

Lorenzo Bordin, SISSA (Trieste)

Robustness

of

primordial tensor mode predictions

with G. Cabass, P. Creminelli and F. Vernizzi, 1706.03758 (JCAP)

Kyoto, February 9th 2018

• It is easy to play with scalar perturbations:

- 1. choice of potential
- 2. many scalars (effects on late Universe)
- 3. speed of propagation c_s

Room for many inflationary models

• It is not easy to play with gravity!

GWs are direct probes of H

Tensor Non-Gaussianity

 $oldsymbol{O}$ Tensor power spectrum $\langle \gamma_{k}^{s}\gamma_{-k}^{s} \rangle$

Can be modified by non trivial speed C_T ?

O Tensor bispectra $\langle \gamma_{k_1}^{s_1} \gamma_{k_2}^{s_2} \gamma_{k_3}^{s_3} \rangle$ and $\langle \zeta_{k_1} \gamma_{k_2}^{s_2} \gamma_{k_3}^{s_3} \rangle$

How many couplings at leading order in derivatives?

EFT of Inflation

Parametrize the most general dynamics compatible with symmetries

CCWZ approach:

classify fields in terms of representations of the unbroken group

Unitary Gauge: perturbations are eaten by the metric.

$$\rightarrow (t; g^{00}, \delta K, {}^{(3)}R \dots; R, \delta R_{\mu\nu}\delta R^{\mu\nu}, \dots)$$

EFT of Inflation

Focus on

 \bigcirc Tensor perturbations $\langle \gamma \gamma \rangle \quad \langle \zeta \gamma \gamma \rangle \quad \langle \gamma \gamma \gamma \rangle$

• Up to second order in derivatives.

$$\mathcal{L} = \frac{M_{PI}^2}{2} \Big[R + 2\dot{H}g^{00} - 2\left(3H^2 + \dot{H}\right) + a_0^{(3)}R + a_1^{(3)}R + a_1^{(5)}(\delta K_{\mu\nu})^2 + a_2^{(3)}R \delta N + b_1^{(5)}\delta N (\delta K_{\mu\nu})^2 \Big]$$

Many operators contribute to the primordial bispectra!

Field Redefinitions

Inflationary observables: super-horizon correlation functions

 $\langle \zeta(\tau, \mathbf{k}) \zeta(\tau, -\mathbf{k}) \rangle, \quad \langle \gamma(\tau, \mathbf{k}) \gamma(\tau, -\mathbf{k}) \rangle$ $\langle \zeta(\tau, \mathbf{k}_1) \zeta(\tau, \mathbf{k}_2) \zeta(\tau, \mathbf{k}_3) \rangle, \quad \dots \quad |\mathbf{k}_i \tau| \ll 1$

Freedom to perform redefinitions of ζ and γ that decay outside the horizon. (e.g.: $\zeta \rightarrow \zeta + \lambda \frac{d\zeta}{dt}$)

Used to simplify the action!

Field redefinitions

Most generic transformation ...

$$g_{\mu\nu} \to C(t, N, K, \dots)g_{\mu\nu} + D(t, N, K, \dots)n_{\mu}n_{\nu} + E(t, N, K, \dots)K_{\mu\nu} + \dots$$

To preserve the # of derivatives in the action:

$$g_{\mu\nu} \to (f_1 + f_3 \,\delta N + f_5 \,\delta N^2) g_{\mu\nu} + (f_2 + f_4 \,\delta N + f_6 \,\delta N^2) n_\mu n_\nu$$

 $(g^{00}\approx -1+2\delta N)$

An example

Redefine $g_{\mu\nu} \rightarrow \tilde{g}_{\mu\nu} = (1 + f_3 \,\delta N) \,g_{\mu\nu} + (1 + f_4 \,\delta N) \,n_\mu n_\nu$

$$\mathcal{L}[g] = \mathcal{L}_{\mathsf{EH}+\phi}[g] + \left(c_R - \frac{f_3}{2} + \frac{f_4}{4}\right) \,^{(3)}R\,\delta N + \left(c_K - \frac{f_3}{2} - \frac{f_4}{4}\right)\,\delta N\,\delta K_{\mu\nu}\delta K^{\mu\nu}$$

Use f_3 and f_4 to set to zero the couplings!

Observables do not depend on c_K and c_R !

EFTI up to cubic order in perturbations and 2 derivatives

• After integration by parts: 17 operators.

6 field redefinitions $(f_i) \rightarrow 6$ redundant couplings!

Minimal set: 11 operators!

 \bigcirc Predictions for $\langle \gamma \gamma \rangle$ and $\langle \gamma \gamma \gamma \rangle$ are the same as Einstein-Hilbert.

Creminelli, Gleyzes, Noreña, Vernizzi, 14

• All the couplings contributing to scalar-tensor-tensor action beyond EH can be removed.

 $\langle \zeta \gamma \gamma \rangle$ is not fixed! Still affected by changes in the scalar sector.

Tensor-scalar-scalar 3-point function

What about $\langle \gamma \zeta \zeta \rangle$? Not fixed!

After all the possible field redefinitions:

$$\mathcal{L} = \mathcal{L}_{\mathsf{EH}+\phi} + c_{\mathcal{A}} n^{\nu} n^{\lambda} (\nabla_{\nu} n^{\mu}) (\nabla_{\lambda} n_{\mu})$$

Two different shapes for $\langle \gamma \zeta \zeta \rangle$!

Still the squeezed behaviour is fixed and model independent!

$$\lim_{q\to 0} \langle \gamma_q^s \zeta_k \zeta_{-k-q} \rangle' = - \langle \gamma_q^s \gamma_{-q}^s \rangle' \epsilon_{ij} k^i k^j \frac{d}{dk^2} \langle \zeta_k \zeta_{-k} \rangle'$$

Violated if there are extra tensors

(9->0

LB, Creminelli, Mirbabayi and Noreña 16

 $\ensuremath{\mathbb{O}}$ Robustness of tensor predictions in the EFTI

- trivial speed of propagation for tensor modes
-) only EH contributes to the $\gamma\gamma\gamma$ and $\zeta\gamma\gamma$ couplings
- \blacktriangleright $\langle \gamma \gamma \gamma \rangle$ fixed by $\langle \gamma \gamma \rangle$
- \blacktriangleright Only one shape for $\langle \zeta \gamma \gamma
 angle$
- Violations would be extremely interesting: different symmetry pattern