Primordial GWs sourced by gauge field

Ippei Obata (Kyoto Univ.)

with A.Ito (Kobe U.) (in progress)

with T.Fujita, T.Tanaka (Kyoto U.) & S.Yokoyama (Rikkyo U.) arXiv:1801.02778

2.13.Tue_GC2018@YITP

Primordial GWs from Inflation

Metric tensor modes provided by the inflationary expansion of spacetime.

$$g_{ij} = a(\tau)^2 [\delta_{ij} + h_{ij}]$$

Power spectrum of vacuum fluctuations:

$$\langle \hat{h}_{\boldsymbol{k}}^{A} \hat{h}_{\boldsymbol{k}'}^{A}
angle = (2\pi)^{3} \delta(\boldsymbol{k} + \boldsymbol{k}') \frac{2\pi^{2}}{k^{3}} \mathcal{P}_{h}^{A}(k),$$

 $\mathcal{P}_h^+ = \mathcal{P}_h^\times = \left. \frac{H^2}{\pi^2 M_p^2} \right|_{k=aH} \text{ (scale-invariant \& isotropic)}$

- This relation is valid only if the dominant contributions of GWs are vacuum modes.
- From the theoretical point of view, however, there is a room to suppose another source of GWs caused by matter sectors in early universe:

Inflation with gauge field (today's talk)

We explore the generation of PGWs sourced by gauge field **kinetically coupled with scalar field**, which are potentially testable with future **CMB mission or GW detectors**.

$$f(\sigma)^2 F_{\mu\nu} F^{\mu\nu} \qquad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$$

Gauge field can grow up at super horizon scale due to the time variation of gauge kinetic function and enhance coupled metric tensor modes.

$$\Box h_{ij} = S_{ij}(F,\chi) \quad \rightarrow \quad h_{ij}^{+\times}(\mathbf{k}) = h_{ij}^{v}(k) + h_{ij}^{s+\times}(\mathbf{k})$$
$$\rightarrow \mathcal{P}_{h}^{+\times} = \mathcal{P}_{h}^{v}(k) + \mathcal{P}_{h}^{s+\times}(k,\theta)$$

(scale-variant & isotropic!)

Particle production of gauge field

EOM for the mode function of gauge field:

$$\frac{(fA_k)'' + \left(k^2 - \frac{n(n-1)}{\tau^2}\right)fA_k = 0}{\int f''/f} \quad \frac{f \propto \tau^n, f''/f = n(n-1)/\tau^2}{\tau^2 + (Ha)^{-1} : \text{ conformal time}}$$

Tachyonic instability can occur at super-horizon scales.

 $(|k\tau| \rightarrow 0)$

We can define the electric field as
$$E_i \equiv -rac{f}{a^2}A_i'$$

At superhorizon scales, it reads

$$E_{k} = i \frac{\Gamma(n + \frac{1}{2})}{\sqrt{\pi}} H^{2} \left(\frac{2}{k}\right)^{3/2} \left(\frac{2}{-k\tau}\right)^{n-2}$$
$$\leftrightarrow |E_{k}| \propto a(\tau)^{n-2}$$

It grows up exponentially when n>2 is satisfied.

GWs sourced by gauge boson

Power Spectrum of sourced GWs:

$$\mathcal{P}_{h \text{ source}} \simeq \frac{H^4}{M_p^4} A(n) \exp(2(n-2)\Delta N(k))$$

 $(\Delta N : \text{time interval when particle production of gauge field occurs})$

Particle production of gauge fields sources GWs.
 The amplitude is exponentially red-tilted.

Model building

<u>Action</u>

$$S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} (\partial_\mu \varphi)^2 - U(\varphi) - \frac{1}{2} (\partial_\mu \sigma)^2 - V(\sigma) - \frac{1}{4} f(\sigma)^2 F_{\mu\nu} F^{\mu\nu} \right]$$

 φ : inflaton, σ : spectator

<u>Assumption</u>

✓ Only spectator field couples to gauge field directly.

 $(\rightarrow$ suppresses an overproduction of curvature perturbation)

Configuration of gauge kinetic function

$$f(\sigma) = \exp\left[\frac{\sigma}{\Lambda}\right]$$
$$\propto a(t)^{-n} \quad \left(n \equiv -\frac{\dot{f}}{Hf} = -\frac{\dot{\sigma}}{H\Lambda}\right)$$

Background dynamics (i)

IO & A.Ito in progress

(i) gauge field is amplified on small scales

Time evolution of spectator field

Particle production of gauge field occurs around interferometer scales

PGWs sourced by gauge field

IO & A.Ito in progress

Energy density of Present GWs as a function of frequency

Sourced PGWs are potentially testable with future pulsar timing array mission or space-based interferometers.

Background dynamics (ii)

T.Fujita, IO, T.Tanaka & S.Yokoyama 1801.02778

(ii) gauge field is amplified on large scales

→Anisotropic attractor solution with spectator field can be realizable.

$$\begin{split} A_i(t, \boldsymbol{x}) &= \bar{A}_i(t) + \delta A_i(t, \boldsymbol{x}) \\ \ddot{\sigma} + 3H\dot{\sigma} + \bar{V}' &= \frac{2}{\Lambda}\bar{\rho}_E \\ \bar{\sigma}_E &= \frac{\bar{I}^2}{2a^2}\dot{A}_i^2 \end{split} \begin{array}{c} \text{c.f. anisotropic inflation} \\ \text{Watanabe et al. 2009} \\ V(\sigma) &= \mathcal{M}^3 \frac{\sigma^2}{\sigma + \Lambda} \sim \begin{cases} \mathcal{M}^3 \sigma & (\sigma \gg \Lambda) \\ \mathcal{M}^3 \sigma^2 / \Lambda & (\sigma \ll \Lambda) \end{cases} \end{split}$$

Time evolution of spectator and energy density of background gauge field

Statistically anisotropic GWs

T.Fujita, IO, T.Tanaka & S.Yokoyama 1801.02778

$$\delta A_i(t, \boldsymbol{x}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \left[e_i^X(\hat{\boldsymbol{k}}) \delta A_{\boldsymbol{k}}^X(t) + i e_i^Y(\hat{\boldsymbol{k}}) \delta A_{\boldsymbol{k}}^Y(t) \right] \quad \dot{\boldsymbol{A}} \propto \hat{\boldsymbol{z}}$$

EOMs for GWs

$$\left[\partial_t^2 + 3H\partial_t + \frac{k^2}{a^2} \right] h_k^+ = \frac{4\sqrt{\bar{\rho}_E}}{aM_{\rm Pl}^2} \sin\theta \left[\bar{I}\delta\dot{A}_k^X - a\sqrt{2\bar{\rho}_E}\sin\theta \frac{\delta\sigma_k}{\Lambda} \right] \qquad \cos\theta \equiv \mathbf{k} \cdot \dot{\mathbf{A}}/(|\mathbf{k}||\dot{\mathbf{A}}|)$$

$$\left[\partial_t^2 + 3H\partial_t + \frac{k^2}{a^2} \right] h_k^\times = \frac{4\sqrt{\bar{\rho}_E}}{aM_{\rm Pl}^2} \sin\theta \,\bar{I}\delta\dot{A}_k^Y,$$

(note: GWs and gauge fields are mixed via the background vector field)

Power spectrum of sourced GWs $k_{\rm CMB} \ll k_A$

$$\begin{aligned} \mathcal{P}_{h}^{(s)} &= \frac{1}{2} \mathcal{P}_{h}^{(\text{vac})} \left(\left| \frac{\psi_{(s)}^{+}}{\psi_{(\text{vac})}} \right|^{2} + \left| \frac{\psi_{(s)}^{\times}}{\psi_{(\text{vac})}} \right|^{2} \right), \\ &= \frac{2H^{2}}{\pi^{2} M_{\text{Pl}}^{2}} \left(1 - \cos^{2}\theta + \cos^{4}\theta - \cos^{6}\theta \right) \left[\Delta n \,\tilde{\gamma}(n) \frac{\Lambda}{M_{\text{Pl}}} \left(\frac{k_{A}}{k} \right)^{\Delta n} \left(N_{A} - \frac{1}{3} \right) \right]^{2} \\ \mathcal{P}_{h}^{+} &\propto \cos^{4}\theta (1 - \cos^{2}\theta), \qquad \mathcal{P}_{h}^{\times} \propto 1 - \cos^{2}\theta \end{aligned}$$

Detectability of GWs

T.Fujita, IO, T.Tanaka & S.Yokoyama 1801.02778

We define the ratio between vacuum contribution and sourced one to the power spectra of curvature perturbation and GWs:

$$\mathcal{R}_{\zeta} \equiv \mathcal{P}_{\zeta}^{(s)} / \mathcal{P}_{\zeta}^{(\mathrm{vac})}, \qquad \qquad \mathcal{R}_{h} \equiv \mathcal{P}_{h}^{(s)} / \mathcal{P}_{h}^{(\mathrm{vac})}$$

In order to have detectable GWs without producing too much ζ, one needs

Summary & Outlook

- ✓ We develop the possibility of generating scale-dependent or statistically anisotropic PGWs sourced by U(1) gauge field which is kinetically coupled to spectator field.
- ✓ We find that it could be potentially testable with upcoming CMB observations, GW detectors and pulsar timing arrays.
 - Analysis of scalar perturbation (possibility of PBH formation) has to be studied. (case (i))
 - Further studies on other potential forms based on a dedicated model building are also fascinating. (case (ii))