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Motivation

Inflation is the leading paradigm for early Universe and structure formations.

Basics predictions of inflation: The CMB perturbations are
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These predictions are in good agreement with the Planck data.
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Asymmetry vs. Anisotropy
Hemispherical Power Asymmetry

Pr = P(1+2A0.p)
PLANCK; A = 0.07 + 0.02 for 2 < £ < 64
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Seljebotn, 2010
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Statistical Anisotropy

Pr(k) = PR 1+ > gimYim(k)
LM

quadrupole anisotropy: L=2,m =20

Pr(k) = P(1 + g« (p.k)?)

Observat'ionally lg«| <1072 , Komatsu-Kim, 2013
Hanson & Lewis, 2009




Anisotropic Inflation from Gauge Field Dynamics
The model contains a U(1) gauge field minimally coupled to gravity

£2 Watanabe, Kanno, Soda, 09
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Here 1/f(¢) is the time-dependent gauge kinetic coupling.

We turn on the background gauge field A,, = (0, A«(t),0,0)
The background metric is

ds? — _di2 1 e2a(t) (e—4a(t)dx2 i e20(t)(dy2 1 dzz)’ E‘
) 10 4 ; s ; ; (::R1
0 10 0 30 40 ) 60 70
=  —dt? + a(t)?dx? + b(t)?(dy? + dz?) ik b
In this view H = « is the average Hubble expansion rate and 2v 00 —————
5 b 't
H=- |, Hp=-— li
a b 20006 |
The anisotropy in the system is measured by bl B . —
(-T L Hb - Ha puposy |
H H
The background equations are too complicated to be solved !




A realization of Power Asymmetry
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Mechanisms to generate primordial anisotropies and asymmetries

Consider a spherical cow in the vacuum .....




Primordial anisotropies from defects during inflation

We consider various defects during inflation:

1- Domain walls, 2- Massive defects, 3- Cosmic strings

4- Bubble nucleation



Topological defects in primordial Universe

Kibble Mechanism :
Topological defects are formed from symmetry breaking:

. domain walls
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Domain walls and monopolies are cosmologically
catastrophic as they rapidly over close the Universe.

Cosmic strings are viable as they reach

the scaling regime. By 1990’s cosmic string was
a rival candidate to inflation as the origin of ) »
perturbations and structure formation in @

early Universe.
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http://www.damtp.cam.ac.uk/research/gr/public/cs_top.html



Motivation for cosmic strings:

A cosmic string produces a deficit angle around itself.
This may be used to observe cosmic string via lensing
or via KS effect in CMB maps.

A network of cosmic string reaches the scaling regime in a
cosmological background. The constrains from

CMB anisotropies suggest the upper bound Gu <10~
for the tension of string pu.

If cosmic strings are from string theory then they are either
Fundamental string (F-strings) or D1-brane (D-strings).

The evolution of a network of cosmic string crucially depends on

the intercommutation probability P. For ordinary gauge string A C A C
P ~ 1. However, for cosmic superstrings of different types N
it can be significantly smaller, say 1073 < P < 1; —

Jackson, Jones, Polchinski, hep-th/0405229).
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Motivation for bubble nucleation

Vacuum bubble nucleation has played important roles in the development of
inflationary cosmology and beyond:

Guth Old Inflation, 1981, Sato et al 1981, 1982.

The basic picture is based on Coleman-de Luccia formalism:

Euclidean classical solutions with the topology of a four-sphere. Vi
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Primordial anisotropies from domain wall

Consider a domain wall in our Hubble patch during inflation. To simplify the analysis
assume the DW has zero thickness with tension o.

Assuming the DW is extended along x-y plane, the metric ansatz is

ds® = —dr? + dx*
Flr, 22 ¢ )
The total energy density is
O
T, = —-ViH, — diag (1,1,1,0) d(2).
o=diag(1,1,1,0)5(2
Solving the Einstein fields equations G, = T, /M3 we obtain .
1
ds® ~ = (—dn® — 2Bsgn(z)dndz + dz* + dx* + dy*)
Ui
The curvature perturbation as usual is given by R = — 2 4§4.

The DW modifies the background geometry, affecting the inflaton perturbations

B

1 ,00
L=+/—g <_%QW8M5¢(9,,5¢> = S (60" — (Vép)?) + oy sgn(z)d¢ a—j,

S. Jazayeri, Y.Akrami, H.F., A.Solomon, Y.Wang, 1408.3057



Primordial asymmetry from domain wall

Suppose there exists a domain wall (DW) during inflation.

Treating the effects of DW perturbatively the metric becomes

1

_ o
e (—dn2 — 2Bsgn(z)dndz + dz* + dx* + dy2) B = AHM?2

ds? ~

We are interested in inflaton power spectrum

(RkRq) = <g>2 (0pKkOPq)

The corresponding Feynman diagram is

+ e

The corresponding interaction Hamiltonian density is

Hzﬁnz §¢' 0,0¢sgn(z)

Hr = —



The correction on inflaton power spectrum is given by

5<5¢k5¢q> = +i/_e <[H/(77),5<15k5¢q]>d77
the RHS vyields

H2(2W)4 / = [ i daak: +qélmK&bq/(n)éqs’k/(n)6¢k(ne)6¢q(ne)>]

The final result for the power spectrum is

22

2 2
(RkRq) = FPO [(271‘)353(k +q)— (2r )3 B k“q: + q°k;

q3 kz+ q-

=6%(ay) +k||)]

As expected the translation invariance along the direction perpendicular to DW is
broken.

The Variance in Real Space

2
ﬁ q ‘|‘kzqz ; z
S(RA(x)) = —ZPo/dkququHqH L cilkeran
(a7 + k)2 (q +q2)2
~  BPyln E‘ + C
L
Note that zZ =29+ rcosb

S. Jazayeri, Y.Akrami, H.F., A.Solomon, Y.Wang, JCAP, 2014 "



N
The Variance Multipoles

Expanding the variance in multipoles  §(R?(x)) = Po >_, agPs(cosf) we obtain

20 +1 +1
ay = ( —|2_ )B/ d(cos0)Py(cos ) In 1—|—K}COSH‘
—1
For the dipole and quadrupole we get
30 5 1—k
- - — 1)l _2
7 412 {(R JIn 1+ k R] ’
5 1—
a = 12i3 [3(/«:2 —1)In | + 43 — 6/4,]

In which K = and Z = zo + rcos6
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The power spectra for the off-diagonal moments are
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FIG. 7. Contributions of the domain wall to the off-diagonal elements of the CMB correlation matrix Cyy for two fixed
values of £1, two of m, and four of the parameter k, plotted against Al = 5 — £;. Upper left: We set £; =3, m = 0.
Upper right: We set £; = m = 3. Lower left: We set £; = 50, m = 0. Lower right: We set £; = m = 50. In each
panel the plotted quantities correspond to (a¢, mae, m) in Eq. (63), where we set o = £1 + AL.



Primordial Inhomogeneities from massive defects

Consider a local massive defects with the total mass M in a inflationary (dS)
background

ds? = — (1 - 2;"3))2 <1 + 2;’;””)_2 dt? + a(t)? (1 - 25(%)4 dx?.

We work in the weak filed approximation : 1 = GMH < 1,
Z

! McVittie, 1933

The interaction Hamiltonian is

3 AMG M? G2 . M? G2
”H,:a_(_ 4 >5¢2—a< )(v5¢)2.
2 42 32

The inhomogeneous power spectrum is given by

2

ra 41232

RaRa) = (1) ((06x000) + Blonion))

H.F, A.Karami, T. Rostami, JCAP 2016



The leading interaction Hamiltonian (linear in ) is

2MG d3kd3q
H = — o' (K)o (q).
The first order correction in power spectrum is
16mrp 1 dr . .
Alboddy) =~ / Lt 565 (7)361,(7)565 (e )07 (72)] + k +

= 0

To calculate the corrections in power spectrum we have to work with terms G2 M?,
i.e. second order in p. Calculating the in-in integrals to second order we obtain

H2 o 1 p272 35 k-q (k* + ¢° + 3kq)
ReRq) = (— )74 == (2m)363(k —
(RkRaq) (¢) {st( m) 0" (k+a) 2|k+CI|[kq(k—|—q)3+ k3q*(k + q)? }
| 12842 /d3p 1 1 p2(p2+2(k+q)p+(k2+q2+3kq))}
T p—a2p+kP2  ka(p+q)2(p+ k)2(k + q)°

The induced power spectrum maximally breaks the homogeneity, i.e. there is no
53(k + q). However, the power spectrum is still isotropic, as expected.

H.F, A.Karami, T. Rostami, JCAP, 2016



Variance

—o.8l

668
A(R?(r)) ~ 5(2 ,u)2 Po In (a + 1 —2acos0)
a=ry/Rand r = |x| = RV1+ a? — 2a.cos 6.
Also
30 T 1 —|—a
ag = 16§2 _(a2 —1)%In ‘ — 20(1 + a2)]
5 —
a, = b 3(a® — 1)2(1 + o) In T | —2a(3 — 202 + 3044)} :
9603 L —
I 1
sy = 1P [3(a2 —1)%(5 + 6a? —|—5a4)ln| +O“ — 2a(15 — 707
76804

— 7ot + 150z6)} :

One can check the curious reflection symmetry in which a« — 1/ and r{*" = 1/n.
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Gravitational waves

The metric perturbations for tensor modes are given by

GM 2 GM \ 2 MG \* »
ds° = — (1 — 1 dt? 2(1 ) 8:: + h;) dx' dx!
s ( 2a(t)r> ( +2a(t)r> L W (95 + hij) dx" dx

hi(k) = S b (k) (k)

kiej(k) = 0, e;i(k)e;" (k) =47, er(k) =0.

The interaction Hamiltonian for GW comes from the Einstein-Hilbert term and after
integration N and N' in ADM formalism.

1 M3
HY) = —2pm =~ /d?’xé(r)(hu)z

M3 1
H? = 2, =P v /d3x88k< )h i

HI® = g,uMPHa / d3x h2

U?
M} a* 1
H® = P2 / x> i
S8H r

H.F, A. Karami, T. Rostami, arXiv: 1605. 08338



Because of the isotropy we choose

k = k(0,0,1) q= g(0,sint,cos )

The inhomogeneous GW power spectrum is

te

A(H (k)b (@) = i / dt{ [HO, h(k)h*(a)] ) = —21m /_ OO dt(H, b (k)h*(@)) .

— o0

Calculating the in-in integrals yield

272 (L H? k? 4+ g2 32m2pH?  sin?
P k + q| P q°|k + q|
2 W H? l<2—|—q2 322 ;uH? sin? 1) cos i
A (kT (K)ht il 1)(8 — 9 ,

The total inhomogeneous tensor power spectrum is

(1— cosw)z k? + g° 4+ 32kq + 16kq coszp
M2 k3q3 k2 4+ g2 + 2kq cos

Atota1<h(k)h(q)> — _

Unlike the scalar perturbations, the inhomogeneous tensor perturbations is linear in .



H.F, Sadra Jazayeri,Alireza Vafaei Sadr, PRD, 2017

The geometry in the presence of cosmic string is given by
ds? = —dt? + a(t)? (dp2 4 (1—4Gp)2p3de? + dz2) |

Or alternatively,

ds® = —dt® + a(t)? (dx2 — %(xzdy2 + y?dx? — 2x y dx dy))
p

in which ¢ = 8G .

The interaction Hamiltonian is

t 00 :
H = — a( )66 /d3x d3kd3q Pk qu (ka . Xky) (qu . qu)e/(k+q).x
2(2m) y

Plugging this inside in-in integrals the corrections from cosmic string is

k3g3(k + q)

2 )3
(Ric(te)Ra(te)) = (H__)z (2k3)

5 63(k—|—q)—e7r(

)5(kz + gz) X

27TkL'qJ_ 1 47
(ki +91)? (ki +qyL)

X [27T2k¢ ' CIJ_(SZ(kJ_ +qL)+ (kxqy — kyqx)z}



Sadra Jazayeri,Alireza Vafaei Sadr, H. F., arXiv: 1703.02923

There are two different contributions from cosmic string on CMB:

1- Qudarupole anisotropy

g« = g » Gu <1072

Constraints from Planck date implies g, < 1072,
As a result, we obtain € < 1072,

2- Inhomogeneities — Power asymmetry
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Bubble nucleation during inflation

False
Vacuum

Quantum tunneling from a false vacuum _
to a true vacuum leads to bubble formation. Tumetng

The early universe can have a complicated
potential with many maxima and minima. This
is partly motivated by landsacape hypothesis.

We are interested in a situation that more than
one field is involved during inflation: the spectator
field ¢ and the inflaton field ¢. The potential
along the spectator field has a false vacuum and

a true vacuum. Originally v is locked in its false
vacuum. However, it tunnels to its true vacuum
resulting in bubble nucleation during inflation. Nec

The bubble has a small initial radius. It expands
relativistically and asymptotically reaches its
comoving radius 1/H.

Nc

n
H.F, Sadra Jazayeri, Asieh Karami, Tahereh Rostami, arXiv: 1707.07550 "



In the simple approximation in which we work,
the bubble divides the spacetime into two nearly
dS geometries separated by the bubble wall.

2 _ 2 2 2 2 1092
ds? = —dt* +a?(t,) (dr? +r7dQ7)

+

dsvi = —dr* + R*(1)dQ?
ds’ = —dt* +a” (t_)(dr® + r?dQ?)

After imposing the junction condition the dynamics of the bubble wall is given by

R(T) = %COSh(AT)

The geometry of the interior is slightly different than the exterior region given by

ds® = —dt* + exp(2H  t)(dr® + r*d0®) + §9,,0(t — to)0(R(t) — r)dz"dx”

2 2 2 =2 o 9202 &
0gop = —2¢€ 0Grr = 2a7€(1 + ) ~ 2a”e  dgep = sin” " 0dggg =~ 2a°r 6(1 — 2H7~)
The effects of the bubble on inflationary perturbations is:

B
2Hr

rw (t) 5&52
Hi(t) = 2e0(t — t) /o a’r*drdS) [7(—1 +

2a2 4da?Hr

) +

(Vig) 5(&0505)2}



The effect of bubble on curvature perturbation is
H2\*
A(Ri(te)Rylte)) = (¢) A(0Pk(te)oq(te))
There are corrections to diagonal parts and the off-diagonal parts

_ 2,.3
lim A{0ppddy) = 27T€H7“f(2+ 7)

k+q—0 3k3 k273

The corrections in diagonal part is

28Tme
Pe=Po (1 B Skzr]%)
The corrections in off-diagonal parts are more complicated
'k + q]rf > 1
osc —21eH?r; sin’ o cosa =k - §
A<5¢k5¢q> _ e cos(Kry)
K+ k 2(k E? 4 ¢ + kq — K>
y [Km( thtay (k+q) (k> +q" 4+ kq )}
K—k—q K? — (k+q)?

onose | —Amer H? drer  H?
Ad¢rdq)"" " = : f

— ]C2 2 I k2 5 I
K2(/‘C+Q)kq+k2q2[(4(k+q)( cosa + ¢~ cosa + 2kq) (k™ + ¢” + kq)




Conclusion

@ Inflation is the leading paradigm for early Universe
and for generating

@ There are evidences for power asymmetry on
CMB maps. However, the statistical significance of
this detection is under debate.

@ A domain wall during inflation breaks the translation
invariance and can generate large scale dependent
dipole asymmetry and sub-leading quadrupole and higher
multipoles power asymmetry.

@ A massive defect maximally breaks translational invariance
while leaving the isotropy intact. A scale dependent
dipole asymmetry is generated while the higher multipoles
can be suppressed.

@ Cosmic string induces both statistical anisotropies and
power asymmetry. The primary constraint on the tension

of strings comes from the quadrupole anisotropy
yielding Gu <1072,

@ Vacuum bubble from tunneling generates non-trivial
power anisotropies which can be tested on CMB.




