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Inflation: the Standard Model of Early Universe
Cosmology
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| : o Inflation is the standard paradigm of early universe
ntroduction
T-Duality: Key CosmOIOQy

Symmetry of

String Theory o Inflation solves conceptual problems of Standard Big
String Gas Bang CosmOIOgy

Cosmology

— o Inflation predicts an almost scale-invariant spectrum of
primordial cosmological perturbations with a small red
tilt (Chibisov & Mukhanov, 1981).

o Fluctuations are nearly Gaussian and nearly adiabatic.
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Fig. la. Diagram of gravitational instability in the ‘big-bang” model. The region of instability is

located to the right of the line M (¢); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.
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Hubble Radius vs. Horizon

Horizon: Forward light cone of a point on the initial
Cauchy surface.

@ Horizon: region of causal contact.
o Hubble radius: /y(t) = H~'(t) inverse expansion rate.

@ Hubble radius: local concept, relevant for dynamics of
cosmological fluctuations.

@ In Standard Big Bang Cosmology: Hubble radius =
horizon.

o In any theory which can provide a mechanism for the
origin of structure: Hubble radius # horizon.
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solve the “horizon problem” of Standard Big Bang
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Criteria for a Successful Early Universe
Scenario

@ Horizon > Hubble radius in order for the scenario to
solve the “horizon problem” of Standard Big Bang
Cosmology.

o Scales of cosmological interest today originate inside

the Hubble radius at early times in order for a causal
generation mechanism of fluctuations to be possible.

o Squeezing of fluctuations on super-Hubble scales in
order to obtain the acoustic oscillations in the CMB
angular power spectrum.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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@ Momentum modes: E, = n/R

Introduction

T-Duality: Key
TS o Winding modes: E, = mR
Suing Gas @ Duality: R—1/R (n,m) — (m,n)
Structure @ Mass spectrum of string states unchanged
nior o Symmetry of vertex operators
DFT @ Symmetry at non-perturbative level — existence of
Conclusions D-branes
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Position Operators

Position operators (dual to momenta)

x>= 3 explix - p)lp >
p
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Position Operators

Position operators (dual to momenta)

x>= 3 explix - p)lp >
p

Dual position operators (dual to windings)

Note:

X >=")"exp(iX - w)|w >
w

- - 1
x>=|x+2rR>, |X>= |x+27r§>
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@ R > 1: momentum modes light.
o R < 1: winding modes light.
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R > 1: momentum modes light.
R < 1: winding modes light.

R > 1: length measured in terms of |x >.
R < 1: length measured in terms of |x >
R ~ 1: both |x > and |X > important.
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©

Conclusion: At string scale densities usual effective field
theory (EFT) based on supergravity will break down.

Conclusion: If an effective field theory description is valid, it
must be an EFT in 18 spatial dimensions.
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freedom which string theory provides to construct a new
theory of the very early universe.

Assumption: Matter is a gas of fundamental strings.
Assumption: gs < 1.

Key points:

o New degrees of freedom: string oscillatory modes

o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature
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String Gas Cosmology

Idea: make use of the new symmetries and new degrees of
freedom which string theory provides to construct a new
theory of the very early universe.

Assumption: Matter is a gas of fundamental strings.

Assumption: gs < 1.

Key points:

o New degrees of freedom: string oscillatory modes

o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

o New degrees of freedom: string winding modes

0 Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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1: Emergent Universe

2: Bouncing Cosmology
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Dynamical Decompactification

o Begin with all 9 spatial dimensions small, initial
temperature close to Ty — winding modes about all
spatial sections are excited.

o Expansion of any one spatial dimension requires the
annihilation of the winding modes in that dimension.

—
- O

T
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Dynamical Decompactification

o Begin with all 9 spatial dimensions small, initial
temperature close to Ty — winding modes about all
spatial sections are excited.

o Expansion of any one spatial dimension requires the
annihilation of the winding modes in that dimension.

N\
- O

T

o Decay only possible in three large spatial dimensions.

@ — dynamical explanation of why there are exactly three

large spatial dimensions.
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Dynamical Decompactification

o Begin with all 9 spatial dimensions small, initial
temperature close to Ty — winding modes about all
spatial sections are excited.

o Expansion of any one spatial dimension requires the
annihilation of the winding modes in that dimension.

> O

o

o Decay only possible in three large spatial dimensions.

@ — dynamical explanation of why there are exactly three

large spatial dimensions.

Note: For R — 0 there is an analogous decompactification
mechanism which only allows three dual dimensions to be
large.

34/61



String
Cosmology

R. Branden-
berger
Introduction
T-Duality: Key
Symmetry of
String Theory

String Gas
Cosmology

Structure
Perturbations

DFT

Conclusions

Moduli Stabilization in SGC

@ winding modes prevent expansion
@ momentum modes prevent contraction

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]
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Qo
Qo

©

©

© ©

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

winding modes prevent expansion

momentum modes prevent contraction

— Ver(R) has a minimum at a finite value of

R, — Rmin

in heterotic string theory there are enhanced symmetry
states containing both momentum and winding which
are massless at Ry,

= Vert(Rmin) = 0

— size moduli stabilized in Einstein gravity background
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Moduli Stabilization in SGC

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

@ winding modes prevent expansion

@ momentum modes prevent contraction

0 — Ve(R) has a minimum at a finite value of
R, — Hmin

@ in heterotic string theory there are enhanced symmetry
states containing both momentum and winding which
are massless at Ry,

0 — Vert(Rmin) =0

@ — size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

@ enhanced symmetry states
@ — harmonic oscillator potential for 8
@ — shape moduli stabilized
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Dilaton stabilization in SGC

@ The only remaining modulus is the dilaton.

o Make use of gaugino condensation to give the dilaton a
potential with a unique minimum.

o — diltaton is stabilized.

o Dilaton stabilization is consistent with size stabilization
[R. Danos, A. Frey and R.B., 2008].
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Dilaton stabilization in SGC

@ The only remaining modulus is the dilaton.

@ Make use of gaugino condensation to give the dilaton a
potential with a unique minimum.

o — diltaton is stabilized.

o Dilaton stabilization is consistent with size stabilization
[R. Danos, A. Frey and R.B., 2008].

o Gaugino condensation induces (high scale)
supersymmetry breaking [S. Mishra, W. Xue, R.B. and
U. Yajnik, 2012].
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@ String Gas Cosmology and Structure Formation
o Review of the Theory of Cosmological Perturbations
o Overview
o Analysis
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Theory of Cosmological Perturbations: Basics

Cosmological fluctuations connect early universe theories
with observations

o Fluctuations of matter — large-scale structure

o Fluctuations of metric — CMB anisotropies

o N.B.: Matter and metric fluctuations are coupled

Key facts:

o 1. Fluctuations are small today on large scales
o — fluctuations were very small in the early universe
@ — can use linear perturbation theory
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roduction o Fluctuations of matter — large-scale structure
e e o Fluctuations of metric — CMB anisotropies

String Theory o N.B.: Matter and metric fluctuations are coupled
String G

Cg!:golsgsy Key faCtS

Structure i

Peraters o 1. Fluctuations are small today on large scales

— fluctuations were very small in the early universe
— can use linear perturbation theory

2. Sub-Hubble scales: matter fluctuations dominate
Super-Hubble scales: metric fluctuations dominate

DFT

Conclusions
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Quantum Theory of Linearized Fluctuations

Step 1: Metric including fluctuations

ds® = 22[(1+2d)dn? — (1 — 20)dx?]
¢ = po+op
Note: ¢ and d¢ related by Einstein constraint equations
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’ ds? = 2[(1+20)dn? — (1 — 20)dx?]
Introduction
T—Duahty‘: Key 90 - SOO + (SSD
S Note: ¢ and J¢ related by Einstein constraint equations
String Gas Step 2: Expand the action for matter and gravity to second

Cosmology

order about the cosmological background:

Structure

Per ations

Analysis . /I
DFT s@ = 1 / d4X((V/)2 —vv'+ Z—Vz)
2 ’ z
Conclusions Z
v = 3(5(,0 aF Eq))
%0
Z = a—
H
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Step 3: Resulting equation of motion (Fourier space)

7

Vi + (K = 2w = 0
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Step 3: Resulting equation of motion (Fourier space)

7

V,/(/—I—(kz— )Wk =0

z
Features:
o oscillations on sub-Hubble scales

@ squeezing on super-Hubble scales vy ~ z
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Step 3: Resulting equation of motion (Fourier space)

7

v,’(’+(k2—27)vk =0

Features:

o oscillations on sub-Hubble scales
@ squeezing on super-Hubble scales vy ~ z

Quantum vacuum initial conditions:

Vi(ni) = (V2k)™
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N.B. Perturbations originate as quantum vacuum
fluctuations.
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Structure formation in string gas cosmology
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String Theory
String Gas o For fixed k, convert the matter fluctuations to metric

e fluctuations at Hubble radius crossing t = ti(k)
o Evolve the metric fluctuations for t > t;(k) using the
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Extracting the Metric Fluctuations

Ansatz for the metric including cosmological perturbations
and gravitational waves:

ds? = 22(n)((1 +2)dn? — [(1 — 20)5; + hyldx'dx’) .
Inserting into the perturbed Einstein equations yields

([O(K)[F) = 1672G2k~*(6T (k)5 T % (K))

(Ih(K)[?) = 1672 GPKk=*(5T' (K)o T';(K)) .
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Power spectrum of cosmological fluctuations

Po (k)

8G?k~ 1 < |op(k)|? >
8G?k? < (6M)? >
8G?k~* < (6p)? >R

T 1
ol 1
Sl
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Power spectrum of cosmological fluctuations

Po(k) = 8G?k™' < |dp(k)|? >
= 8G?k? < (0M)? >R
= 8G*k* < (6p)? >R

T 1
_ 2 1
- &G B1-T/Ty

Key features:

o scale-invariant like for inflation
o slight red tilt like for inflation
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Comments

o Evolution for t > tj(k): ® ~ const since the equation of
state parameter 1 + w stays the same order of
magnitude unlike in inflationary cosmology.

@ Squeezing of the fluctuation modes takes place on
super-Hubble scales like in inflationary cosmology —
acoustic oscillations in the CMB angular power
spectrum

o In a dilaton gravity background the dilaton fluctuations

dominate — different spectrum [R.B. et al, 2006;
Kaloper, Kofman, Linde and Mukhanov, 2006]
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Key features:

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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-Duality: Key i )
Symmetry of physics required.

String Theory

String Gas o Cy(R) ~ R? obtained from a thermal gas of strings
e provided there are winding modes which dominate.

o Cosmological fluctuations in the IR are described by
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Doubled Space in SGC

Candidate for dynamics in the Hagedorn phase: Double
Field Theory [C. Hull and B. Zwiebach, 2009]
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Doubled Space in SGC

Candidate for dynamics in the Hagedorn phase: Double
Field Theory [C. Hull and B. Zwiebach, 2009]
Idea: For each dimension of the underlying topological

space there are two position operators [R.B. and C. Vafa]:

o x: dual to the momentum modes
o X: dual to the winding modes
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Doubled Space in SGC

ety Candidate for dynamics in the Hagedorn phase: Double

R B Field Theory [C. Hull and B. Zwiebach, 2009]
’ Idea: For each dimension of the underlying topological
Introduction space there are two position operators [R.B. and C. Vafa]:

T-Duality: Key

Symmetry of o x: dual to the momentum modes

String Theory

String Gas o X: dual to the winding modes

Cosmology

Structure We measure physical length in terms of the light degrees
of freedom.

DFT

Conclusions I(R) _ R fOI' R >> 1 ,

I(R) = lR for R< 1.
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Double Field Theory Approach

Idea Describe the low-energy degrees of freedom with an

action in doubled space in which the T-duality symmetry is

manifest.

+ o+

S — / dxdxe 2R,

1 1
§HMN3MHKL8NHKL — EHMNaMHKLaKHNL

AHMN o 0nd — OyONHMN — 4a1MN oy, dond
48MHMN(9Nd = %HMNHKLaMgA KaNé’B LHaB.
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Singularity Resolution in SGC

o Consider test particles in a DFT background.
o Derive geodesic equation of motion

o Consider a cosmological background with b = 0 and
fixed dilaton.
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Singularity Resolution in SGC
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o Consider test particles in a DFT background.
o Derive geodesic equation of motion

R. Branden-
berger

iesueien o Consider a cosmological background with b = 0 and
Syrmmstyiof. fixed dilaton.

String Theory ) s .
- o Find that the geodesics can be extended to infinite
Castinelzzyy proper time in both time directions.

Structure

@ — geodesic completeness in terms of physical time:

Conclusions tp(t) = t for t> 1 9

1
(t) = n for t< 1.
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Cosmology of DFT

Add matter action Sy, to the background action of SGC:

S = / dxdie2R + S,
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Cosmology of DFT

e Add matter action Sy, to the background action of SGC:
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T-Duality: Key
Symmetry of
String Theory

String Gas Consider generalized Friedmann metric:

Cosmology

Structure
ds?® = df?> + df? — a(t)?dx® — X2

az—(t)dx

Conclusions Physical time constraint:

1

[t =
/t]
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Conclusions

o Cosmology of string theory must take into account
the key symmetries of string theory, in particular the
T-duality symmetry.

o Standard effective field theory of supergravity will break
down in the very early universe.

o Double Field Theory may provide a better description of
the background for string cosmology.

o Cosmological evolution is nonsingular.

@ Our universe emerges from an early Hagedorn phase.

o Thermal string fluctuations in the Hagedorn phase yield
an almost scale-invariant spectrum of cosmological
fluctuations.

o Characteristic signal: blue tilt in the spectrum of
gravitational waves.
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