S

S G
The Chinese University of Hong Kong

Spin dynamics of a millisecond pulsar
around a massive black hole

Jiale Kaye L1
(Physics Department, The Chinese University of Hong Kong)

Collaborator: Prof Kinwah Wu
(Mullard Space Science Laboratory, University College London, UK)

2018-02-06, Kyoto
Gravity and cosmology, 2018



Outline

Mathisson—Papapetrou—Dixon (MPD) formulation

Theory

1

spin precession

Simulation and interesting results

orbital precession

/e \

Pulsar observation

Grayvitational wave




Motion of test particle

* Weak Equivalence Principle

The world line of a freely falling test body is independent of its
composition or structure.

* Non-spinning object — geodesic equation
Du*

=0
dT




Motion of extended body

* Spinning object — Mathisson-Papapetrou-Dixon equations

Spin-curvature coupling and
spin-orbit coupling

Precession of spin axis

Pt = mutl+ S H—E Hidden momentum




EMRI binary system
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Precession of the NS orbit

Geodesics precession
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Non-planar orbital motion

a/M = 0.99 The precession of the
orbital plane
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(Singh, Wu, and Sarty, 2014)




Deviation from the geodesics
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Precession of spinning-axis

Black hole

(image credit: H. Sulzer)




Precession of spinning-axis
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Pulses received by distance observer

time
v’ Pulse profile changes or even disappears
when the spinning-axis wobbles around

v" Assume a conal emission ~10°, the time
shifts by about 10us and 400us.




Nutation of spinning-axis




Gravitational lensing effect

« A small perturbation ~10~* rad becomes up to ~ 0.1 rad due to lensing
of the black hole
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Red solid lines: photon paths with different impact parameter b = ¥ol
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Spin-axis wobbling effect

v Pulse time shift: At = Atg + Atp +--- |:> A — A
— A,L,etc
v’ Pulse profile shift: A& = Aéq + A&, + - - ( tc)
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(Rafikov and Lai 2008)




Flat space-time with plasma

Temporal dispersion of pulse signals

v Pulse arrival time dispersion in
the presence of line-of-sight

1500

plasma
v Pulse emission in all

frequencies follow the same
trajectory but will arrive at

different time
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Curved space-time with plasma

Frequency dependent spatial dispersion of
emission

non-rotating rotating
black hole black hole

(Kimpson, Wu and Zane 2018)

v' Emission of different frequencies have different paths
under the gravity of a rotating black hole E
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LISA band
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LISA band

The definition of orbital plane, inclination angle, etc...

by Qzo= ud* cos?y,
g o™ Qyy= ud® sin?y,

aa - 0 2y=Qyr=ud? sing cosy

(Peters, P 1963)

. 9.



Summary

1. Spin-curvature coupling:
- Non-geodesic motion
- Precession and nutation of pulsar’s spin axis

2. Implication on pulsar observation:
- Orbital precession would shift the arrival time of pulses
- Spin precession would distort the pulse profile and even lead to
the disappearance of pulses
- Emission with different frequencies have spatial and temporary
dispersion
3. Gravitational wave:
- Corrections to phase to gravitational wave and distortion of the
waveform
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