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Inflation
The (minimal variant of the) inflationary scenario is based on
the two cornerstone independent ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) – a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of pairs of particles -
antiparticles and field fluctuations during inflation from the
adiabatic vacuum (no-particle) state for Fourier modes
covering all observable range of scales (and possibly somewhat
beyond).

NB. This effect is the same as particle creation by black holes,
but no problems with the loss of information, ’firewalls’,
trans-Planckian energy etc. in cosmology, as far as
observational predictions are calculated.



Why this class of models?

Similarity with other known phenomena. For these two
assumptions:

1. Primordial dark energy driving inflation has the structure of
its effective EMT similar to that of the present dark energy.

2. Properties of the primordial tensor perturbation spectrum
(absence of features, slope, statistics) are similar to those of
the primordial scalar one.



Outcome of inflation
In the super-Hubble regime (k � aH) in the coordinate
representation:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l ,m = 1, 2, 3

hlm = 2ζ(r)δlm +
2∑

a=1

g (a)(r) e(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

ζ describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).

The most important quantities:

ns(k)− 1 ≡ d lnPζ(k)

d ln k
, r(k) ≡ Pg

Pζ



In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in ζ, g).

In particular:

ζ̂k = ζk i(âk−â†k)+O
(

(âk − â†k)2
)

+...+O(10−100)(âk+â†k)+, , ,

The last term is time dependent, it is affected by physical
decoherence and may become larger, but not as large as the
second term.

Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



CMB temperature anisotropy

Planck-2015: P. A. R. Ade et al., arXiv:1502.01589



CMB temperature anisotropy multipoles
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CMB E-mode polarization multipoles
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New cosmological parameters relevant to inflation
Now we have numbers: P. A. R. Ade et al., arXiv:1502.01589

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1 has been discovered (using
the multipole range ` > 40):

< ζ2(r) >=

∫
Pζ(k)

k
dk , Pζ(k) =

(
2.21+0.07

−0.08

)
10−9

(
k

k0

)ns−1

k0 = 0.05Mpc−1, ns − 1 = −0.035± 0.005

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant). The
simplest existing inflationary models can predict (and
predicted, in fact) one of them, namely ns − 1, relating it
finally to NH = ln kB Tγ

~H0
≈ 67.2.



Direct approach: comparison with simple smooth

models
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Combined results from Planck/BISEP2/Keck Array
P. A. R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016)
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The simplest models producing the observed scalar

slope

f (R) = R +
R2

6M2

M = 2.6× 10−6

(
55

N

)
MPl ≈ 3.2× 1013 GeV

ns − 1 = − 2

N
≈ −0.036, r =

12

N2
≈ 0.004, N = ln

kf

k

HdS (N = 55) = 1.4× 1014 GeV

The same prediction from a scalar field model with
V (φ) = λφ4

4
at large φ and strong non-minimal coupling to

gravity ξRφ2 with ξ < 0, |ξ| � 1, including the
Brout-Englert-Higgs inflationary model.



The simplest purely geometrical inflationary model

L =
R

16πG
+

N2

288π2Pζ(k)
R2 + (small rad. corr.)

=
R

16πG
+ 5× 108 R2 + (small rad. corr.)

The quantum effect of creation of particles and field
fluctuations works twice in this model:
a) at super-Hubble scales during inflation, to generate
space-time metric fluctuations;
b) at small scales after inflation, to provide scalaron decay into
pairs of matter particles and antiparticles (AS, 1980, 1981).



The most effective decay channel: into minimally coupled
scalars with m� M . Then the formula

1√−g
d

dt
(
√−gns) =

R2

576π

(Ya. B. Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252
(1977)) can be used for simplicity, but the full
integral-differential system of equations for the Bogoliubov
αk , βk coefficients and the average EMT was in fact solved in
AS (1981). Scalaron decay into graviton pairs is suppressed
(A. A. Starobinsky, JETP Lett. 34, 438 (1981)).



Possible microscopic origins of this phenomenological model.

1. Follow the purely geometrical approach and consider it as
the specific case of the fourth order gravity in 4D

L =
R

16πG
+ AR2 + BCαβγδC

αβγδ + (small rad. corr.)

for which A� 1, A� |B |. Approximate scale (dilaton)
invariance and absence of ghosts in the curvature regime
A−2 � (RR)/M4

P � B−2.

One-loop quantum-gravitational corrections are small (their
imaginary parts are just the predicted spectra of scalar and
tensor perturbations), non-local and qualitatively have the
same structure modulo logarithmic dependence on curvature.



2. Another, completely different way:

consider the R + R2 model as an approximate description of
GR + a non-minimally coupled scalar field with a large
negative coupling ξ (ξconf = 1

6
) in the gravity sector::

L =
R

16πG
− ξRφ2

2
+

1

2
φ,µφ

,µ − V (φ), ξ < 0, |ξ| � 1 .

Geometrization of the scalar:

for a generic family of solutions during inflation and even for
some period of non-linear scalar field oscillations after it, the
scalar kinetic term can be neglected, so

ξRφ = −V ′(φ) +O(|ξ|−1) .

No conformal transformation, we remain in the the physical
(Jordan) frame!



These solutions are the same as for f (R) gravity with

L =
f (R)

16πG
, f (R) = R − ξRφ2(R)

2
− V (φ(R)).

For V (φ) =
λ(φ2−φ2

0)2

4
, this just produces

f (R) = 1
16πG

(
R + R2

6M2

)
with M2 = λ/24πξ2G and

φ2 = |ξ|R/λ.

The same theorem is valid for a multi-component scalar field.

More generally, R2 inflation (with an arbitrary ns , r) serves as
an intermediate dynamical attractor for a large class of
scalar-tensor gravity models.



Inflation in f (R) gravity
Purely geometrical realization of inflation.
The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

S =
1

16πG

∫
f (R)
√−g d4x + Sm

f (R) = R + F (R), R ≡ Rµ
µ

Here f ′′(R) is not identically zero. Usual matter described by
the action Sm is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f (R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) ms ≈ const.

Metric variation is assumed everywhere.



Background FRW equations in f (R) gravity

ds2 = dt2 − a2(t)
(
dx2 + dy 2 + dz2

)
H ≡ ȧ

a
, R = 6(Ḣ + 2H2)

The trace equation (4th order)

3

a3

d

dt

(
a3df

′(R)

dt

)
− Rf ′(R) + 2f (R) = 8πG (ρm − 3pm)

The 0-0 equation (3d order)

3H
df ′(R)

dt
− 3(Ḣ + H2)f ′(R) +

f (R)

2
= 8πGρm



Reduction to the first order equation

In the absence of spatial curvature and ρm = 0, it is always
possible to reduce these equations to a first order one using
either the transformation to the Einstein frame and the
Hamilton-Jacobi-like equation for a minimally coupled scalar
field in a spatially flat FLRW metric, or by directly
transforming the 0-0 equation to the equation for R(H):

dR

dH
=

(R − 6H2)f ′(R)− f (R)

H(R − 12H2)f ′′(R)

See, e.g. H. Motohashi amd A. A. Starobinsky, Eur. Phys. J C
77, 538 (2017), but in the special case of the R + R2 gravity
this was found and used already in the original AS (1980)
paper.



Analogues of large-field (chaotic) inflation: F (R) ≈ R2A(R)
for R →∞ with A(R) being a slowly varying function of R ,
namely

|A′(R)| � A(R)

R
, |A′′(R)| � A(R)

R2
.

Analogues of small-field (new) inflation, R ≈ R1:

F ′(R1) =
2F (R1)

R1
, F ′′(R1) ≈ 2F (R1)

R2
1

.

Thus, all inflationary models in f (R) gravity are close to the
simplest one over some range of R .



Perturbation spectra in slow-roll f (R) inflationary

models
Let f (R) = R2 A(R). In the slow-roll approximation
|R̈ | � H |Ṙ |:

Pζ(k) =
κ2Ak

64π2A′2k R
2
k

, Pg (k) =
κ2

12Akπ2

N(k) = −3

2

∫ Rk

Rf

dR
A

A′R2

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk).

NB The slow-roll approximation is not specific for inflation
only. It was first used in A. A. Starobinsky, Sov. Astron. Lett.
4, 82 (1978) for a bouncing model (a scalar field with

V = m2φ2

2
in the closed FLRW universe).



Slow-roll inflation reconstruction in f (R) gravity

A = const − κ2

96π2

∫
dN

Pζ(N)

lnR = const +

∫
dN

√
−2 d lnA

3 dN

The two-parameter family of isospectral f (R) slow-roll
inflationary models, but the second parameter affects a general
scale only but not the functional form of f (R).

The additional ”aesthetic” assumptions that Pζ ∝ Nβ and
that the resulting f (R) can be analytically continued to the
region of small R without introducing a new scale, and it has
the linear (Einstein) behaviour there, leads to β = 2 and the
R + R2 inflationary model with r = 12

N2 = 3(ns − 1)2

unambiguously.



For Pζ = P0N
2 (”scale-free reconstruction”):

A =
1

6M2

(
1 +

N0

N

)
, M2 ≡ 16π2N0Pζ

κ2

Two cases:
1. N � N0 always.

A =
1

6M2

1 +

(
R0

R

)√3/(2N0)


For N0 = 3/2, R0 = 6M2 we return to the simplest R + R2

inflationary model.

2. N0 � 1.

A =
1

6M2

1 +
(

R0

R

)√3/(2N0)

1−
(

R0

R

)√3/(2N0)

2



Constant-roll inflation in f (R) gravity
Search for viable inflationary models outside the slow-roll
approximation. Can be done in many ways. A simple and
elegant generalization in GR:

φ̈ = βHφ̇ , β = const

The required exact form of V (φ) for this was found in
H. Motohashi, A. A. Starobinsky and J. Yokoyama, JCAP
1509, 018 (2015).

Natural generalization to f (R) gravity (H. Motohashi and
A. A. Starobinsky, Eur. Phys. J. C 77, 538 (2017)):

d2f ′(R)

dt2
= βH

df ′(R)

dt
, β = const



Then it follows from the field equations:

f ′(R) ∝ H2/(1−β)

The exact solution for the required f (R) in the parametric
form (κ = 1):

f (R) =
2

3
(3−β)e2(2−β)φ/

√
6
(

3γ(β + 1)e(β−3)φ/
√

6 + (β + 3)(1− β)
)

R =
2

3
(3−β)e2(1−β)φ/

√
6
(

3γ(β − 1)e(β−3)φ/
√

6 + (β + 3)(2− β)
)

Viable inflationary models exist for −0.1 . β < 0.



Generality of inflation

Some myths (or critics) regarding inflation and its onset:

1. Inflation begins with V (φ) ∼ φ̇2 ∼ M2
Pl .

2. As a consequence, its formation is strongly suppressed in
models with a plateau-type potentials in the Einstein frame
(including R + R2 inflation) favored by observations.
3. Beginning of inflation in some patch requires causal
connection throughout the patch.
4. ”De Sitter (both the exact and inflationary ones) has no
hair”.
5. One of weaknesses of inflation is that it does not solve the
singularity problem.



Theorem. In inflationary models in GR and f (R) gravity, there
exists an open set of classical solutions with a non-zero
measure in the space of initial conditions at curvatures much
exceeding those during inflation which have a metastable
inflationary stage with a given number of e-folds.

For the GR inflationary model this follows from the generic
late-time asymptotic solution for GR with a cosmological
constant found in A. A. Starobinsky, JETP Lett. 37, 55
(1983). For the R + R2 model, this was proved in
A. A. Starobinsky and H.-J. Schmidt, Class. Quant. Grav. 4,
695 (1987). For the power-law and f (R) = Rp, p < 2,
2− p � 1 inflation – in V. Müller, H.-J. Schmidt and
A. A. Starobinsky, Class. Quant. Grav. 7, 1163 (1990).



Generic late-time asymptote of classical solutions of GR with a
cosmological constant Λ both without and with hydrodynamic
matter (also called the Fefferman-Graham expansion):

ds2 = dt2 − γikdx
idxk

γik = e2H0taik + bik + e−H0tcik + ...

where H2
0 = Λ/3 and the matrices aik , bik , cik are functions of

spatial coordinates. aik contains two independent physical
functions (after 3 spatial rotations and 1 shift in time +
spatial dilatation) and can be made unimodular, in particular.
bik is unambiguously defined through the 3-D Ricci tensor
constructed from aik . cik contains a number of arbitrary
physical functions (two - in the vacuum case, or with
radiation) – tensor hair.

A similar but more complicated construction with an
additional dependence of H0 on spatial coordinates in the case
of f (R) = Rp inflation – scalar hair.



Consequences:

1. (Quasi-) de Sitter hair exist globally and are partially
observable after the end of inflation.

2. The appearance of an inflating patch does not require that
all parts of this patch should be causally connected at the
beginning of inflation.

Similar property in the case of a generic curvature singularity
formed at a spacelike hypersurface in GR and modified gravity.
However, ’generic’ does not mean ’omnipresent’.



What was before inflation?

Duration of inflation was finite inside our past light cone. In
terms of e-folds, difference in its total duration in different
points of space can be seen by the naked eye from a smoothed
CMB temperature anisotropy map.

∆N formalism: ∆ζ(r) = ∆Ntot(r) where

Ntot = ln
(

a(tfin)
a(tin)

)
= Ntot(r) (AS, 1982,1985).

For ` . 50, neglecting the Silk and Doppler effects, as well as
the ISW effect due the presence of dark energy,

∆T (θ, φ)

Tγ
= −1

5
∆ζ(rLSS , θ, φ) = −1

5
∆Ntot(rLSS , θ, φ)

For ∆T
T
∼ 10−5, ∆N ∼ 5× 10−5, and for H ∼ 1014 GeV,

∆t ∼ 5tPl !



Different possibilities were considered historically:
1. Creation of inflation ”from nothing” (Grishchuk and
Zeldovich, 1981).
One possibility among infinite number of others.
2. De Sitter ”Genesis”: beginning from the exact contracting
full de Sitter space-time at t → −∞ (AS, 1980).
Requires adding an additional term

R l
i R

k
l −

2

3
RRk

i −
1

2
δk

i RlmR
lm +

1

4
δk

i R
2

to the rhs of the gravitational field equations. Not generic.
May not be the ”ultimate” solution: a quantum system may
not spend an infinite time in an unstable state.
3. Bounce due to a positive spatial curvature (AS, 1978).
Generic, but probability of a bounce is small for a large initial
size of a universe W ∼ 1/Ma0.



Formation of inflation from generic curvature

singularity
In classical gravity (GR or modified f (R)): space-like
curvature singularity is generic. Generic initial conditions near
a curvature singularity in modified gravity models (the R + R2

and Higgs ones).: anisotropic and inhomogeneous (though
quasi-homogeneous locally).
Two types singularities with the same structure at t → 0:

ds2 = dt2−
3∑

i=1

|t|2pi a
(i)
l a(i)

m dx ldxm, 0 < s ≤ 3/2, u = s(2−s)

where pi < 1, s =
∑

i pi , u =
∑

i p
2
i and a

(i)
l , pi are

functions of r. Here R2 � RαβR
αβ.

Type A. 1 ≤ s ≤ 3/2, R ∝ |t|1−s → +∞
Type B. 0 < s < 1, R → R0 < 0, f ′(R0) = 0
Spatial gradients may become important for some period
before the beginning of inflation.



What is needed for beginning of inflation in classical
(modified) gravity, is:
1) the existence of a sufficiently large compact expanding
region of space with the Riemann curvature much exceeding
that during the end of inflation (∼ M2) – realized near a
curvature singularity;
2) the average value < R > over this region positive and
much exceeding ∼ M2, too, – type A singularity;
3) the average spatial curvature over the region is either
negative, or not too positive.

Recent numerical studies confirming this in GR: W. H. East,
M. Kleban, A. Linde and L. Senatore, JCAP 1609, 010 (2016);
M. Kleban and L. Senatore, JCAP 1610, 022 (2016).

On the other hand, causal connection is certainly needed to
have a ”graceful exit” from inflation, i.e. to have practically
the same amount of the total number of e-folds during
inflation Ntot in some sub-domain of this inflating patch.



Bianchi I type models with inflation in R + R2

gravity
Recent analytical and numerical investigation in D. Muller,
A. Ricciardone, A. A. Starobinsky and A. V. Toporensky,
arXiv:1710.08753.

For f (R) = R2 even an exact solution can be found.

ds2 = tanh2α

(
3H0t

2

)(
dt2 −

3∑
i=1

a2
i (t)dx2

i

)

ai (t) = sinh1/3(3H0t) tanhβi

(
3H0t

2

)
,
∑

i

βi = 0,
∑

i

β2
i <

2

3

α2 =
2
3
−∑i β

2
i

6
, α > 0

Nest step: relate arbitrary functions of spatial coordinates in
the generic solution near a curvature singularity to those in the
quasi-de Sitter solution.



Conclusions

I First quantitative observational evidence for small
quantities of the first order in the slow-roll parameters:
ns(k)− 1 and r(k).

I The typical inflationary predictions that |ns − 1| is small
and of the order of N−1

H , and that r does not exceed
∼ 8(1− ns) are confirmed. Typical consequences
following without assuming additional small parameters:
H55 ∼ 1014 GeV, minfl ∼ 1013 GeV.

I In the f (R) gravity, the simplest R + R2 model is
one-parametric and has the preferred values ns − 1 = − 2

N

and r = 12
N2 = 3(ns − 1)2. The first value produces the

best fit to present observational CMB data.



I Inflation is generic in the R + R2 inflationary model and
close ones. Thus, its beginning does not require causal
connection of all parts of an inflating patch of space-time
(similar to spacelike singularities). However, graceful exit
from inflation requires approximately the same number of
e-folds during it for a sufficiently large compact set of
geodesics. To achieve this, causal connection inside this
set is necessary (though still may appear insufficient).

I The fact that inflation does not ”solve” the singularity
problem, i.e. it does not remove a curvature singularity
preceding it, can be an advantage, not its weakness.
Inflation can form generically and with not a small
probability from generic space-like curvature singularity.
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