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¢ EBuler-Poisson equations for 3D pressureless matter fluid (EdS)
0
O-v+v-Vu = —3(v+v¢g) , 00+ V- [(1+40)v] =0, Vi, = .

2T

(7 ~ a 1s cosmic scale factor; v is peculiar velocity and 6 = (p — p)/p is density contrast)

¢ For generic initial data, solving these equations
(not just for short times) requires multi-time-stepping algorithms

¢ Known analytical solution for 1D flow since the late 60s

(either be employing a 1D version of Euler-Poisson egs., or by embedding a 1D flow in 3D space)

¢ New exact analytical solution, for quasi-1D flow, embedded in 3D:
From 1nitial time, in a single time-step, until the break-down of the
single-stream description (= “shell-crossing”, where 0 — 00)

Initial conditions for the multi-stream computation are set at the time of shell-crossing
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Bounclary conditions
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Let’s briefly investigate the fluid equations for arbitrary short times:

3 0
3T’U+’U'V’U:—E(’U+Vgag), 0:6+V-[(14+6)v|=0, V2¢g:;

To avoid quasi-singular behaviour as 7 becomes small, we need the
following slaving conditions on the “initial” conditions (at decoupling)

5(init) —0 ,v(init) _ _v(p(init)

)

Selects the growing mode solution, and V x v = 0 (until shell-crossing)
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Switch to Lagrangian coordinates
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Introduce the Lagrangian map q — x(q, 7) of the initial position q
of a fluid particle to its current position x(q,7) = q + &€(q, 7),
solution of the characteristic equation 9~z = v(x(q,7),7),

and x(q, 7 =0) = q

a£ 1s the Lagrangian time derivative, and let’s denote

the Lagrangian derivative w.r.t. component g; with “ 7’

The Euler-Poisson equations 1in Lagrangian coordinates are

L
Eikl€ imnThmTinRrTi; =3(J — 1), e€ijrx; 0721 =0,

where J = det(z; ;) is the Jacobian, and R, =7 ((‘91‘) + (37/2)0*
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Lagrangian Perturbation theory (LPT) as a time-Taglor series

[Zheligovsky & Frisch, 1312.6320]
Generic solution scheme to all-orders:

seek a Taylor series representation for the displacement £ = x — ¢q

expansion parameter

At first order, n = 1, the boundary conditions imply

¢W(g) = it (q). (‘“Zel’dovich approximation”)

initial velocity

For n > 1: Plugging the Ansatz in the Euler-Poisson equations,

and identifying powers in 7", one obtains all-order recursion

relations for the displacement coefficients £€™ (q)...:
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From the Lagrangian scalar equation, one gets
. 2 — 2 - 3 2 n—s S n—s S
VL . €(n) _ VL . ,U(lnlt)é‘vlz 4 Z s°+ (S n) + (TL )/ (é-z(ﬂ )55’2) L gz(,z )fj(,j))

2n?+n—3
0<s<n

1 Z s?+s5+s5+(n—3)/2
n?+ (n—3)/2

(n1) ¢(n2) £(n3)
5’ikl8jmn€i,j gk,m [,n

S1+82-+83=n
And from the vector equation:
— 28 _
UL o ) n =25 0L e(s) o gle(n—s)
€ O<Z9;n 2n * *

Summing up, the usual Helmholtz decomposition then gives

(g, 7) =) ™ (gT" = T=q+§

#Typ—i, agrngian mp 1S analyti but not er -
it has a finite radius R of convergence 1n the complex time plane:

|
“-... “- ...

“»t IS
0" R e .’:‘ ¢ o - Shel!.'

[CR, Villone & Frisch, 1504.00032: bounds on radius of convergence in ACDM] 5
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The qua5i~one dimensional Problem

o In 1D, the particle trajectory is exactly z(q, 7) = ¢ 4+ 7 v (g),
and 1s entire in the time variable. [Novikov 69, Zel’dovich *69]

¢ Departing from 1D just slightly (perturbatively) generally
populates higher-order time-Taylor coefficients.

¢ Our strategy:
1. refine the perturbation problem

2. solve the Euler-Poisson equations in Lagrangian coordinates
with refined perturbation Ansatz for the particle trajectory

3. the result 1s an infinite time-Taylor series for the particle
trajectory, which 1s shown to be entire in the time variable
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Initial data and solution Ansatz for the Perturbecl Problem

¢ specify the 1nitial gravitational potential:

gpgnit) — —CO0Sq1 T € ¢(init) (Q17 q2, QS) 9

where the first term on the r.h.s. 1s the 1D problem, € > 0 a small
perturbation parameter, and AU (g1, g0, q3) a generic perturbation

¢ Perturbation Ansatz: z(q,7) = q+£9(q,7) + €W (q,7) + 2P (q,7) + - --

where f,fo)(q, 7) = 0;1F (q1,7) 1s the 1D displacement.
We only go to order ¢, henceforth we write & (1) (q,7) = &(q, 1),

and thus for the Jacobian matrix:
,CEZ'J' — 52']‘ —+ (57;153'1}7,1 —+ Efi’j



Solution to zeroth order in €: the unperturbed 1D ﬂow

Plugglng Tij = 52']' —+ 57;153'1}7,1 Into

L
Eikl€ imnThmTinRrxi; =3(J — 1), e€ijrx; 0718 =0,

and using the boundary conditions, one obtains

Shell-crossing occurs when J vanishes for the first time.

For the unperturbed 1D flow, this occurs at the time 79—

The fluid density ( 6 = 1/J — 1) blows-up at shell-crossing and thus marks the
hreak-down of the fluid description 9
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Solution to first order in €: the Perturbcci D flow

Set x;,; = 04 — 0410417 COSq1 + €&; 5,

and impose the nested Ansatz £(q,7) = Z ¢ (g)

n=1

Collecting all terms O(¢) in

L
Eikl€ imnThmTlnNRrTi j =3(J — 1), ek ;0;21 1 =0,

and 1dentifying the powers 1in 7, we obtain recursion relations for
the perturbed displacement, which are most easily formulated

in Fourier space...:

10



Fourier transformation for any scalar or vector f = f e'ka

The perturbed displacement in Fourier space 1s

A

&p, = —ik pMiVg,,

2 (. n—1/2 [+(n= A — n—2 T | ~(n— ~(n—
— (K2 + k3 + K2 <1k 2n+/3 G+ Q0T S (R — R kaka, Raks) T [T + A P])

where )Zgl) = —ik; ™Y and é,ii) = k2 oUn%) where k2 = k2 + ks,
and for n > 1

o 2\
&= (1+ )
1

2n + 3 2n

n_1/2 ~(n—1 ~(n—1 on— 2 ~(n—1 ~(n—1
(C]il‘Fl) + Cl(cl—l)) o lkl (Xl(ﬂﬁ-l) T XI(€1—1)> :| ?

k2 L om+3

n N\ on—1/2 St aime =2 nel) o (n
X](ﬁ>:<1+—1) [ﬂcle /(C,§1+11>+C,§1_11))+ - (xélﬁ)ﬂtxél}))}.
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Quasi 1D: Entirety in time and its consequences

e

¢ Taylor series for the Lagrangian map is an entire function in time.
(1.e., the radius of convergence of the time-Taylor series is formally infinite)

¢ QOur trick to go beyond 1D: a linearisation in Lagrangian space!

¢ This allows the determination of the time and location of the first

shell-crossing, which generically 1s taking place earlier than for an

unperturbed 1D flow: 7, =1 — €C

Here, C 1s a (positive) space constant, which precise value 1s

easily determined for a given ¢'"™% (g1, ¢, ¢3)

¢ By contrast, the Zel’dovich approximation, which in our framework
amounts to ignoring all time-1aylor coefficients beyond n=1,

generically predicts the wrong time and location of the collapse.



