# Dark Matter Primordial Black Holes from Particle Production during Inflation

Encieh Erfani IASBS, Iran erfani@iasbs.ac.ir

JCAP 04 (2016) 020 Gravity and Cosmology 2018 YITP, Kyoto 13 Feb. 2018

first picture of Kyoto E. Erfani (IASBS)

PBHs from Particle Production

# Outline

## Dark Matter

- 2 Primordial Black Holes
- 3 Press-Schechter Formalism

## PBHs formation from

- Gauge Production
- Scalar Production



# Dark Matter

## Evidences

# definition of the second secon

## Properties

- stable
- neutral
- weakly interacting
- right relic density

## Candidates

- Axions
- Sterile neutrinos
- WIMPs
- Primordial Black Holes (PBHs)

# Primordial Black Holes

## Definition

A PBH is a type of black hole that is **not** formed by the gravitational collapse of a star, but by the extreme density of matter present during the Universe's early expansion.

## PBHs properties

Mass: 
$$M_{_{
m BH}} = 10^{15} \left( rac{t}{10^{-23} \, _{
m S}} 
ight) \, {
m g}$$

Temperature: 
$$T_{\rm BH} \approx 10^{-7} \left(\frac{M}{M_{\odot}}\right)^{-1} \, {\rm K}$$

Lifetime: 
$$\tau_{\rm BH} \approx 10^{64} \left(\frac{M}{M_{\odot}}\right)^3 \, {\rm y}$$

| $M_{_{ m BH}}$      | $	au_{ m BH}$      |
|---------------------|--------------------|
| A man               | $10^{-12}{ m s}$   |
| A building          | $1\mathrm{s}$      |
| $10^{15}\mathrm{g}$ | 10 <sup>10</sup> y |
| The Earth           | 10 <sup>49</sup> y |
| The Sun             | 10 <sup>66</sup> y |
| The Galaxy          | 10 <sup>99</sup> y |

 $M_{\odot}\simeq 2 imes 10^{33}\,{
m g}$ 

The Press-Schechter formalism is a model for predicting the number density of bound objects of a certain mass.

$$f(\geq M) = \gamma \int_{\delta_{\mathrm{th}}}^{\infty} P(\delta; M(R))$$



The Press-Schechter formalism is a model for predicting the number density of bound objects of a certain mass.

$$f(\geq M) = \gamma \int_{\delta_{\rm th}}^{\infty} P(\delta; M(R))$$
  
 $\delta_{\rm th} = 0.4135$ 



The Press-Schechter formalism is a model for predicting the number density of bound objects of a certain mass.

 $f(\geq M) = \gamma \int_{\delta_{\rm th}}^{\infty} P(\delta; M(R))$  $\delta_{\rm th} = 0.4135$ 

Gaussian PDF: 
$$P_{\rm G}(\delta; R) = \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right)$$



 $\gamma$ 

 $\int_{-\infty}^{\infty}$ 

The Press-Schechter formalism is a model for predicting the number density of bound objects of a certain mass.



$$f(\geq M) = \gamma \int_{\delta_{\rm th}} P(\delta; M(R))$$
  

$$\delta_{\rm th} = 0.4135$$
  
Gaussian PDF:  $P_{\rm G}(\delta; R) = \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right)$   

$$\delta^2(k, t) \equiv \mathcal{P}_{\delta}(k, t) = \frac{4(1+w)^2}{(5+3w)^2} \left(\frac{k}{aH}\right)^4 \mathcal{P}_{\mathcal{R}_c}(k) \qquad w = 1/3$$

 $f(\geq M) = \gamma \int_{\delta}^{\infty} P(\delta; M(R))$ 

The Press-Schechter formalism is a model for predicting the number density of bound objects of a certain mass.



$$\delta_{\rm th} = 0.4135^{\rm th}$$
Gaussian PDF:  $P_{\rm G}(\delta; R) = \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right)$ 

$$\delta^2(k,t) \equiv \mathcal{P}_{\delta}(k,t) = \frac{4(1+w)^2}{(5+3w)^2} \left(\frac{k}{aH}\right)^4 \mathcal{P}_{\mathcal{R}_c}(k) \qquad w = 1/3$$

$$\mathcal{P}_{\mathcal{R}_c}(k) = \mathcal{P}_{\mathcal{R}_c}(k_0) \left(\frac{k}{k_0}\right)^{n(k)-1}$$

#### E. Erfani (IASBS)

#### PBHs from Particle Production

# Press-Schechter Formalism

The Press-Schechter formalism is a model for predicting the number density of bound objects of a certain mass.

 $\int_{-\infty}^{\infty} D(S M(D))$ 

$$\begin{aligned} r(\geq M) &= \gamma \int_{\delta_{th}} \mathcal{P}(\delta; M(R)) \\ \delta_{th} &= 0.4135 \\ \text{Gaussian PDF: } \mathcal{P}_{G}(\delta; R) &= \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^{2}(R)}{2\sigma_{\delta}^{2}(R)}\right) \\ \delta^{2}(k, t) &\equiv \mathcal{P}_{\delta}(k, t) &= \frac{4(1+w)^{2}}{(5+3w)^{2}} \left(\frac{k}{aH}\right)^{4} \mathcal{P}_{\mathcal{R}_{c}}(k) \qquad w = 1/3 \\ \mathcal{P}_{\mathcal{R}_{c}}(k) &= \mathcal{P}_{\mathcal{R}_{c}}(k_{0}) \left(\frac{k}{k_{0}}\right)^{n(k)-1} \\ \sigma_{\delta}^{2}(R) &= \int_{0}^{\infty} W^{2}(kR) \mathcal{P}_{\delta}(k) \frac{dk}{k} \qquad W(kR) = \exp\left(-k^{2}R^{2}/2\right) \end{aligned}$$

Density

Coll

Coll

Position

The Press-Schechter formalism is a model for predicting the number density of bound objects of a certain mass.



bensity

13 Feb. 2018 4 / 13

Gaussian PDF:

$$P_{\rm G}(\delta; R) = \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right)$$
$$f_{\rm G} = \frac{1}{2} \operatorname{erfc}\left(\delta_{\rm th}/\sqrt{2\sigma_{\delta}^2(R)}\right)$$

non-Gaussian PDF:

$$P_{\rm NG}(\delta; R) = \frac{1}{\sqrt{2\pi \left(\delta + \sigma_g^2(R)\right)}} \sigma_g(R)} \exp\left(-\frac{\delta + \sigma_g^2(R)}{2\sigma_g^2(R)}\right)$$
$$f_{\rm NG} = \operatorname{erfc}\left(\sqrt{\delta_{\rm th} + \sigma_g^2(R)}/\sqrt{2\sigma_g^2(R)}\right)$$

## $f(\geq M)$ diagram for the mass range $10^0 - 10^{20}\,{ m g}$



## Result

| $n_s(k_{\scriptscriptstyle \mathrm{PBH}}) \geq 1.418$ | $\Rightarrow$ | $\mathcal{P}_\zeta \simeq 2 	imes 10^{-2}$ | for Gaussian PDF     |
|-------------------------------------------------------|---------------|--------------------------------------------|----------------------|
| $n_s(k_{\scriptscriptstyle \mathrm{PBH}}) \geq 1.322$ | $\Rightarrow$ | $\mathcal{P}_\zeta \simeq 4 	imes 10^{-4}$ | for non-Gaussian PDF |

E. Erfani (IASBS)

PBHs from Particle Production

13 Feb. 2018 6 / 13

# Inflation

## Inflation parameters

$$\begin{aligned} \mathcal{P}_{\zeta, \text{vac.}}(k) &= \mathcal{P}_{\zeta, \text{vac.}}(k_0) \left(\frac{k}{k_0}\right)^{n_{\text{s}}(k)-1} \\ n_{\text{s}}(k_0) - 1 &\equiv \frac{d \ln \mathcal{P}_{\zeta, \text{vac.}}(k)}{d \ln k} \\ r &= \frac{\mathcal{P}_{\text{t}}(k)}{\mathcal{P}_{\zeta}(k)}, \qquad \mathcal{P}_{\text{t, vac.}}(k) = \frac{2}{\pi^2} \left(\frac{H}{M_{\text{P}}}\right)^2 \left(\frac{k}{k_0}\right)^{n_{\text{t}}} \\ B_{\zeta}(k_1, k_2, k_3) &= f_{\text{NL}} F(k_1, k_2, k_3) \end{aligned}$$

## Observation

$$\begin{aligned} &\ln(10^{10}\mathcal{P}_{\zeta,\,\mathrm{vac.}}(k_0)) = 3.094 \pm 0.034 & k_0 = 0.05 \ \mathrm{Mpc^{-1}} \\ &n_\mathrm{s} = 0.9645 \pm 0.0049 \\ &r_{0.002} < 0.10 & (95\,\%\,\mathrm{CL}) \\ &f_\mathrm{NL} = 22.7 \pm 25.5 \end{aligned}$$

Planck XX, arXiv: 1502.01592

# PBHs formation from Particle Production

direct or gravitational coupling of the inflaton ( $\phi$ ) to another field ( $\chi$ )  $\mathcal{L}(\phi, \chi) = -\frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V(\phi) - \frac{1}{2} \partial_{\mu} \chi \, \partial^{\mu} \chi - U(\chi) + \mathcal{L}_{int}(\phi, \chi)$ 

The equations of motion for the inflaton field:

$$H^2 = \frac{1}{3M_{\rm P}^2} \left( \frac{1}{2} \dot{\phi}^2 + V(\phi) + \rho_\chi \right)$$

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = rac{\partial \mathcal{L}_{ ext{int}}}{\partial \phi}$$

The inflaton fluctuations satisfy

$$\ddot{\delta\phi} + 3H\dot{\delta\phi} - \frac{\nabla^2}{a^2}\delta\phi + V''(\phi)\,\delta\phi = \delta\left(\frac{\partial\mathcal{L}_{\rm int}}{\partial\phi}\right)$$

## PBHs formation from Particle Production

direct or gravitational coupling of the inflaton ( $\phi$ ) to another field ( $\chi$ )  $\mathcal{L}(\phi, \chi) = -\frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V(\phi) - \frac{1}{2} \partial_{\mu} \chi \, \partial^{\mu} \chi - U(\chi) + \mathcal{L}_{int}(\phi, \chi)$ 

The equations of motion for the inflaton field:

$$H^2 = \frac{1}{3M_{\rm P}^2} \left( \frac{1}{2} \dot{\phi}^2 + V(\phi) + \rho_\chi \right)$$

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = rac{\partial \mathcal{L}_{ ext{int}}}{\partial \phi}$$

The inflaton fluctuations satisfy

$$\ddot{\delta \phi} + 3H \dot{\delta \phi} - rac{
abla^2}{a^2} \delta \phi + V''(\phi) \, \delta \phi = \delta \left( rac{\partial \mathcal{L}_{ ext{int}}}{\partial \phi} 
ight)$$

## Result

$$\mathcal{P}_{\zeta}(k) = \mathcal{P}_{\zeta, \, ext{vac.}}(k) + \mathcal{P}_{\zeta, \, ext{src.}}(k)$$

$$\mathcal{P}_{\mathrm{t}}(k) = \mathcal{P}_{\mathrm{t, vac.}}(k) + \mathcal{P}_{\mathrm{t, src.}}(k)$$

E. Erfani (IASBS)

PBHs from Particle Production

# Gauge Production

$$\mathcal{L}_{\mathrm{int}} = -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{lpha}{4f} \Phi F_{\mu
u} ilde{F}^{\mu
u} \, ,$$

# Gauge Production

$$\mathcal{L}_{\mathrm{int}} = -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{lpha}{4f} \Phi F_{\mu
u} ilde{F}^{\mu
u}$$

direct coupling

$$\mathcal{P}_{\zeta} = \mathcal{P}_{\zeta, \, \mathrm{vac.}} \left(1 + 7.5 imes 10^{-5} \, \epsilon^2 \, \mathcal{P}_{\zeta, \, \mathrm{vac.}} X^2 
ight)$$

$$r = 16\epsilon \frac{1 + 2.2 \times 10^{-7} \,\mathcal{P}_{\rm t, \, vac.} \,X^2}{1 + 7.5 \times 10^{-5} \,\epsilon^2 \,\mathcal{P}_{\zeta, \, \rm vac.} X^2}$$

$$f_{\mathrm{NL},\,\zeta}^{\mathrm{equil.}} pprox 4.4 imes 10^{10} \, \epsilon^3 \, \mathcal{P}_{\zeta,\,\mathrm{vac.}}^3 \, X^3$$

where

$$X \equiv \frac{e^{2\pi\xi}}{\xi^3} \qquad \xi \equiv \frac{\alpha}{2fH}\dot{\Phi}$$

E. Erfani (IASBS)

## Result



## Scalar Production

$$\mathcal{L}_{\rm int}(\phi,\,\chi) = -\frac{g^2}{2} \left(\phi - \phi_0\right)^2 \chi^2$$

$$\mathcal{P}_{\zeta, \,\mathrm{src.}}(k) \sim A \, k^3 e^{-rac{\pi}{2} \left(rac{k}{k_i}
ight)^2}$$

## Result



E. Erfani (IASBS)

- The fluctuation which arise at inflation are the most likely source of PBHs.
- The spectral index at scale of PBHs formation should be at least 1.418 (1.322) for Gaussian (non-Gaussian) PDF.
- The most stringent constraints on the gauge production parameter is derived from the non-production of DM PBHs at the end of inflation and the bounds from the bispectrum and the tensor-to-scalar ratio are weaker.
- In the scenario where the inflaton field coupled to a scalar field, the model is free of DM PBHs overproduction in the CMB observational range if the amplitude of the generated bump in the scalar power spectrum, A is less than  $4 \times 10^{-4}$ .



E. Erfani (IASBS)

PBHs from Particle Production

13 Feb. 2018 13 / 13