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The new era in astronomy
GW150914 : first observation of a BBH coalescence by LIGO
GW170817: first observation of a BNS coalescence by LIGO/Virgo

with EM counterparts

Will allow to probe modified theories of gravity, in the strong-field
regime near merger, an “important and doable problem, which is still in
infancy” (to paraphrase Takashi Nakamura).
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Needles in a haystack

(from T. Damour conference, Hannover 2016)
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“Knowing the chirp to hear it”...

from L. Blanchet conference, Hannover 2016
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The “effective-one-body” (EOB) approach
A. Buonanno and T. Damour, 1998

• maps the two-body general relativistic Post-Newtonian (PN) dynamics
to the motion of a test particle in an effective SSS metric
• defines a resummation of the PN dynamics to describe analytically the
coalescence of 2 compact objects from inspiral to merger
• is instrumental to build libraries of waveform templates for LIGO/Virgo
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Aim : extend the EOB approach to modified gravities
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Outline of the talk

1. The Einstein-Maxwell-Dilaton (EMD) black hole
as a simple example of a “hairy” black hole

2. The action for a binary EMD black hole system
or, how to “skeletonize” hairy black holes

3. The (conservative) dynamics of an EMD black hole binary
vs “state-of-the-art” in scalar-tensor theories and GR

• Lagrangian and Hamiltonian for the relative motion

• Mapping to an effective-one-body (EOB) hamiltonian

• A first flavour of possible tests
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Félix-Louis Julié, Nathalie Deruelle Phys.Rev. D95 (2017) 12, 124054

On conserved charges and thermodynamics of AdS4 dyonic BHs
Marcela Cárdenas, Oscar Fuentealba, Javier Matulich, JHEP 1605 (2016)

Einstein-Katz action, variational principle, Noether charges and the
thermodynamics of AdS-BHs
Andrés Anabalón, Nathalie Deruelle, Félix-Louis Julié, JHEP 1608 (2016)
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The Einstein-Maxwell-Dilaton (EMD)

black hole
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Isolated EMD black holes

G. W. Gibbons 1982, GWG and K. i. Maeda 1988, GWG 1996
D. Garfinkle, G. T. Horowitz and A. Strominger 1991

Vacuum Einstein-Maxwell-dilaton action of gravity

16π Ivac[gµν, Aµ, ϕ] =
´
d4x
√
−g
(
R− 2gµν∂µϕ∂νϕ− e−2aϕF 2

)
Field equations :

Rµν = 2∂µϕ∂νϕ+ 2e−2aϕ
(
F λ
µ Fνλ − 1

4gµνF
2
)

Dµ

(
e−2aϕFµν

)
= 0 , �ϕ = −1

2e
−2aϕF 2

Static, spherically symmetric, solutions depend a priori on 5 integration
constants. “Electric” black hole solutions depend on only 3. For a = 1:

ds2 = −
(
1− r+

r

)
dt2 +

(
1− r+

r

)−1
dr2 + r2

(
1− r−

r

)
dΩ2

At = −
√

r+r−
2

eϕ∞
r , Ai = 0 , ϕ = ϕ∞ + 1

2 ln
(
1− r−

r

)
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EMD black hole thermodynamics
(case a = 1)

Temperature : T = 1
4πr+

(or surface gravity κ = 2πT )

Electric potential : Φ = At(r →∞)−At(r+) =
√

r+r−
2

eϕ∞
r+

Entropy : S = πr2+

(
1− r−

r+

)
(or area : A = 4S ; or Mirr =

√
A
4π )

Associated global charges :

Q =
√

r+r−
2 e−ϕ∞ , M = 1

2r+ −
1
2

´
r−dϕ∞

(see M. Henneaux et al 2002,..., Cárdenas et al 2016, Julié et al 2016)

The variations of S, Q, and M wrt r+, r− and ϕ∞, are such that

TδS = δM − ΦδQ
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The action for a binary

EMD black hole system
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“Skeletonizing” an EMD black hole
in GR : Mathisson 1931, Infeld 1950,...

I = 1
16π

´
d4x
√
−g
(
R− 2gµν∂µϕ∂νϕ− e−2aϕF 2

)
+ Ibh [Ψ, gµν, ϕ,A

µ]

Ibh = −
´
m(ϕ) ds+ q

´
Aµ dx

µ

Linear coupling to Aµ, and q constant, to preserve U(1) symmetry ;

mA(ϕ) : m 6= const because ϕ cannot be “gauged away”
(Eardley 1975, Damour Esposito-Farese 1992)

Question : how are q and m(ϕ) related to the parameters
characterizing the black hole, that is, r+, r− and ϕ∞ ?

Answer : by identifying the EMD black hole solution
to that of the field equations for the skeletonized body above.

Félix-Louis Julié, 2017
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The “sensitivity” of an EMD black hole

• Field equations (with Tµν =
´
dsm(ϕ)δ

(4)(x−z)√
−g uµuν)

Rµν = 2∂µϕ∂νϕ+ e−2aϕ
(
2FµαF

α
ν − 1

2gµνF
2
)

+8π
(
Tµν − 1

2gµνT
)

Dν

(
e−2aϕFµν

)
= 4πq

´
ds δ

(4)(x−z)√
−g uµ

�ϕ = −a2e
−2aϕF 2+4π

´
ds δ

(4)(x−z)√
−g

dm
dϕ

• Lowest order asymptotic solution in the body rest-frame :

gasymµν = ηµν + δµν
(
2m∞
r

)
, Aasym

t = −q e
2ϕ∞

r , ϕasym = ϕ∞ − 1
r
dm
dϕ |∞

to be identified with the EMD black hole solution (case a = 1) :

gasymµν = ηµν + δµν
(r+
r

)
, Aasym

t = −
√

r+r−
2

eϕ∞
r , ϕasym = ϕ∞ − r−

2r

Hence a differential equation, with a unique solution

r+ = 2m∞, r− = 2dmdϕ , q =
√

r+r−
2 e−ϕ∞|∞ so that q2 = 2mdm

dϕ e
2ϕ|∞

m(ϕ) =
√
µ2 + q2e

2ϕ

2 Félix-Louis Julié, 2017
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The parameters of a skeletonized (a = 1) EMD black hole

q =
√

r+r−
2 e−ϕ∞, r+ = 2m∞, r− = 2dmdϕ |∞, and m(ϕ) =

√
µ2 + q2e

2ϕ

2

Recall : the global charges and entropy of an EMD black hole are

Q =
√

r+r−
2 e−ϕ∞ , M = 1

2r+ −
1
2

´
r−dϕ∞, and S = πr2+

(
1− r−

r+

)
Hence Q = q is a constant : δQ = 0. Also : δM = δm∞ − dm

dϕ δϕ|∞ = 0

Our skeletonized BHs exchange no charge nor energy with their environment.

Now, since TδS = δM − ΦδQ,

the black hole entropy is also a constant.

Therefore µ can be identified to a function of the BH entropy. Indeed :

µ =
√

S
4π =⇒ m(ϕ) =

√
S
4π + e2ϕ

2 Q
2

with (for an Einstein-Hilbert action) S = A
4 and M2

irr = S
4π

Cárdenas, Julié, ND, 2018
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Hence, all in all,
Skeletonized action for a binary EMD black hole system :

I = 1
16π

´
d4x
√
−g
(
R− 2gµν∂µϕ∂νϕ− e−2aϕF 2

)
+ Ibbh [gµν, ϕ,A

µ]

Ibbh = −
∑
A

´
mA(ϕ)dsA +

∑
A qA

´
Aµ dx

µ
A

with qA = QA and mA(ϕ) =
√

SA
4π + e2ϕ

2 Q
2
A (for a = 1)

where the charges QA remain constant (true until coalescence)

where the entropies SA also remain constant (not true at coalescence).

*
The action I is the starting point

to study the relative motion of the two black holes.
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The (conservative) dynamics

of an EMD black hole binary

Lagrangian and Hamiltonian for the relative motion
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The 1st Post-Newtonian (1PN) Lagrangian of an EMD BH binary

• Field equations (with TµνA =
´
dsAmA(ϕ)δ

(4)(x−zA)√
−g uµAu

ν
A)

Rµν = 2∂µϕ∂νϕ+ e−2aϕ
(
2FµαF

α
ν − 1

2gµνF
2
)

+ 8π
∑
A

(
TAµν − 1

2gµνT
A
)

Dν

(
e−2aϕFµν

)
= 4πqA

∑
A

´
dsA

δ(4)(x−zA)√
−g uµA

�ϕ = −a2e
−2aϕF 2 + 4π

∑
A

´
dsA

δ(4)(x−zA)√
−g

dmA
dϕ

• Work in harmonic and Lorenz gauges

Write : g00 = −e−2U , g0i = −4gi , gij = δije
2V

At = δAt , Ai = δAi , ϕ = ϕ∞ + δϕ

Weak field O(v2) ∼ O(m/r) iteration.

• Solve and obtain

V = U +O
(
v6
)
, gi =

∑
A
m∞A v

i
A

rA
+O

(
v5
)
, ϕ = ϕ∞ +

∑
A
m
′∞
A
rA

+ · · · , etc
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The fields being known at 1st PN order,
plug their expressions in the Lagrangian for body A in the field of B :

IA =
´
dtLA with LA = −mA(ϕ)dsAdt + qAAµ

dx
µ
A

dt

Symmetrize, regularize and obtain (FL Julié) :

LEMD
1PN = −(mA +mB) +

[
1
2(mAv

2
A +mBv

2
B) + GABmAmB

R

]
+1

8(mAv
4
A +mBv

4
B)

+GABmAmB
R

[
3
2(v2A + v2B)− 7

2(vA.vB)− 1
2(N.vA)(N.vB) + γ̄AB(~vA − ~vB)2

]
−GAB

2mAmB
2R2

[
mA(1 + 2β̄B) +mB(1 + 2β̄A)

]
where GAB = 1 + αAαB − eAeB with eA = (qA/mA) eϕ∞

mA = mA|ϕ∞, αA = (m′A/mA)|∞, βA = α′A|ϕ∞

γ̄AB = −4αAαB+3eAeB
2(1+αAαB−eAeB) β̄A = 1

2

βAαB
2−2eAeB(aαB−αAαB)+e2B(1+aαA−e2A)

1+αAαB−eAeB
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Deviations from GR to be expected ?

GAB = 1 + αAαB − eAeB, eA = (qA/mA) eϕ∞

mA = mA|ϕ∞, αA = (m′A/mA)|∞, βA = α′A|ϕ∞

γ̄AB = −4αAαB+3eAeB
2(1+αAαB−eAeB) β̄A = 1

2

βAαB
2−2eAeB(aαB−αAαB)+e2B(1+aαA−e2A)

1+αAαB−eAeB

In scalar tensor theories (where qA = qB = 0),
the deviations to GR are driven by α2

A, α2
B or αAαB. Now,

Black holes have no scalar (primary) hair (mA and mB are constant) :
no deviations from GR,

In EMD theories, BH do have hair, mA(ϕ) =
√

SA
4π + e2ϕ

2 Q
2
A (for a = 1)
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In EMD theories (F Julié, 2017)

mA(ϕ) =
√
µ2 + e2ϕq2A/2 (a = 1), with qA = QA and µA =

√
SA/4π

hence : αA ≡ (m′A/mA)|∞ = 1

1+exp 2

[
ln

(
µA
√
2

qA

)
−ϕ∞

]

See also E.W. Hirschmann, L. Lehner, et al. arXiv:1706.09875
Studying the dynamics of hairy (EMD) BH is perhaps worth the effort...
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LEMD
1PN at 1PN and the state-of-the-art

Scalar-tensor theories 2-body lagrangians (qA = qB = 0) :

1PN : T. Damour and G. Esposito-Farèse, 1992 (25 years before LEMD
1PN )

2PN : S. Mirshekari, C. Will, 2013 :
In Einstein frame (FL Julié, ND 2017), see FLJ poster

“Conjecture” : Its extension to describe the dynamics in EMD theories at
2PN requires the calculation of only a few new coefficients.

3PN : L. Bernard, 2018 Talk, March 1st

The 2-body lagrangian in general relativity

1PN Lorentz- Droste (1917) ; Fichtenholz (1950) (100 years before LEMD
1PN )

4PN L. Bernard, L.Blanchet, G.Faye, and T. Marchand, 2017
(plus A. Bohé and S. Marsat)
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The 2PN 2-body lagrangian in scalar-tensor theories
(harmonic coordinates)

S. Mirshekari, C. Will, 2013 ; (Félix-Louis Julié, ND, 2017)
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The 2 PN Hamiltonian

LEMD
1PN = −(mA +mB) +

[
1
2(mAv

2
A +mBv

2
B) + GABmAmB

R

]
+1

8(mAv
4
A +mBv

4
B)

+GABmAmB
R

[
3
2(v2A + v2B)− 7

2(vA.vB)− 1
2(N.vA)(N.vB) + γ̄AB(~vA − ~vB)2

]
−GAB

2mAmB
2R2

[
mA(1 + 2β̄B) +mB(1 + 2β̄A)

]
LEMD
2PN is given by LST

2PN with some replacements and modulo 3 coeffi-
cients yet to be found.

LEMD
2PN depends on the positions, velocities and accelerations of A and B

It is allowed to replace them by ~AA → − ~NGABm0
B/R

2

[This amounts to change the coordinate system :
T. Ohta, H. Okamura, T. Kimura, K. Hiida, 1974 vs T. Damour ND, 1981

Problem solved by Schäfer 1983, Damour-Schäfer 1991.]
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In the centre-of-mass frame (M = mA +mB, µ = mAmB/M) :

H = M +
(
P 2

2µ −GAB
µM
R

)
+H1PN +H2PN + · · ·

H1PN

µ = (h1PK
1 P̂ 4 + h1PK

2 P̂ 2P̂ 2
R + h1PK

3 P̂ 4
R) +

(h1PK
4 P̂ 2+h1PK

5 P̂ 2
R)

R̂
+

h1PK
6

R̂2

H2PN

µ = (h2PK
1 P̂ 6 + h2PK

2 P̂ 4P̂ 2
R + h2PK

3 P̂ 2P̂ 4
R + h2PK

4 P̂ 6
R)

(h2PK
5 P̂ 4+h2PK

6 P̂ 2
RP̂

2+h2PK
7 P̂ 4

R)

R̂
+

(h2PK
8 P̂ 2+h2PK

9 P̂ 2
R)

R̂2 +
h2PK
10

R̂3

where GAB = 1 + αAαB − eAeB with eA = (qA/mA) eϕ∞

mA = mA|ϕ∞, αA = (m′A/mA)|∞, βA = α′A|ϕ∞ and β′A

H1PN known for EMD black holes ; H2PN known for scalar theories

The 17 hiPK
a depend on the 8 (+2) parameters characterizing the theory.
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State-of-the-art in general relativity
slides from T Damour, Berlin conference 2015
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The (conservative) dynamics

of an EMD black hole binary

Mapping to an effective-one-body (EOB) hamiltonian

(following Buonanno-Damour 1998)
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The effective-one-body (EOB) “strategy”

• Start from the best available PN Hamiltonian. At 2 PN, 17 coefficients

H(Q,P ) = M +
(
P 2

2µ −GAB
µM
R

)
+H1PN +H2PN + · · ·

H1PN

µ = (h1PK
1 P̂ 4 + h1PK

2 P̂ 2P̂ 2
R + h1PK

3 P̂ 4
R) +

(h1PK
4 P̂ 2+h1PK

5 P̂ 2
R)

R̂
+

h1PK
6

R̂2

H2PN

µ = (h2PK
1 P̂ 6 + h2PK

2 P̂ 4P̂ 2
R + h2PK

3 P̂ 2P̂ 4
R + h2PK

4 P̂ 6
R)

(h2PK
5 P̂ 4+h2PK

6 P̂ 2
RP̂

2+h2PK
7 P̂ 4

R)

R̂
+

(h2PK
8 P̂ 2+h2PK

9 P̂ 2
R)

R̂2 +
h2PK
10

R̂3

• Canonically transform it H(Q,P )→ H(q, p)

At 2PN order the generic generating function depends on 9 parameters

G(Q,p)
Rpr

=
(
α1P2 + β1p̂

2
r + γ1

R̂

)
+
(
α2P4 + β2P2p̂2r + γ2p̂

4
r + δ2

P2

R̂
+ ε2

p̂2r
R̂

+ η2
R̂2

)
• Define He(q, p) through the quadratic relation (ν = µ/M)

He(q,p)
µ − 1 =

(
H(q,p)−M

µ

) [
1 + ν

2

(
H(q,p)−M

µ

)]
(Damour 2016)
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• Impose He(q, p) to be the Hamiltonian for geodesic motion in a static,
spherically symmetric spacetime

ds2e = −A(r)dt2+B(r)dr2+r2dφ2 , He(q, p) =

√
A

(
µ2 +

p2r
B +

p2
φ

r̂2

)
At 2PN order A(r) and B(r) depend on 5 coefficients :

A(r) = 1 + a1
r + a2

r2
+ a3

r3
+ · · · , B(r) = 1 + b1

r + b2
r2

+ · · ·

Hence : 17-(9+5)= 3 constraints (at 2PN) :

It works for ST tensor theories (Julié ND 2017)

A(r) = 1−2
(
GABM

r

)
+2

[
〈β̄〉−γ̄AB

](
GABM

r

)2
+

[
2ν+δaST3

](
GABM

r

)3
+· · ·

B(r) = 1 + 2

[
1 + γ̄AB

](
GABM

r

)
+

[
2(2− 3ν) + δbST2

](
GABM

r

)2
+ · · ·
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• Resummation

We started from He(q,p)
µ − 1 =

(
H(q,p)−M

µ

) [
1 + ν

2

(
H(q,p)−M

µ

)]
we showed He(q, p) =

√
A

(
µ2 +

p2r
B +

p2
φ

r̂2

)
By inversion one finally obtains the resummed EOB Hamiltonian

HEOB = M

√
1 + 2ν

(
He
µ − 1

)
where He =

√
A

(
µ2 +

p2r
B +

p2
φ

r2

)
The dynamics deduced from HEOB and the 2-body Hamiltonian H are,
by construction, equivalent up to 2PN order

Moreover HEOB defines a very simple resummed dynamics which can be
extended to the strong field regime at coalescence.
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The (conservative) dynamics

of an EMD black hole binary

A first flavour of possible tests

Location of the ISCO
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Location of the ISCO

The 2 BH dynamics reduces to geodesic motion in

ds2e = −A(r)dt2+B(r)dr2+r2dφ2 , He(q, p) =

√
A

(
µ2 +

p2r
B +

p2
φ

r̂2

)
Location and orbital frequency of the last stable circular orbit (ISCO)

A′′

A′ = (Au2)′′

(Au2)′ , Ω = ju2A

GABME
√

1+2ν(E−1)

with u = GABM
r , j2(u) = − A′

(Au2)′ , E(u) = A
√

2u
(Au2)′

A(u ; ν) = AGR
EOBNR(u ; ν) + 2ε1PKu

2 + (ε02PK + νεν2PK)u3

For EMD black holes ε1PK ≡ 〈β̄〉 − γ̄AB is a simple function of

mA(ϕ) =
√

SA
4π +Q2

A
e2ϕ

2
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A typical strong-field feature : orbital frequency at the ISCO
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[equal-mass case (ν = 1/4), setting ε1PK = ε02PK = εν2PK]

A = P1
5 [AGR

EOBNR(u ; ν) + 2ε1PKu
2 + (ε02PK + νεν2PK)u3]

– Typeset by FoilTEX – 34



Recapitulation

The (conservative) dynamics of an EMD black hole binary
vs “state-of-the-art” in scalar-tensor theories and GR

• Lagrangian and Hamiltonian for the relative motion

• Mapping to an effective-one-body (EOB) hamiltonian

• A first flavour of possible tests

What next ?

• Radiation reaction forces and full dynamics

• Waveforms

• Other models...
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Conclusion

Coalescing binary black holes are ideal celestial systems

to test theories of gravity.

Predicting the gravitational wave signatures

of coalescing “hairy” black holes

will give new constraints on modified gravity theories

and help to better understand General Relativity
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Thank you

for your attention
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