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Wormholes – spacetime bridges

Wormholes interpolate between different universes or between
different parts of the same universe. Could supposedly be used for
interstellar and time travels.



Some history
/Flamm, 1916/ – The spatial part of the Schwarzschild geometry
contains a throat

dl2 =
dr2

1− 2M/r
+ r2dΩ2 = dr2 + r2dΩ2 + dZ 2

where dZ 2 =
dr2

r/(2M)− 1
⇒ r = r(Z ) ≡ 2M +

Z 2

8M
.

Flamm assumed Z > 0. Einstein-Rosen considered Z ∈ (−∞,+∞)
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Some history

/Einstein-Rosen, 1935/ – Schwarzschild black hole has two
exterior regions connected by a bridge. The ER bridge is
spacelike and cannot be traversed by classical objects.

/Maldacena-Susskind, 2013/ – the ER bridge may connect
quantum particles to produce quantum entanglement and the
Einstein-Pololsky-Rosen (EPR) effect, hence ER=EPR.



Some history

/Wheeler, 1957/ wormholes may provide geometric models of
elementary particles – handles of space trapping inside an
electric flux.

/Misner, 1960/ Wormholes can describe initial data for the
Einstein equations. The time evolution of these data
corresponds to the black hole collisions of the type observed in
the GW events like GW150914.

/Morris, Thorn, Yurtsever, 1988/ wormholes traversable by
classical object may be supported by vacuum polarisation.



Can wormholes be solutions of Einstein equations ?

ds2 = −Q2(r)dt2 + dr2 + R2(r)(dϑ2 + sin2 ϑdϕ2),

Q(r)

R(r)
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Gµν = Tµν ⇒ energy ρ = −T 0
0 and pressure p = T r

r fulfill

ρ+ p = −2
R ′′

R
< 0, p = − 1

R2
< 0.

⇒ the Null Energy Condition (NEC) must be violated.
/Tµνv

µvν = Rµνv
µvν ≥ 0 for any null vµ/



NEC violation

The general case without symmetry ⇒ topological censorship:
compact two-surface of minimal area can exit if only NEC is
violated /Friedman, Schleich, Witt, 1993/ ⇒
traversable wormholes are possible if only energy is negative.

This may be, for example, due to

vacuum polarization

exotic matter: phantom fields, etc.

Wormholes may exist in alternative gravity models:

Gauss-Bonnet brainworld, etc.

theories with non-minimally coupled fields (Horndeski)

massive (bi)gravity



Best known example – phantom-supported wormhole

L = R+2(∂ψ)2

Bronnikov-Ellis wormhole:

ds2 = −dt2 + dr2 + (r2 + a2)(dϑ2 + sin2 ϑdϕ)2, ψ = arctan
( r
a

)
;

r ∈ (−∞,∞)

Figure: Isometric embedding of the equatorial section of the BE
wormhole to the 3-dimensional Euclidean space



Phantom wormholes from the Kaluza-Klein viewpoint

ds2 = −dt2 + dl2 where dl2 = γikdx
idxk fulfills

(3)

R ik(γ) = −2∂iψ∂kψ, ∆ψ = 0 (∗)

The simplest solution is the Bronnikov-Ellis wormhole, more
general solutions – superposition of wormholes.
Eqs.(∗) coincide with the vacuum Einstein equations for 5-metric

ds2
5 = cos(2ψ)[−dx2

0 + dx2
4 ] + 2 sin(2ψ)dx0dx4 + dl2

⇒ wormholes can be interpreted as 5-geometries without invoking
phantom fields /Clement/.



4D wormholes without phantom field

Write a phantom field solution in the Weyl form,

ds2 = −e2Udt2 + e2U
(
e2k(dρ2 + dz2) + ρ2dϕ2

)
, ψ = ψ

A new solution of the same form is obtained by swapping

U ↔ ψ, k → −k

hence by setting

Unew = ψ, ψnew = U, knew = −k .

For the BE wormhole U = 0, hence the new solution is vacuum,

Unew = ψ, ψnew = 0, knew = −k

but the topology with two asymptotic regions remains – wormhole.
The negative energy is hidden in the singularity.



I. Gravitating scalar field



Ordinary vs. phantom scalar

L = R − 2ε (∂Φ)2

ε = +1: ordinary scalar Φ = φ

ε = −1: phantom Φ = ψ.



Static system

ds2 = −e2Udt2 + e−2Uγikdx
idxk ,

the field equations are

1

2

(3)

R ik = ∂iU∂kU + ε ∂iΦ∂kΦ ,

∆U = 0, ∆Φ = 0 .

Rotational symmetry for real scalar, Φ ≡ φ,

ε = +1 : U → U cosα + φ sinα ,

φ → φ cosα− U sinα , γik → γik ,

Boost symmetry for phantom, Φ ≡ ψ

ε = −1 : U → U coshα + ψ sinhα ,

ψ → ψ coshα + U sinhα , γik → γik .



Solutions from Schwarzschild

ds2 = − r −m

r + m
dt2 +

r + m

r −m
dr2 + (r + m)2dΩ2, Φ = 0.

Rotations with cosα = 1/s give Fisher-Janis-Robinson-Winicour
solutions for ordinary scalar

ds2 = −
(
r −m

r + m

)1/s

dt2 +

(
r + m

x −m

)1/s [
dx2 + (r2 −m2)dΩ2

]
,

φ = ±
√
s2 − 1

2s
ln

(
r −m

r + m

)
, |s| ≥ 1,

Boosts with coshα = 1/s give solutions for phantom

ds2 = −
(
r −m

r + m

)1/s

dt2 +

(
r + m

r −m

)1/s [
dx2 + (r2 −m2)dΩ2

]
,

ψ = ±
√

1− s2

2s
ln

(
r −m

r + m

)
|s| ≤ 1.



Wormholes

Upon analytic continuation

m→ iµ, s → −is.

one obtains

ds2 = −e2Ψ/sdt2 + e−2Ψ/s [dx2 + (x2 + a2)dΩ2] ,

ψ = ±
√
s2 + 1

s
Ψ, Ψ = arctan (r/a) .

Taking s →∞ gives ultrastatic wormhole of Bronnikov-Ellis.

ds2 = −dt2 + dx2 + (x2 + a2)dΩ2 , ψ = Ψ.



Axial symmetry

L = R − 2ε (∂Φ)2

ε = +1: ordinary scalar Φ ≡ φ
ε = −1: phantom Φ ≡ ψ

Weyl parametrization

ds2 = −e2Udt2 + e−2U
{
e2k
(
dρ2 + dz2

)
+ ρ2dϕ2

}
where U, k ,Φ depend on ρ, z .



Field equations

∂2U

∂ρ2
+

1

ρ

∂U

∂ρ
+
∂2U

∂z2
= 0,

∂2Φ

∂ρ2
+

1

ρ

∂Φ

∂ρ
+
∂2Φ

∂z2
= 0,

∂k

∂ρ
= ρ

[(
∂U

∂ρ

)2

−
(
∂U

∂z

)2

+ ε

(
∂Φ

∂ρ

)2

− ε
(
∂Φ

∂z

)2
]
,

∂k

∂z
= 2ρ

[
∂U

∂ρ

∂U

∂z
+ ε

∂Φ

∂ρ

∂Φ

∂z

]
.



Target space symmetries

preserve spherical symmetry:

rotations

(
U
φ

)
→
(

cosα sinα
− sinα cosα

)(
U
φ

)
, k → k

boosts

(
U
ψ

)
→
(

coshα sinhα
sinhα coshα

)(
U
ψ

)
, k → k

interchange BE wormhole and ring wormhole:

swap U ↔ ψ, k → −k

do not intermix scalar field and gravity amplitudes:

scaling U → λU, k → λ2k , Φ→ λΦ

tachyon: U → ln ρ− U, k → k − 2U + ln ρ, Φ→ Φ

Acting with this on vacuum metrics yields new solutions.



Simplest vacuum Weyl metrics



One rod – Schwarzschild

ds2 = −e2Udt2 + e−2U
{
e2k
(
dρ2 + dz2

)
+ ρ2dϕ2

}
with

U(ρ, z) =
1

2
ln

(
R −m

R + m

)
= −1

2

∫ m

−m

dζ√
ρ2 + (z − ζ)2

k(ρ, z) =
1

2
ln

(
R2 −m2

R+R−

)
where

R =
1

2
(R+ + R−), R± =

√
ρ2 + (z ±m)2.

U is the Newtonian potential of a massive rod of length 2m along
the z-axis with mass density 1/2.



Two rods along z-axis

U = U1 + U2, k = k1 + k2 + k12 ,

where (with a = 1, 2)

Ua =
1

2
ln

(
Ra −ma

Ra + ma

)
, ka =

1

2
ln

(
(Ra)2 − (ma)2

Ra+Ra−

)
,

k12 =
1

2
ln

(
(R1+R2− + z1+z2− + ρ2)(R1−R2+ + z1−z2+ + ρ2)

(R1+R2+ + z1+z2+ + ρ2)(R1−R2− + z1−z2− + ρ2)

)
,

with

za± = z − za ±ma, Ra± =
√
ρ2 + (za±)2 , Ra =

1

2
(Ra+ + Ra−)

k 6= 0 on the part of symmetry axis between the rods – strut
/Israel and Khan 1964/ Similarly for many rods.



Point masses

U = −m

R
, k = −m2ρ2

2R4
,

with R =
√
ρ2 + z2. For two masses m± at z = ±m one has

U = −m+

R+
− m−

R−
,

k = −
m2

+ρ
2

2(R+)4
−

m2
−ρ

2

2(R−)4
+

m+m−
2m2

(
ρ2 + z2 −m2

R+R−
− 1

)
,

with R± =
√
ρ2 + (z ±m)2 /Chazy, Curzon 1924/ .



Summary of part I

Applying the target space dualities to the vacuum Weyl metric
gives all known and also many new static solutions.
For example, the Fisher-Janis-Robinson-Winicour solutions and
their generalizations to axially symmetric case,

ds2 = −
(
x −m

x + m

)λ/s
dt2 +

(
x −m

x + m

)−λ/s
dl2,

dl2 =

(
r2 −m2 cos2 ϑ

x2 −m2

)1−λ2 [
dr2 + (r2 −m2)dϑ2

]
+ (x2 −m2) sin2 ϑdϕ2, φ =

√
s2 − 1

s

λ

2
ln

(
x −m

x + m

)
,

BE wormholes and thei axially symmetric generalizations;
many other solutions



II. Vacuum wormholes



Starting point
Take the Schwarzschild metric

ds2 = −e2Udt2 + e−2U
{
e2k
(
dρ2 + dz2

)
+ ρ2dϕ2

}

U(ρ, z) =
1

2
ln

(
R −m

R + m

)
, k(ρ, z) =

1

2
ln

(
R2 −m2

R+R−

)

R =
1

2
(R+ + R−), R± =

√
ρ2 + (z ±m)2.

and apply the scaling to get prolate vacuum metrics
/Zipoy-Voorhees /

U → λU, k → λ2k

Next step is the analytic continuation of parameters

m→ ia, λ→ iσ



Oblate vacuum metrics

ds2 = −e2Udt2 + e−2U
{
e2k
(
dρ2 + dz2

)
+ ρ2dϕ2

}

U = σ arctan

(
X

a

)
, k =

σ2

2
ln

(
X 2 + Y 2

X 2 + a2

)
X + iY =

√
ρ2 + (z + ia)2

The square root has a branching point at ρ = a, z = 0 ⇒ there are
two branches ⇒ one need two Weyl charts (ρ+, z+) and (ρ−, z−)
to cover the manifold ⇒ double-sheeted topology with two
asymptotically flat regions ⇒ wormhole.

For σ = 1 the swap

U ↔ ψ, k → −k

gives the Bronnikov-Ellis wormhole.



Wormhole topology

Figure: The two Weyl charts are glued to each other through the cuts.



Global coordinates vs Weyl coordinates

Figure: The r , ϑ coordinates cover the whole of the manifold, each Weyl
chart covers only a half. The Weyl charts have branch cuts glued to each
other. A winding around the ring in the x , ϑ coordinates corresponds to
two windings in Weyl coordinates.



Global coordinates r , ϑ

z = r cosϑ, ρ =
√

r2 + a2 sinϑ

with r ∈ (−∞,∞) (double covering) yields

ds2 = −e2Udt2 + e−2Udl2, U = σ arctan
( r
a

)
,

dl2 =

(
r2 + a2 cos2 ϑ

r2 + a2

)1+σ2 [
dr2 + (r2 + a2)dϑ2

]
+ (r2 + a2) sin2 ϑdϕ2 .

Close to the axis cosϑ ≈ 1, taking σ → 0 gives wormhole metric

ds2 = −dt2 + dr2 + (r2 + a2)dΩ2

Wormhole throat is at r = 0. The Weyl coordinates (ρ, z) cover
either the r < 0 part or the r > 0 wormhole parts.



Ring singularity

Geometry is singular at the ring in the equatorial plane at r = 0
ϑ = π/2: Weyl tensor shows a power-low divergence while the
Ricci tensor shows a distributional singularity. Introducing polar
coordinates (R, α) in the region close to the ring,

ds2 = −dt2 + dR2 + R2dα2 + a2dϕ2 + . . .

with α ∈ [0, (2 + σ2)2π) ⇒ a negative angle deficit

δ = −(σ2 + 1)2π

⇒ a conical singularity generated by an infinitely thin ring of
radius a and of negative tension (energy per unit length)

T = −(1 + σ2)c4

4G

⇒ the wormhole is supported by a negative tension ring.



Ring wormhole with locally flat geometry

In the limit σ → 0 one has

ds2 = −dt2 +

(
r2 + a2 cos2 ϑ

r2 + a2

)[
dr2 + (r2 + a2)dϑ2

]
+(r2 + a2) sin2 ϑdϕ2

Weyl tensor vanishes and passing to the Weyl coordinates the
metric becomes manifestly flat

ds2 = −dt2 + dρ2 + dz2 + ρ2dϕ2.

The topology is non-trivial since r ∈ (−∞,∞) and one needs two
(ρ, z) patches, one for r > 0 and the other for r < 0, to cover the
manifold. The winding angle around the ring core ranges from zero
to 4π hence the ring is still there and has the tension

T = −c4/4G

⇒ the distributional singularity of the Ricci remains.



Geodesics

Geodesics are straight lines. Those which miss the ring always stay
at the same chart. Those threading the ring pass to the other
chart and become invisible – the “magic ring” literally creates a
hole in flat space.

Figure: Particles entering the ring are not seen coming out from the other
side



Alice through the looking glass



Energy

To create a ring of radius R one needs the negative energy

E = 2πRT = −2πR
c4

4G

To create a ring of radius R = 1 metre one needs a negative
energy equivalent to the mass of Jupiter.

Small rings can probably appear and disappear in quantum
fluctuations. Particles passing through the ring during its existence
will disappear – loss of quantum coherence.

The ring can probably be replaced by a thin torus with negative
energy associated to quantum fluctuations inside the torus.



Two-ring wormholes

U = σ1U1 + σ2U2, k = σ2
1 k1 + σ2

2 k2 + σ1σ2 k12,

with

Us = arctan

(
Xs

as

)
, ks =

1

2
ln

(
X 2
s + Y 2

s

X 2
s + a2

s

)
,

k12 =
1

2
ln

(∣∣∣∣(X1 + iY1)(X2 + iY2) + z+
1 z+

2 + ρ2

(X1 + iY1)(X2 − iY2) + z+
1 z−2 + ρ2

∣∣∣∣2
)

Xs ± iYs =
√
ρ2 + (z − zs ± ias)2

where σs , zs , as are free parameters. Locally flat for σs → 0.



Two wormholes – four Weyl charts

Figure: U(ρ, z) for σ1 = 1, σ2 = 1.5, µ1 = 1.2, µ2 = 0.5, z1 = −z2 = 1,
and for ρ ∈ [0, 2], z ∈ [−4, 4]. The four different branch sheets
correspond to values of U in four different spacetime regions. There are
four symmetry axes.



Weyl charts

Figure: The two-ring wormhole is covered by four Weyl charts, each
having two branch cuts. The upper cuts on D+

± and D−
± are glued to

each other such that the upper edge of the one is identified with the
lower edge of the other and vice-versa; similarly for the lower cuts on D±

+

and D±
− . This generalises to N wormholes.



Multi-ring wormholes
Solution can be generalized to the case of N rings. In the limit

σs → 0

they all have the same tension

T = −c4/4G

the geometry is locally flat outside the rings. The rings connect 2N

flat universes.



Appell ring

U = −m+

R+
− m−

R−
,

k = −
m2

+ρ
2

2(R+)4
−

m2
−ρ

2

2(R−)4
+

m+m−
2m2

(
ρ2 + z2 −m2

R+R−
− 1

)
with R± =

√
ρ2 + (z ±m)2 /Chazy, Curzon 1924/ . Upon

m→ ia, m± → −
M

2
e±iη

one obtains

R± →
√
ρ2 + (z ± ia)2 ≡ Re±iS ,

U =
M

R
cos(S − η), (Appell potential)

k = −M2ρ2

4R4
cos(4S − 2η)− M2

8a2

(
ρ2 + z2 + a2

R2
− 1

)
.



Summary of part II

In vacuum GR there are wormholes sources by negative
tension rings. Each ring encircles the wormhole throat.
Solutions depend on a parameter σ.

For σ 6= 0 the ring supports a power-law singularity of the
Weyl tensor and a conical singularity of the Ricci tensor.

For σ → 0 the Weyl tensor vanishes, the geometry becomes
locally flat, but there remains the conical singularity of the
Ricci tensor corresponding to the negative energy
T = −c4/(4G ) along the ring. The ring “cuts a hole” in flat
space.

Other ring solutions are singular. All of them can be dressed
up with the scalar field by applying dualities.



III. Ring wormhole as the
M → 0 limit

of Kerr spacetime



Minkowski space in spheroidal coordinates

ds2 = −dt2 + dρ2 + dz2 + ρ2dϕ2.

expressed in oblate spheroidal coordinates r ∈ [0,∞), ϑ ∈ [0, π)

z = r cosϑ, ρ =
√
r2 + a2 sinϑ ⇒ z2

r2
+

ρ2

r2 + a2
= 1

reads

ds2 = −dt2 +

(
r2 + a2 cos2 ϑ

r2 + a2

)[
dr2 + (r2 + a2)dϑ2

]
+(r2 + a2) sin2 ϑdϕ2

Coordinate singularity at the ring r = 0, ϑ = π/2. Geodesic

dr

ds
= ±

√
E2 − µ2

is discontinuous since one is bound to chose different signs.



Geodesic
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Analytic continuation to r ∈ (−∞,∞)

If r is allowed to be negative – no need to change sign in geodesic
equation; geodesics analytically continue. The metric is the same

ds2 = −dt2 +

(
r2 + a2 cos2 ϑ

r2 + a2

)[
dr2 + (r2 + a2)dϑ2

]
+(r2 + a2) sin2 ϑdϕ2 ,

and close to the ring r = 0, ϑ = π/2 this reduces to

ds2 = −dt2 + dR2 + R2dα2 + a2dϕ2 + . . .

where α ∈ [0, 4π] hence the negative angle deficit and the
distributional conical singularity of the curvature. The relation
ρ, z ⇔ r , ϑ is no longer bijective, the geometry can be covered by
two flat charts (ρ+, z+) and (ρ−, z−)

ds2 = −dt2 + dρ2
± + dz2

± + ρ2
±dϕ

2



Wormhole topology

Figure: Analytic continuation from one flat chart to the other. A contour
around the string core makes one revolution of 2π, then passes to the
other chart, and only after the second revolution of 2π closes – the angle
increment is 4π.



Moral

The same metric

ds2 = −dt2 +

(
r2 + a2 cos2 ϑ

r2 + a2

)[
dr2 + (r2 + a2)dϑ2

]
+(r2 + a2) sin2 ϑdϕ2

describes flat Minkowski space if r ∈ [0,∞) and locally flat
wormhole if r ∈ (−∞,∞).
This metric is the M → 0 limit of Kerr

ds2 = −dt2 +
2Mr

Σ

(
dt − a sin2 ϑ dϕ

)2

+ Σ

(
dr2

∆
+ dϑ2

)
+ (r2 + a2) sin2 ϑdϕ2 ;

∆ = r2 − 2Mr + a2, Σ = r2 + a2 cos2 ϑ,

where r ∈ (−∞,∞) since the geodesics pass to the r < 0 region.



Kerr geodesics

1

µ2

(
dr

ds

)2

+ V (r) = E

As M → 0 the geodesics freely move in r ∈ (−∞,∞).
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Figure: Potential V (r) = −2Mr/(r2 + a2) in the geodesic equation

⇒ zero mass limit of Kerr is the wormhole !



Kerr-Schild: t, r , ϑ, ϕ→ T , ρ, z , ϕ

ρ =
√

r2 + a2 sinϑ, z = r cosϑ,

T = t +

∫
2Mr

∆
dr , φ = ϕ+

∫
2Mar

Σ∆
dr ,

which yields

ds2 = − dT 2 + dρ2 + ρ2dφ2 + dz2

+
2Mr3

r4 + a2z2

(
rρ

r2 + a2
dρ− ar sin2 ϑdφ+

z

r
dz + dT

)2

For M → 0 the metric is flat. However, one needs two Kerr-Schild
chars: (ρ+, z+) for r > 0 and (ρ−, z−) for r < 0. These two charts
are glued together precisely as was shown before (Hawking-Ellis),
hence for M → 0 one obtains the two-sheeted wormhole topology
and a conical singularity.



Fig.27 from Hawking-Ellis



Summary of part III

Kerr spacetime has the two-sheeted topology also in the
M → 0 limit. The limiting spacetime is locally flat but it
cannot be globally flat Minkowski space since it is
topologically non-trivial.

The Kerr ring supports a power-law singularity of the Weyl
tensor that vanishes for M → 0, but it also supports a
distributional singularity of the Ricci tensor that remains even
in the M → 0 limit. Carter ’68: in the special case where M
vanishes there must still be a curvature singularity at Σ = 0,
although the metric is then flat everywhere else.

It follows that the M → 0 limit of the Kerr spacetime is the
wormhole sourced by the negative tension ring – the simplest
way to produce wormholes.



IV. Wormholes in massive bigravity

S.V.Sushkov and M.S.V.

JCAP 06 (2015) 017



Ghost-free bigravity

S =
m2

M2
Pl

∫ (
1

2κ1
R(g)

√
−g +

1

2κ2
R(f )

√
−f − U

√
−g
)

d4x

U = b0 + b1

∑
A

λA + b2

∑
A<B

λAλB

+ b3

∑
A<B<C

λAλBλC + b4 λ0λ1λ2λ3

where λA are eigenvalues of γµν =
√
gµαfαν .

Gµ
ν (g) = κ1 T

µ
ν(g , f ),

Gµ
ν (f ) = κ2 T µν(g , f ),

The two energy-momentum tensors do not apriori fulfill ant energy
conditions.



Reduction to the S-sector

ds2
g = −Q2dt2 +

R ′2

N2
dr2 + R2dΩ2

ds2
f = −q2dt2 +

U ′2

Y 2
dr2 + U2dΩ2

Q,N,R, q,Y ,U depend on r , one can impose 1 gauge condition.
5 independent equations

G 0
0 (g) = κ1 T

0
0 ,

G r
r (g) = κ1 T

r
r ,

G 0
0 (f ) = κ2 T 0

0 ,

G r
r (f ) = κ2 T r

r ,

T r
r
′ +

Q ′

Q
(T r

r − T 0
0 ) +

2

r
(Tϑ

ϑ − T r
r ) = 0.



Wormholes – global solutions
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Solutions for κ1 = 0.688, κ2 = 0.312, bk = bk(c3, c4), c3 = 3,
c4 = −6, for the neck radius h = 2.2. Here σ = 0.444 and N = R ′.



Asymptotic behavior

For R →∞ solutions approach the AdS solution, ds2
f = λ2ds2

g

ds2
g = −Q2dt2 +

dR2

N2
+ R2dΩ2

with N2 → N2
0 = 1− Λr2

3 and Q2 → const × N2
0 . When R →∞

N2 → N2
0 ×

(
1 +

C

R3
+

A

R
√
R

cos (ω ln(R) + ϕ)

)
Newtonian tail + oscillations due to the scalar polarization of the
massive graviton which becomes a tachyon with

m2
FP =

(κ2

λ
+ κ1λ

)
(b1 + 2b2λ+ b3λ

2) <
3

4
Λ < 0

hence the Breitenlohner-Freedman bound is violated.



Summary of part IV

The ghost-free bigravity theory admits solutions for which the
f-metric can be singular, but the g-metric describes globally
regular wormholes.

The wormholes interpolate between two AdS spaces.

The wormhole throat is cosmologically large (could we live
inside it ?)

Solutions show tachyons in the asymptotics.



Final conclusion

It seems that traversable wormholes might really exist.


