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Outline
Euler-Poisson equations for 3D pressureless matter fluid (EdS)

@⌧v + v ·rv = � 3

2⌧
(v +r'g) , @⌧� +r · [(1 + �)v] = 0 , r2'g =

�

⌧

For generic initial data, solving these equations  
(not just for short times) requires multi-time-stepping algorithms

(either be employing a 1D version of Euler-Poisson eqs., or by embedding a 1D flow in 3D space)
Known analytical solution for 1D flow since the late 60s

New exact analytical solution, for quasi-1D flow, embedded in 3D:  
From initial time, in a single time-step, until the break-down of the 
single-stream description (= “shell-crossing”, where             )

Initial conditions for the multi-stream computation are set at the time of shell-crossing

(           is cosmic scale factor;     is peculiar velocity and                          is density contrast)v⌧ ⇠ a � = (⇢� ⇢̄)/⇢̄
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Boundary conditions

@⌧v + v ·rv = � 3

2⌧
(v +r'g) , @⌧� +r · [(1 + �)v] = 0 , r2'g =

�

⌧

To avoid quasi-singular behaviour as    becomes small, we need the 
following slaving conditions on the “initial” conditions (at decoupling)	

⌧

�(init) = 0 , v(init) = �r'(init)
g

Selects the growing mode solution, and                    (until shell-crossing)r⇥ v = 0
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Let’s briefly investigate the fluid equations for arbitrary short times:



Switch to Lagrangian coordinates

Introduce the Lagrangian map                     of the initial position    	
of a fluid particle to its current position                                     , 	
solution of the characteristic equation 	
and 

q 7! x(q, ⌧) q

@L
⌧ x = v(x(q, ⌧), ⌧),

is the Lagrangian time derivative, and let’s denote @L
⌧

the Lagrangian derivative w.r.t. component     with  “  ”qi ,i

The Euler-Poisson equations in Lagrangian coordinates are	

"ikl"jmnxk,mxl,nR⌧xi,j = 3(J � 1) , "ijkxl,j@
L
⌧ xl,k = 0 ,

where                    is the Jacobian, and  J = det(xi,j) R⌧ =⌧2
�
@L
⌧

�2
+ (3⌧/2)@L

⌧

x(q, ⌧ = 0) = q

x(q, ⌧) = q + ⇠(q, ⌧)



Lagrangian perturbation theory (LPT) as a time-Taylor series

Generic solution scheme to all-orders:                 

For          : Plugging the Ansatz in the Euler-Poisson equations,	
and identifying powers in    , one obtains all-order recursion	
relations for the displacement coefficients             …:

⌧n

⇠(n)(q)

n > 1

⇠ ⌘ x� q

At first order,         , the boundary conditions imply

⇠(1)(q) = v(init)(q).

n = 1

Ansatz:

seek a Taylor series representation for the displacement

⇠(q, ⌧) =
1X

n=1

⇠(n)(q)(⌧ � 0)n

initial velocity
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[Zheligovsky & Frisch, 1312.6320]

(“Zel’dovich approximation”)

 expansion parameter



From the Lagrangian scalar equation, one gets
rL · ⇠(n) = rL · v(init)�n1 +

X

0<s<n

s2 + (s� n)2 + (n� 3)/2

2n2 + n� 3

⇣
⇠(n�s)
i,j ⇠(s)j,i � ⇠(n�s)

i,i ⇠(s)j,j

⌘

� 1
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X

s1+s2+s3=n

s21 + s22 + s23 + (n� 3)/2

n2 + (n� 3)/2
"ikl"jmn⇠

(n1)
i,j ⇠(n2)

k,m ⇠(n3)
l,n

And from the vector equation:

Summing up, the usual Helmholtz decomposition then gives 
⇠(q, ⌧) =

1X

n=1

⇠(n)(q) ⌧n

Typically, the Lagrangian map is analytic but not entire in time;  
it has a finite radius R of convergence in the complex time plane:

⌧
X

shell- 
crossing

rL ⇥ ⇠(n) =
X

0<s<n

n� 2s

2n
rL⇠(s)k ⇥rL⇠(n�s)

k

 [CR, Villone & Frisch, 1504.00032: bounds on radius of convergence in    CDM]

(rL ⌘ rq)
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) x = q + ⇠

⇤



The quasi-one dimensional problem

In 1D, the particle trajectory is exactly 
and is entire in the time variable.

x(q, ⌧) = q + ⌧ v

(init)(q),
[Novikov ’69, Zel’dovich ’69]

Departing from 1D just slightly (perturbatively) generally 
populates higher-order time-Taylor coefficients.

1. refine the perturbation problem 	
2. solve the Euler-Poisson equations in Lagrangian coordinates  

with refined perturbation Ansatz for the particle trajectory	
3. the result is an infinite time-Taylor series for the particle 

trajectory, which is shown to be entire in the time variable 

Our strategy: 

7



Initial data and solution Ansatz for the perturbed problem

specify the initial gravitational potential:  
 
 
where the first term on the r.h.s. is the 1D problem,           a small 
perturbation parameter, and                           a generic perturbation  

'(init)
g = � cos q1 + ✏ �(init)

(q1, q2, q3) ,

✏ > 0

�(init)(q1, q2, q3)

x(q, ⌧) = q + ⇠

(0)(q, ⌧) + ✏ ⇠(1)(q, ⌧) + ✏2⇠(2)(q, ⌧) + · · ·Perturbation Ansatz:

where                                     is the 1D displacement.	
We only go to order   , henceforth we write                                ,	
and thus for the Jacobian matrix:	
 

✏ ⇠(1)(q, ⌧) = ⇠(q, ⌧)

xi,j = �ij + �i1�j1F,1 + ✏⇠i,j

⇠(0)i (q, ⌧) = �i1F (q1, ⌧)
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Solution to zeroth order in   : the unperturbed 1D flow✏

"ikl"jmnxk,mxl,nR⌧xi,j = 3(J � 1) , "ijkxl,j@
L
⌧ xl,k = 0 ,

Plugging                                  into
xi,j = �ij + �i1�j1F,1

and using the boundary conditions, one obtains

J = 1� ⌧ cos q1

xi = qi � �i1⌧ sin q1 ,

and for the Jacobian                                                  

Shell-crossing occurs when J vanishes for the first time. 	
For the unperturbed 1D flow, this occurs at the time   ⌧ (0)? = 1
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J = det(xi,j)(                     )
Solution to  
order  ϵ0

The fluid density (                           )  blows-up at shell-crossing and thus marks the 
break-down of the fluid description

� = 1/J � 1



Solution to first order in   : the perturbed 1D flow✏

"ikl"jmnxk,mxl,nR⌧xi,j = 3(J � 1) , "ijkxl,j@
L
⌧ xl,k = 0 ,

Set                                                          ,          

Collecting all terms          in

xi,j = �ij � �i1�j1⌧ cos q1 + ✏ ⇠i,j

⇠(q, ⌧) =
1X

n=1

⇠(n)(q) ⌧nand impose the nested Ansatz                                         . 

and identifying the powers in   , we obtain recursion relations for  
the perturbed displacement, which are most easily formulated	
in Fourier space…:

O(✏)

⌧
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⇠̂k1
= �ik �̂(init)�1n

�
�
k21 + k22 + k23

��2

 
ik

n� 1/2

2n+ 3

h
⇣̂(n�1)
k1+1 + ⇣̂(n�1)

k1�1

i
+

n� 2

2n

�
�k22 � k23, k1k2, k1k3

�T h
�̂(n�1)
k1+1 + �̂(n�1)

k1�1

i!

Fourier transformation for any scalar or vector                             

The perturbed displacement in Fourier space is

where                                                                    where                         ,	
and for 

�̂(1)
k1

= �ik1�̂
(init) and ⇣̂(1)k1

= k2?�̂
(init),

n > 1

k2? = k22 + k23

f ⌘ f̂k1e
ik·q

⇣̂(n)k1
=

✓
1 +

k21
k2?

◆�1
"
n� 1/2

2n+ 3

⇣
⇣̂(n�1)
k1+1 + ⇣̂(n�1)

k1�1

⌘
� ik1

n� 2

2n

⇣
�̂(n�1)
k1+1 + �̂(n�1)

k1�1

⌘#
,

�̂(n)
k1

=

✓
1 +

k21
k2?

◆�1
"
� ik1 k

�2
?

n� 1/2

2n+ 3

⇣
⇣̂(n�1)
k1+1 + ⇣̂(n�1)

k1�1

⌘
+

n� 2

2n

⇣
�̂(n�1)
k1+1 + �̂(n�1)

k1�1

⌘#
.

Jacobian:

Trajectory: xi(q; ⌧) = qi � �1i⌧ sin q1 + ✏

1
X

n=1

⇠

(n)
i (q) ⌧n ,

J = 1� ⌧ cos q1 + ✏

1
X

n=1

⇣

⇠

(n)
1,1 + [1� ⌧ cos q1]

n

⇠

(n)
2,2 + ⇠

(n)
3,3

o⌘

⌧

n
.
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Solution  up 
to order  ϵ1



Quasi 1D: Entirety in time and its consequences

Taylor series for the Lagrangian map is an entire function in time.

By contrast, the Zel’dovich approximation, which in our framework 
amounts to ignoring all time-Taylor coefficients beyond n=1, 
generically predicts the wrong time and location of the collapse.

⌧? = 1� ✏C

�(init)(q1, q2, q3)

This allows the determination of the time and location of the first 
shell-crossing, which generically is taking place earlier than for an  
unperturbed 1D flow:  
Here, C is a (positive) space constant, which precise value is  
easily determined for a given 

Our trick to go beyond 1D: a linearisation in Lagrangian space!

(i.e., the radius of convergence of the time-Taylor series is formally infinite)


