
1 parameter to capture the effect of reionisation (end of the dark ages),
2 parameters to describe the primordial fluctuations.

Flat spatial geometry.

> ().h? Baryon density today - The amount of ordinary matter

» £2.h? Cold dark matter density today - only weakly interacting

> O Sound horizon size when optical depth t reaches unity
(Distance travelled by a sound wave since inflation, when universe
became transparent at recombination at t ~380 000 years)

> T Optical depth at reionisation (due to Thomson scattering of photons on e-), i.e.
fraction of the CMB photons re-scattered during that process

> A,  Amplitude of the curvature power spectrum

(Overall contrast of primordial fluctuations)

» n,  Scalar power spectrum power law index
(n,-1 measures departure from scale invariance)

> Others are derived parameters within the model, in particular
- {2 "Dark Energy” fraction of the critical density (derived only if assumed flat)
- H, the expansion rate today (in km/s per Mpc of separation)
- t, the age of the universe (in Gy)

- a— - v WLIEYTT EEE Wi EE WS LF i == H E /JFES ari = I s W = AT I SN L BN T
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30 500 1000 1500 2000 30 500 1000 1500 2000
14 4
Frequency averaged spectrum reduced 2 = 1.04 Frequency averaged spectrum reduced 2 = 1.01

» Red curve is the prediction based on the best fit TT in base ACDM

» Albeit magnificent, 2015 polarisation data and results are
preliminary because all systematic and foreground uncertainties
have not been exhaustively characterised at O(1uK?).

- - - v B v w ey _ - v
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It could have been otherwise!

And it further constrains potential deviations from the base tilted LCDM model/physics



7esa- L AEEEST IFTT EEW T

The value of n,

WIEY T IENE W/ EE WSS LBE & == H B /JES Sy E 1 E

Initial Conditions: quasi-scale invariant

2, |
i = d (’)[1_2(1)] Vi — ] <|(I)l.’> ~ fors
Angular scale
e0° 18° 1° 0.2° 0.1° 0.07°
6000 [ ‘ _
A
5000 f nyg=1+06 1992 (COBE)
ool | ‘& | ne=1.034+0.09 2001 (MaxiBoom)
= 3000} {3

1 ng =0.963 +0.014 2009 (WMAPS5)

— 0.9603 & 0.0073 2013 (Planck+)
( — 0.965 + 0.006 2015 Planck

alone

2 10 50 500 1000 1500
Multipole moment, ¢

2500 A hundred-fold improvement
in 20 years

Mukhanov & Chibisov (1981): 15t calculation of (scalar) quantum fluctuation of the
vacuum in an inflating background. n_, must be ~0.96 < 1 for inflation to end.
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: o
assisted brane inflation
anomaly-induced inflation
assisted inflation
assisted chaotic inflation
B-inflation
boundary inflation
brane inflation
brane-assisted inflation
brane gas inflation
brane-antibrane inflation
braneworld inflation
Brans-Dicke chaotic inflation
Brans-Dicke inflation
bulky brane inflation
chaotic inflation
chaotic hybrid inflation
chaotic new inflation
Chromo-Natural Inflation
D-brane inflation
D-term inflation
dilaton-driven inflation
dilaton-driven brane inflation
double inflation
double D-term inflation
dual inflation
dynamical inflation
dynamical SUSY inflation
S-dimensional assisted inflation
eternal inflation
extended inflation
extended open inflation
extended warm inflation
extra dimensional inflation

- - - v

YV VYV VYV VY

F-term inflation

F-term hybrid inflation
false-vacuum inflation
false-vacuum chaotic inflation
fast-roll inflation

first-order inflation

gauged inflation

Ghost inflation

Hagedorn inflation

"Cosmic Microwave Background & Cosmology, then and now"

b 1 5 B AN
higher-curvature inflation
hybrid inflation
Hyper-extended inflation
induced gravity inflation
intermediate inflation
inverted hybrid inflation
Power-law inflation
K-inflation
Super symmetric inflation

VV YV V V VYV VY
F VVVVVYVVVVVVVVVVVVYVVYVVVVVVVYVYVYVYVYVYVYVY VYV }
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Quintessential inflation
Roulette inflation
curvature inflation
Natural inflation

Warm natural inflation
Super inflation

Super natural inflation
Thermal inflation
Discrete inflation
Polarcap inflation

Open inflation
Topological inflation
Multiple inflation

Warm inflation
Stochastic inflation
Generalised assisted inflation
Self-sustained inflation
Graduated inflation
Local inflation

Singular inflation

Slinky inflation

Locked inflation

Elastic inflation

Mixed inflation
Phantom inflation
Non-commutative inflation
Tachyonic inflation
Tsunami inflation
Lambda inflation

Steep inflation
Oscillating inflation
Mutated hybrid inflation
Inhomogeneous inflation
STOP << 2015
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Log oscillation model

(Unsuccessful) Search for features

Feature in the potential:

V() = '%2& [1 + ctanh (¢—d¢c)]

in axion monodromy
V(8) = o+ Atcos (4)

Linear oscillations as from Boundary EFT

'P%n(k) . 'P%(k) [1 + Alin (kﬁ) cos (wnn

Just enough e-folds, i.e. inflation preceded by a
kinetic stage

0.01 0.1

ol

*

cutoff

(1 extra parameter)

Step model

= Non vacuum initial conditions/instanton effects

P8 (k) = P (k) [1 + Alog cos (wl°g In (: ) * %og)]

E )]

step

(3 extra parameters)
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V.=(1.9 x 106 GeV)* (r/0.12)

0.25

\ Planck TT+lowP
\ B Planck TT+lowP+BKP
\ B Planck TT+lowP+BKP+BAO
Natural inflation

0.20

Hilltop quartic model
o attractors
- Power-law inflation
— Low scale SB SUSY
——  R? inflation
Voo ¢3
— V x ¢?
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V x¢
— V x (252/3
e N.=50
® N.=60

0.15

Tensor-to-scalar ratio (r9.002)
0.10

0.05

0.00

0.96
Primordial tilt ()

Similar (indirect) r constraint than with 2013 release (ry 0, < 0.10 @ 95% CL vs 0.11)
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= Sorting out Smgle field slow-roll

esa- T _ - v L - & r

ie

Jeffreys’ categories:

20

20 7T e jnconclusive: blue,
_ » weakly disfavoured: red,
(ranking « moderately disfavoured: green
vs LCDM) « strongly disfavoured: yellowish
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N
;-”—;) CMB versus other GW detectors
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2017) March27 PHYSICAL REVIEW LETTERS
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For the not-too-distant future, direct local detections can only constrain non-scale
invariant (blue) primordial GW backgrounds.
=» Detection by dedicated CMB experiments is a major goal.

- a_ E . RS 2 i gt LS i i1 & =N = 1 { I I 3 ¥ aaw = WL BN =
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\%:;;’D Planck 353GHz reveals the Galactic magnetic field

{~esa : - . L L

| (wWhose effect can account for at least about ’ of the initial BICEP claim) ;

—

=

.

—

(=

=

~

' e G

=

GRAVITATIONAL [
'WAVES \ ‘

"Cosmic Microwave Background & Cosmology, then and now" Francois R. Bouchet - YITP Colloquium, 07/02/2018 60

EE TTIF A A &S E S /TES AL E I T EHSE W E Al I SBEwLEN T T



A . .
\(g-:_/"‘ Planck 2015 — Bi-spectrum constraints

fesa- LA N TT EEwW T WIS W/ EE WSS BE & == H I /JFTES A § 1§ T ESE W E L W l--.l

NL(KSW)

Shape and method Independent  ISW-lensing subtracted

s SMICA (T)
Local ......... 95+ 5.6 18+ 5.6 =
Equilateral . . ... —-10 +69 -9.2+ 69
Orthogonal . . ... —43  +33 -20 +33
SMICA (T+E) fosl 0850
Local ......... 6.5+ 5.1 foquil = - 4443
Equilateral .. ... -89 +44 fortho NE .26 + 21
NL -
Planck 2015 - 2000 modes ~ ~rhogonal - . . .. S £22

/‘I’ = ¢+\f.\TL(O~ — (%))

| fR9€] < 103 (Maxima 2001), A hundred-fold

non-Gaussian potential

Gaussian field

102 (WMAP7), improvement
10 (Planck15) in 14 years (95%CL)
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Temperature (f, =0)
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Positive fnL = More Cold Spots
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Tkt

BAO (Baryon Acoustic Oséillcn‘ions)
probe the sound travel distance at z~0
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BOSS RD12, Alam+2016, arXiv:1607.03155 .
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Spatial curvature constraint
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Jaffe et al. 2001

Planck 2015

2 = 0.000 -

- 0.005 (95% CL)

A hundred-fold improvement in 15 years
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CMB Anisotropies post-Planck

» The LCDM model fits all CMB data in T, E, B, ¢.

— No need for an extension. A lavish source of constraints /papers...

— Same model parameters, determined at the per cent level, also fit other data (BAO,
and also BBN, SN1a...).
— Some tensions (anomalies, SZ, HO, WL), whose meaning remains unclear as of now.

LCDM is a tilted model (n, <1) and the inflationary phase models check all
the generic boxes. Many specific models have been ruled out though.

Alternatives have either been falsified, or they mostly/only do post-
dictions so far. E.g., bouncing model are not expected to produce
Gravitational Waves; they may thus be falsified only by an incoming
detection (or internal inconsistency). Otherwise, Occam’s razor?

T anisotropies information essentially exhausted (as promised back in
1996), but much still to learn on foregrounds, e.g. from SZ. Polarisation
promises a very rich harvest.

A new field, CMB lensing, has emerged (observationally), with a great
scientific potential. It has unique advantages (known source plane, well
understood, mostly linear physics at work); but it is a foreground to be
removed for improving the detection capability of a Primordial Gravitation
wave stochastic background. In any case, it is a great source of problem
to solve for astrophysicists.

- mw v v v w - -
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