

 \bigcirc

0

 \bigcirc

° O

 $\bigcirc \bigcirc$

 \bigcirc

0

0

New insights on the cosmic strings stochastic gravitational wave background

Christophe Ringeval Centre for Cosmology, Particle Physics and Phenomenology Institute of Mathematics and Physics Louvain University, Belgium

Kyoto, 13/02/2016

Cosmological attractor
Loop distribution
Stochastic GW
Conclusion

 \bigcirc

 \bigcirc

Outline

Cosmological attractor

Cosmic strings Cosmological evolution Scaling of the energy density

Loop distribution

Scaling of the loop distribution Polchinski-Rocha model GW emission and backreaction Cosmological attractor

Stochastic GW

- GW bursts
- Loop visibility domains
- Result
- String tension dependency Microstructure effects

Conclusion

Observational constraints

CR & Teruaki Suyama arXiv:1709.03845

Cosmological attractor
Cosmic strings
Cosmological evolutio
Scaling of the energy
density
Loop distribution
Stochastic GW
Conclusion

Cosmic strings

- Topological defects
 - Global strings [Davis:1985, Durrer:1998rw,
 Yamaguchi:1999yp]
 - Non-Abelian strings [Vilenkin:1984rt, Dvali:1993qp, Spergel:1996ai, Bucher:1998mh, McGraw:1998]
 - K- and DBI-strings [Babichev:2006cy,
 Babichev:2007tn, Sarangi:2007mj]
 - Current-carrying strings

[Witten:1984eb, Davis:1988ip,Carter:1989dp, Peter:1992dw, Peter:1992ta]

- Line-like energy density distributions
 - Semi-local strings: energetically favoured for $m_{\rm b} > m_{\rm h}$

[Vachaspati:1991, Hindmarsh:1991jq, Achucarro:1999it]

- Cosmic superstrings: bound states made of p F-strings and q D1-brane [Witten:1985fp,Copeland:2009ga,
 Sakellariadou:2008ie, Polchinski:2004ia, Davis:2008dj]
- Nambu–Goto strings: Lorentz invariant two-dimensional worldsheet [Goto:1971ce,Nambu:1974]
- Carter strings [Carter:1989xk, Carter:1992vb,
 Carter:1994zs, Carter:2000wv]

Simplest: Nambu–Goto strings, one parameter: $m{U}$

$$S = -\boldsymbol{U} \int d\tau d\sigma \sqrt{-\gamma}, \quad \gamma_{ab} = g_{\mu\nu} X^{\mu}_{,a} X^{\nu}_{,b} \text{ (induced metric)}$$

0

Cosmological evolution

4 / 18

Cosmic strings

Loop distribution

Stochastic GW

0

Conclusion

density

Scaling of the energy density

Scaling of the energy densities for loops and long strings

[Ringeval:2005kr,Blanco-Pillado:2013gja]

 \bigcirc

0

Scaling of the loop distribution

Scaling parts

Scaling form
$$S(\alpha) = \frac{C_{\circ}}{\alpha^{p}}$$
 with

$$\begin{cases}
p = 1.41 \stackrel{+0.08}{_{-0.07}} \\
C_{\circ} = 0.09 \stackrel{-0.03}{_{+0.03}} \\
\end{array} \text{ and } \begin{cases}
p = 1.60 \stackrel{+0.21}{_{-0.15}} \\
C_{\circ} = 0.21 \stackrel{-0.12}{_{-0.13}} \\
\end{array}$$

Scaling of the loop distribution

By the end of the run

Cosmological attractor

Loop distribution

Scaling of the loop distribution

Polchinski-Rocha mode
♦ GW emission and
backreaction
Cosmological attractor
<u> </u>

00

 \bigcirc

Stochastic GW

Conclusion

 \bigcirc

Scaling parts

Loop distribution

Scaling of the loop distribution

✤ Polchinski-Rocha model

♦ GW emission and backreaction

✤ Cosmological attractor

Ο

0

0

Stochastic GW

OConclusion

 \bigcirc

Polchinski-Rocha model

- No fragmentation, no reconnection, loops from long string only [Polchinski:2006ee,Dubath:2007mf,Rocha:2007ni]
 - Predicts a power law scaling function

$$\mathcal{S}(\alpha) \propto \alpha^{2\chi - 2} \implies p = 2(1 - \chi)$$

• Parameter χ is related to two-point functions [Hindmarsh:2008dw]

$$\left\langle \acute{X}^{A}(\sigma)\acute{X}^{B}(\sigma')\right\rangle = \frac{1}{2}\delta^{AB}T(\sigma-\sigma') \qquad T(\sigma)\simeq \vec{t}^{2}-c_{1}\left(\frac{\sigma}{\hat{\xi}}\right)^{2\chi}$$

- Agreement with simulations suggests that all neglected effects mostly renormalise C_{\circ} but not χ
- ⇒ use the PR model to understand the loop distribution down to the length scales unreachable with numerical simulations
- + Boltzmann equation...

Loop distribution

♦ Scaling of the loop distribution Polchinski-Rocha model ✤ GW emission and backreaction Cosmological ^Oattractor Stochastic GW Conclusion 0 0 \bigcirc 0

 \cap

Including loop's gravitational radiation

Boltzmann equation + PR production function

PR loop production function (from string shape correlations)

$$t^{5}\mathcal{P}(\ell,t) = c\left(\frac{\ell}{t}\right)^{2\chi-3}$$

In an expanding universe

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) = a^3 \mathcal{P}(\ell, t)$$

A loop shrinks due to GW emission ($\gamma \equiv \ell/t$) [Allen:1992]

$$\frac{\mathrm{d}\ell}{\mathrm{d}t} = -\gamma_{\mathrm{d}} \simeq 50GU$$

Evolution equation [Rocha:2007ni,Lorenz:2010sm]

$$\frac{\partial}{\partial t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) - \gamma_{\mathrm{d}} \frac{\partial}{\partial \ell} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) = a^3 \mathcal{P}(\ell, t)$$

Loop distribution

 Scaling of the loop distribution
 Pochinski-Rocha model
 GW emission and backreaction
 Cosmological attractor
 Stochastic GW

Conclusion

Inclusion of gravitational backreaction

PR model + GW emission + GW backreaction [Lorenz:2010sm]

- igstarrow GW backreaction: $\gamma_{
 m c}\simeq 20 (GU)^{1+2\chi}$ [Polchinski:2007]
- Postulated piecewise scaling loop production function
 t⁵P

 $t^5 \mathcal{P}\left(\gamma = \frac{\ell}{t}, t\right) \propto \gamma^{2\chi - 3}$ $\gamma_{\rm c} \ll \gamma_{\rm d} \ll \gamma_{\infty} \lesssim 1$

- Allows us to extrapolate numerical simulations to small ℓ
- Boltzmann equation can be completely solved analytically (see arXiv.1006.0931)

Cosmological attractor

Loop distribution

 Scaling of the loop distribution
 Polchinski-Rocha model
 GW emission and backreaction
 Cosmological attractor

0

 t^4

Stochastic GWO

Conclusion

 \bigcirc

- From any initial loop distribution $\mathcal{N}_{ini}(\ell)$, one gets $\mathcal{F}(\gamma, t) \equiv \frac{\mathrm{d}n}{\mathrm{d}\ell}(\gamma, t)$
- Scaling attractor does not depend on $\mathcal{N}_{\mathrm{ini}}$ nor on GW backreaction details

$$\begin{split} t^{4}\mathcal{F}(\gamma \geq \gamma_{\rm C}, t) &= \left(\frac{t}{t_{\rm ini}}\right)^{4} \left(\frac{a_{\rm ini}}{a}\right)^{3} t_{\rm ini}^{4} \mathcal{N}_{\rm ini} \left\{ \left[\gamma + \gamma_{\rm d} \left(1 - \frac{t_{\rm ini}}{t}\right)\right] t \right\} + C(\gamma + \gamma_{\rm d})^{2\chi - 3} f\left(\frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}}\right) \\ &- C(\gamma + \gamma_{\rm d})^{2\chi - 3} \left(\frac{t}{t_{\rm ini}}\right)^{2\chi + 1} \left(\frac{a_{\rm ini}}{a}\right)^{3} f\left(\frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}} \frac{t_{\rm ini}}{t}\right), \\ \\ ^{4}\mathcal{F}(\gamma_{\mathcal{T}} \leq \gamma < \gamma_{\rm C}, t) &= \left(\frac{t}{t_{\rm ini}}\right)^{4} \left(\frac{a_{\rm ini}}{a}\right)^{3} t_{\rm ini}^{4} \mathcal{N}_{\rm ini} \left\{ \left[\gamma + \gamma_{\rm d} \left(1 - \frac{t_{\rm ini}}{t}\right)\right] t \right\} + C_{\rm c}(\gamma + \gamma_{\rm d})^{2\chi_{\rm c} - 3} f_{\rm c}\left(\frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}}\right) \\ &- C(\gamma + \gamma_{\rm d})^{2\chi - 3} \left(\frac{t}{t_{\rm ini}}\right)^{2\chi + 1} \left(\frac{a_{\rm ini}}{a}\right)^{3} f\left(\frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}} \frac{t_{\rm ini}}{t}\right) \\ &- C(\gamma + \gamma_{\rm d})^{2\chi - 3} \left(\frac{t}{t_{\rm ini}}\right)^{2\chi + 1} \left(\frac{a_{\rm ini}}{a}\right)^{3} f\left(\frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}} \frac{t_{\rm ini}}{t}\right) \\ &+ K\left(\frac{\gamma_{\rm c} + \gamma_{\rm d}}{\gamma + \gamma_{\rm d}}\right)^{4} \left[\frac{a\left(\frac{\gamma + \gamma_{\rm d}}{\gamma_{\rm c} + \gamma_{\rm d}} t\right)}{a(t)}\right]^{3} , \\ t^{4}\mathcal{F}(0 < \gamma < \gamma_{\mathcal{T}}, t) = \left(\frac{t}{t_{\rm ini}}\right)^{4} \left(\frac{a_{\rm ini}}{a}\right)^{3} t_{\rm ini}^{4} \mathcal{N}_{\rm ini} \left\{\left[\gamma + \gamma_{\rm d} \left(1 - \frac{t_{\rm ini}}{t}\right)\right] t\right\} + C_{\rm c}(\gamma + \gamma_{\rm d})^{2\chi_{\rm c} - 3} f_{\rm c}\left(\frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}}\right) \\ \end{array}$$

$$\gamma_{\tau}(t) \equiv (\gamma_{\rm C} + \gamma_{\rm d}) \frac{t_{\rm ini}}{t} - \gamma_{\rm d}, \qquad \mu \equiv 3\nu - 2\chi - 1$$
$$f(x) \equiv {}_{2}{\rm F}_{1} (3 - 2\chi, \mu; \mu + 1; x) \qquad f_{\rm C}(x) \equiv {}_{2}{\rm F}_{1} (3 - 2\chi_{\rm C}, \mu_{\rm C}; \mu_{\rm C} + 1; x)$$
10 / 18

 \bigcirc

Cosmological attractor Fron

Loop distribution

 Scaling of the loop distribution
 Polchinski-Rocha model
 GW emission and backreaction
 Cosmological attractor

0

Stochastic GWO

Conclusion

Ο

- From any initial loop distribution $\mathcal{N}_{ini}(\ell)$, one gets $\mathcal{F}(\gamma, t) \equiv \frac{\mathrm{d}n}{\mathrm{d}\ell}(\gamma, t)$
- Scaling attractor does not depend on $\mathcal{N}_{\mathrm{ini}}$ nor on GW backreaction details

 \bigcirc

Loop visibility domains

✤ Microstructure effects

0

Loop distribution Stochastic GW

String tension
dependency

♦ Result

Conclusion

0 0

С

CMB constraints on long strings

• Full sky synthetic string map of 2×10^8 pixels [Ringeval&Bouchet:2012tk, Ade:2013xla] • Planck imposes: $GU < O(1) \times 10^{-7}$

Loop distribution

Stochastic GW

Loop visibility domains

✤ Result

String tension

dependency

Microstructure effects

Conclusion

0

Gravitational wave bursts from loops

Leading order for a loop of $T=\ell/2$, frequency $arpi_n=2\pi n/T$

$$\bar{h}_{\flat}^{\mu\nu}(\varpi_{n},|\boldsymbol{r}|\boldsymbol{\hat{n}}) = \frac{GU}{T} \frac{e^{i\varpi_{n}|\boldsymbol{r}|}}{|\boldsymbol{r}|} C^{\mu\nu}, \qquad C^{\mu\nu} \equiv I_{+}^{\mu}I_{-}^{\nu} + I_{+}^{\nu}I_{-}^{\mu}$$
$$I_{\epsilon}^{\mu} \equiv \int \mathrm{d}\sigma_{\epsilon} \exp\left(\frac{i\varpi_{n}\sigma_{\epsilon}}{2} - \frac{i\varpi_{n}\boldsymbol{\hat{n}}\cdot\boldsymbol{X}_{\epsilon}}{2}\right) \frac{\mathrm{d}X_{\epsilon}^{\mu}}{\mathrm{d}\sigma_{\epsilon}}$$

Maximal GW emission when [Damour&Vilenkin:2001]

- Both I_{\pm}^{μ} have saddle points: $\hat{\boldsymbol{n}} = \hat{\boldsymbol{X}}_{+} = \hat{\boldsymbol{X}}_{-} \Rightarrow \text{cusp}$ $\Omega_{\text{beam}} = \pi \theta_{\text{beam}}^2 = \pi \left(\frac{8\pi}{\sqrt{3}\varpi\ell}\right)^{2/3}, \qquad C^{\mu\nu} \propto \varpi^{-4/3}$
- One I^{μ}_{\pm} has a saddle point and \hat{X}_{\mp} discontinuous \Rightarrow kink $\Omega_{\text{beam}} = 2\pi\theta_{\text{beam}}, \qquad C^{\mu\nu} \propto \varpi^{-5/3}$

• Both \dot{X}_{\pm} are discontinous: two kinks collide

$$\Omega_{\rm beam} = 4\pi, \qquad C^{\mu\nu} \propto \varpi^{-2}$$

Loop visibility domains

♦ Microstructure effects

• 0

0

 \bigcirc

Loop distribution

Stochastic GW ♦ GW bursts

String tension dependency

♦ Result

Conclusion

0

0

Stochastic GW spectrum

Time-averaged GW strain power $[k = (\omega, \omega \hat{n})]$ for one loop

$$\bar{h}_{c}^{2}(\omega,\ell,z) = \left[\frac{GU(1+z)}{\chi(z)}\right]^{2} \bar{\mathcal{C}}^{2} \left[k(1+z)\right] \Theta[\omega - \omega_{1}(\ell,z)]$$
$$\bar{\mathcal{C}}^{2} \equiv C_{\alpha\beta}^{*} C^{\alpha\beta} - \frac{1}{2} \left|C\right|^{2}$$

Integrating over all loops

$$\Omega_{\rm sgw}(\omega) = \frac{(GU)^2 \omega^3}{6\pi H_0^2} \iint dz d\ell \frac{dV}{dz} \frac{\mathcal{F}(\ell, z)}{\ell(1+z)} \Delta_{\rm beam}(\omega, \ell, z) \\ \times \frac{(1+z)^2}{\chi^2(z)} \bar{\mathcal{C}}^2(\omega, \ell, z) \Theta[\omega - \omega_1(\ell, z)] \Theta[\bar{h}_{\star}(\omega) - \bar{h}_{\rm c}(\omega, \ell, z)]$$

where $\bar{h}_{\star}(\omega)$ is solution of:

$$\iint dz d\ell \frac{2}{(1+z)\ell} \frac{dV}{dz} \mathcal{F}(\ell, z) \Delta_{\text{beam}}(\omega, \ell, z) \Theta[\omega - \omega_1(\ell, z)]$$
$$\times \Theta[\bar{h}_{c}(\omega, \ell, z) - \bar{h}_{\star}(\omega)] = \frac{\omega}{2\pi}$$

13 / 18

Loop visibility domains

Separation between stochastic and non-stochastic GW from a kink

Cosmological attractor

Loop distribution

Stochastic GW

Loop visibility domains

✤ Result

String tension

dependency

Microstructure effects

Conclusion

Loop visibility domains

✤ Microstructure effects

Loop distribution

Stochastic GW

String tension dependency

♦ Result

Conclusion

Loop visibility domains

Separation between stochastic and non-stochastic GW from a cusp

 $GU = 10^{-7}$ $\gamma_{\infty} 10^0$ \mathbf{v} $f = 10^{-10} Hz$ 10^{-2} $f = 10^4 Hz$ 10^{-4} γ_d 10^{-6} 10^{-8} γ_{c} ~ 10⁻¹⁰ • ~ 10⁻¹² + 10^{-14} $\gamma_{*'}$ 10⁻¹⁶ 10^{-18} 10⁻²⁰ 10⁻²² 10⁻² 10^{0} 10^{2} 10^{4} 10^{6} 10^{8} 10^{10} 10¹² 10^{14} 10^{16} 10^{18} 10^{20} 10^{-4} Ζ

Result

Analytical approximation: $\omega_{
m peak}\propto (GU)^{-(1+2\chi)}$ and $\omega_{
m knee}\propto (GU)^{-1}$

 $\hat{\Omega}_{\rm sgw}\Big|_{\rm c} \propto \omega^{-\frac{1}{3}}, \qquad \hat{\Omega}_{\rm sgw}\Big|_{\rm k} \propto \omega^{-\frac{2}{3}} \qquad \hat{\Omega}_{\rm sgw}\Big|_{\rm kk} \propto \omega^{-1} \ln \omega$

15 / 18

Result

Cosmological attractor

Coop distribution

Stochastic GW ♦ GW-bursts

Loop visibility domains

✤ Result

String tension dependency

Microstructure effects

Conclusion

Previous works assumed that GW backreaction = GW emission \Rightarrow peak at knee location

String tension dependency

One cusp per oscillation

Cosmological attractor

Loop distribution

Stochastic GW Composition of the second sec

Microstructure effects

0

Conclusion

• • •

String tension dependency

One kink per oscillation

Loop distribution

()

0

• • •

String tension dependency

One collision per oscillation

Loop distribution

()

0

• • •

Microstructure effects

- Cosmological attractor
- Loop distribution
- Stochastic GW
- Loop visibility domains

 \bigcirc

Ο

- ✤ Result
- String tension dependency
- Microstructure effects

0

 \bigcirc

00

 \bigcirc

0

 \bigcirc

- Conclusion
- 0

 \bigcirc

- Number of kinks and cusps is not known but:
 - Loop formation mechanism $\Rightarrow N_{\rm kk} = N_{\rm k}^2/4$
 - + Total radiated GW power $< \Gamma G U^2$
 - For $\Gamma = 50$ this yields: $N_{\rm c} \leq 11$ $N_{\rm k} \leq 133$
- Three prototypical models
 - Model 2C: $N_{\rm c}=2$, no kinks (and no collisions)
 - Model LNK: Only kinks with $N_{\rm k} < 20$
 - Model HNK: Only kinks but $20 \le N_{\rm k} \le 133$

Microstructure effects

Number of kinks and cusps is not known but:

Total radiated GW power $< \Gamma G U^2$

Loop formation mechanism $\Rightarrow N_{\rm kk} = N_{\rm k}^2/4$

For $\Gamma = 50$ this yields: $N_{\rm c} \leq 11$ $N_{\rm k} \leq 133$

- Cosmological attractor
- Loop distribution
- Stochastic GW ♦ GW bursts
- Loop visibility domains
- ✤ Result
- String tension dependency

- 0

 \bigcirc

 \bigcirc

 \bigcirc

00

 \cap

0

 \bigcirc

 \bigcirc

Three prototypical models

 $GU = 10^{-9}$ 10^{-6} 10^{-7} 10^{-8} <**G** 10⁻⁹ 2C 10^{-10} - LNK (N₁=10) HNK $(N_{1}=60)$ 10⁻¹¹ MIX 2 cusps $\gamma < \gamma_{c}$ ---20 kinks $\gamma > \gamma_{2}$ 10⁻¹² $100 \text{ coll. } \gamma > \gamma_c$ 10⁻¹³ 10^{-14} 10^{-12} 10^{-10} 10⁻⁶ 10⁻² 10^{-8} $10^8 \quad 10^{10} \quad 10^{12}$ 10^{-4} 10^{0} 10^{2} 10^{4} 10^{6} 10^{14} f (Hz)

()

 \bigcirc

0

0

 \bigcirc

Loop distribution

Stochastic GW

Observational

Conclusion

constraints

Observational constraints

- From both PTA and LIGO/VIRGO stochastic bounds
- Bayesian analysis marginalized over $N_{
 m k}$

• Two-sigma upper bounds for GU

Model	LIGO	EPTA	LIGO + EPTA
2C	$GU \le 1.1 \times 10^{-10}$	$GU \le 3.4 \times 10^{-11}$	$GU \le 1.0 \times 10^{-11}$
LNK	_	$GU \le 6.8 \times 10^{-11}$	$GU \le 7.2 \times 10^{-11}$
HNK	$GU \le 8.8 \times 10^{-14}$	$GU \le 6.4 \times 10^{-12}$	$GU \le 6.7 \times 10^{-14}$
MIX	$GU \le 1.4 \times 10^{-8}$	$GU \le 1.1 \times 10^{-11}$	$GU \le 5.9 \times 10^{-12}$