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After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)

9

H(t)2

H2
0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
(63)

H2

H2
0

' ⌦B

a3
+

s
⌦⇤

⇣H2

H2
0

+
⌦I

a4

⌘
(64)

Or equivalently we have

H(t)2

H2
0

=
⌦M

a(t)3
+

⌦⇤

2
+


⌦2

⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (65)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2
0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦⇤. (66)

If only setting ⌦M = ⌦B , and equal the right hand sides of (65) and (66) at a(t0) = 1, we arrive at

⌦2
D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B) . (67)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (68)

we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤ + ⌦D), pH ' �⇢c⌦⇤. (69)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1 � 2⇤d+1 + LM] +
1

d+1

Z
@M

ddx
p�gK, (70)

Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.
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as well as the momentum relaxation rate

⌧�1
c

=
s̃ck

2

4⇡(Ẽ + P̃)



1 +
`ck

2

Ẽ + P̃

��1

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.49)

Here the coe�cient `c is given by

`c = �c

"

Z

rc

r0

dr̃
r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

� 1

(p� 1)�2
c

r2
0

r2
c

✓

1� rp�1
0

rp�1
c

◆

#

rp�1
0

Lp�2
. (3.50)

Thus from the definition of the heat current hQ
i

i, we can read o↵

hQ
i

i ⌘ hT t

i

i = (Ẽ + P̃)v
i

= �̃
!

@
i

T̃c , (3.51)

which leads to the heat conductivity with momentum relaxation

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, ⌧�1

c

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.52)

In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and

T̃c given in (3.37) and (3.38),

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃c T̃c

k2
. (3.53)

For simplification, we can rewrite `c in (3.50) as the dimensionless form

⇠
c

⌘ `cTc

sc

= (p+ 1)



⌧̃
p

(rc)�
rc ⌧̃

0
p

(rc)

(p� 1)

�

, ⌧̃
p

(r) ⌘
Z

r

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (3.54)

3.3 Running of the Cuto↵ surface as Wilson RG flow

In the fluid/gravity correspondence with a cuto↵ surface, [22–25], the running of the cuto↵

surface is interprected as the wilson renormalison group in holography. A recent field theory

discussion can be found in [71]

Two figures will be added here, based on (3.54)

The breaking of translational invariance modifies the conservation equations of relativistic

hydrodynamics into @
a

T a

b

= @
b

�IhOIi, where the Ward identity for the stress tensor controls

how momentum relaxes to equilibrium through scattering of the scalars. Notice that beyond

the leading order that was studied in [52] with @
a

T a

i

= �⌧�1
c

T a

i

, the new holographic Ward

identity up to order k4 suggested in [63] is

@
t

T t

i

+ @
i

P = �⌧̄�1
c

Q
i

� `ck
2a

i

, ⌧̄�1
c

=
k2

4⇡T̃c

, (3.55)

with the acceleration a
i

= @
t

v
i

. It is in (2.42) for our Rindler fluid, and in (3.46) for our

cuto↵ AdS fluid. For the cuto↵ AdS fluid, the heat conductivity and momentum relaxation

rate up to order k4 are

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, ⌧�1

c

=
k2

4⇡T̃c

✓

1� `ck
2

Tcsc

◆

, (3.56)
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We need to define the new energy density and pressure through

Ẽ ⌘ E + ⇣ 0
�

(pk2), P̃ ⌘ P + ⇣
�

(pk2) + �P, (3.39)

such that the Smarr relation is satisfied,

Ẽ + P̃ = T̃c s̃c ) �P =
rp�1
c

Lp�2

k2

(p� 1)



1

�c

✓

rp�1
0

rp�1
c

� 1

◆

+ c⇤

�

+O(k4). (3.40)

Interestingly, �⇣
c

does not appear in �P and

D?
a

(�P) =
rp�1
0

Lp�2

k2

�c



(D?
a

ln r0)�
D?

a

ln�c

p� 1

✓

1� rp�1
c

rp�1
0

◆�

= (�`c)k
2a

a

, (3.41)

where after using the constraint equation in (3.20), we can see that

�`c =
�2�c

(p+ 1)� (p� 1)�2
c



2� (p+ 1)

(p� 1)�2
c

✓

1� rp�1
0

rp�1
c

◆

r2
0

r2
c

�

rp�1
0

Lp�2
. (3.42)

Linearised Hydrodynamics. — For the linearised hydrodynamics, again we consider

the linearised velocity and the temperature field

ua ! (1, u
i

(t)), T̃c(t, xi) ! r0 + �r0(t, xi). (3.43)

The Ward identity yields the following momentum non-conservation equation (3.31)

(E
⇣

+ P
⇣

)@
t

u
i

+ @
i

P
⇣

= �k2s̃c

4⇡
u
i

� (`c + �`c)k
2@

t

u
i

+ · · · . (3.44)

After redefining the velocity v
i

,

hT t

i

i = (E
⇣

+ P
⇣

)u
i

= (Ẽ + P̃)v
i

, v
i

⌘ (E
⇣

+ P
⇣

)

(Ẽ + P̃)
u
i

, (3.45)

the Ward identity for momentum non-conservation equation then up to order O(k4) becomes

@
t

hT t

i

i+ @
i

P̃ = �⌧̄�1
c

hT t

i

i � `ck
2@

t

v
i

+ · · · , ⌧̄�1
c

=
k2s̃c

4⇡(Ẽ + P̃)
. (3.46)

Assuming @
t

v
i

= � !v
i

and considering @
i

P̃ = s̃c@iT̃c , we have

v
i



k2
s̃c

4⇡
� !

⇣

Ẽ + P̃ + `ck
2
⌘

�

= �s̃c@iT̃c + · · · . (3.47)

From which we obtain the solution of v
i

v
i

= � 1

1� !⌧
c

4⇡

k2
@
i

T̃c + · · · , (3.48)
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From which we obtain the solution of v
i

v
i

= � 1

1� !⌧
c

4⇡

k2
@
i

T̃c + · · · , (3.50)

as well as the momentum relaxation rate

⌧�1
c

=
s̃ck

2

4⇡(Ẽ + P̃)



1 +
`ck

2

Ẽ + P̃

��1

=
k2

4⇡T̃c



1� ⇠
c

k2

T 2
c

�

+O(k6). (3.51)

Here the coe�cient `c is given by

`c = �c

"

Z

rc

r0

dr̃
r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

� 1

(p� 1)�2
c

r2
0

r2
c

✓

1� rp�1
0

rp�1
c

◆

#

rp�1
0

Lp�2
. (3.52)

Thus from the definition of the heat current hQ
i

i, we can read o↵

hQ
i

i ⌘ hT t

i

i = (Ẽ + P̃)v
i

= �̃
!

@
i

T̃c , (3.53)

which leads to the heat conductivity with momentum relaxation

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, (3.54)

⌧�1
c

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.55)

In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and T̃c given
in (3.37) and (3.38),

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃c T̃c

k2
. (3.56)

For simplification, we can rewrite `c in (3.52) as the dimensionless form

⇠
c

⌘`cTc

sc

= (p+ 1)

"

⇠̃
p

(rc)�
rc ⇠̃

0
p

(rc)

(p� 1)

#

, (3.57)

⇠̃
p

(r) ⌘
Z

r

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (3.58)

4 Rindler Fluid and Holographic Wilson RG Flow

In the fluid/gravity duality with a finite cuto↵ surface, the running of the cuto↵ surface is interpreted
as the Wilson renormalization group flow [22–25], a recent discussion of the dual field theory can be
found in [71]. However, it has been the first order transport coe�cients, such as the ratio of shear
viscosity and entropy density ⌘/s = 1/4⇡, does not run with the cuto↵ surface. In the following, we
will show that the dimensionless sub-leading correction ⇠

c

, which is defined in (3.57), will run along
with the cuto↵ surface.

The breaking of translational invariance modifies the conservation equations of relativistic hy-
drodynamics into @

a

T a

b

= @
b

�IhOIi, where the Ward identity for the stress tensor controls how
momentum relaxes to equilibrium through scattering of the scalars. Notice that beyond the leading

– 13 –
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c in terms of the position of the cuto↵ surface rc. We have set

r0 = 1, k = 0.03. The holographic fluids live in the p + 1 dimensional spacetime, and p = 0, 1, ..., 4 from top

to down. The solid lines indicate the leading order contribution of ⌧�1
c in (4.2), up to k2. The dashed lines

include the sub-leading terms in ⌧�1
c , up to k4.

Figure 2. The dimensionless coe�cient ⇠c in terms of the position of the cuto↵ surface rc. The holographic

fluids live in the p + 1 dimensional spacetime, and p = 0, 1, ..., 4 from the bottom up. The solid lines are the

direct plots of ⇠c in (3.57) , and the dashed lines are taken from ⇠1 in (4.9).

For example, ⇠̃2(1) = (9 ln 3�p
3⇡)/18 and ⇠̃3(1) = ln 2/2 match with the values in [63, 64].

In Figure 1, we plot the momentum relaxation rate ⌧�1
c

in terms of the position of the cuto↵
surface r

c

. We have set r0 = 1, k = 0.03 and use r0 to normalize the units. The holographic fluids
live in the p+ 1 dimensional spacetime. The solid lines indicate the leading order contribution of ⌧�1

c

in (4.2) up to k2. The dashed lines include the sub-leading terms in ⌧�1
c

up to k4. Near the horizon
limit the local temperature Tc will divergent due to the Tolman relation, which lead to the vanishing
of the momentum relaxation rate ⌧�1

c

. While near the boundary limit, ⌧�1
c

approach a finite value.
It is interesting to compare this behavior with the the hydrodynamic description of electrons in the
materials. That at small scale the scattering of atom lattice is obvious, which corresponding to the
near boundary limit in holography. While at large scale the e↵ects of the lattice can be neglect, which
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near boundary limit in holography. While at large scale the e↵ects of the lattice can be neglect, which
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order that was studied in [52] with @
a

T a

i

= �⌧�1
c

T a

i

, the new holographic Ward identity up to order
k4 suggested in [63] is

@
t

T t

i

+ @
i

P = �⌧̄�1
c

Q
i

� `ck
2a

i

, ⌧̄�1
c

=
k2

4⇡T̃c

, (4.1)

with the acceleration a
i

= @
t

v
i

. It is in (2.44) for our Rindler fluid, and in (3.48) for our cuto↵ AdS
fluid. For the cuto↵ AdS fluid, the momentum relaxation rate up to order k4 are

⌧�1
c

=
k2

4⇡T̃c

 

1� ⇠
c

k2

T̃ 2
c

!

, ⇠
c

=
`cTc

sc

. (4.2)

The value of ⇠
c

is given in (3.57), which is one of our main conclusions. In the following we will
take both of the near horizon limit and near boundary limit, and plot the running of relaxation rate
⌧�1
c

(Figure 1) and sub-leading coe�cient ⇠
c

(Figure 2) along with the cuto↵ surface rc .
Near horizon limit. — In order to take the near horizon limit rc ! r0 , and match with the

gauge choose in the Rindler fluid, we can choose the gauge g
(1)
uu

(r0) = 0 in (3.15) and fix �⇣
c

through

g(1)
uu

(r0) = 0 =) �⇣
c

=
L2�c

r0(p+ 1)

✓

1� p

2

rc � r0

r0

+ ...

◆

. (4.3)

We need to make the coordinate transformation

xa ! rc

L
xa,

rc

L
�c ! r0

L

p

f 0(r0)(rc � r0) = �0 . (4.4)

The near horizon limit indicates

f(r)

f(rc)
! f 0(r0)(r � r0)

f 0(r0)(rc � r0)
+O(�2

c
). (4.5)

After identifying

2c =
r2
0

L2
f 0(r0) = 20 , (4.6)

such that Tc ! T0 , we can recover the Rindler fluid with momentum relaxation. In particular, the
following dimensionless quantity in (2.46) is re-obtained from the near horizon limit,

lim
rc!r0

⇠
c

= ⇠0 = �1. (4.7)

Then from ⌧�1
c

in (4.2), we can also recover the formula of ⌧�1
0

in (2.52).
Near boundary limit. — The near boundary limit rc ! 1 of the cuto↵ surface in AdS is easier

to reach, since we kept the conformal factor in the metric (3.12). Refer to the procedure in [34], we
can simply set

c
�

! 1, c⇤ ! 1, �c ! 1, (4.8)

to recover all results at the AdS boundary. In particular, the dimensionless number

lim
rc!1

⇠
c

= ⇠1 ⌘ (p+ 1)⇠̃
p

(1), (4.9)

⇠̃
p

(1) ⌘
Z 1

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (4.10)
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From which we obtain the solution of v
i

v
i

= � 1

1� !⌧
c

4⇡

k2
@
i

T̃c + · · · , (3.50)

as well as the momentum relaxation rate

⌧�1
c

=
s̃ck

2

4⇡(Ẽ + P̃)



1 +
`ck

2

Ẽ + P̃

��1

=
k2

4⇡T̃c



1� ⇠
c

k2

T 2
c

�

+O(k6). (3.51)

Here the coe�cient `c is given by

`c = �c

"

Z

rc

r0

dr̃
r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

� 1

(p� 1)�2
c

r2
0

r2
c

✓

1� rp�1
0

rp�1
c

◆

#

rp�1
0

Lp�2
. (3.52)

Thus from the definition of the heat current hQ
i

i, we can read o↵

hQ
i

i ⌘ hT t

i

i = (Ẽ + P̃)v
i

= �̃
!

@
i

T̃c , (3.53)

which leads to the heat conductivity with momentum relaxation

̃
!

=
1

1� !⌧
c

4⇡s̃c T̃c

k2
, (3.54)

⌧�1
c

=
k2

4⇡T̃c



1� `cTc

sc

k2

T 2
c

�

+O(k6). (3.55)

In the DC limit ! ! 0, this expression reduces to the formulae in terms of the local s̃c and T̃c given
in (3.37) and (3.38),

̃DC ⌘ lim
!!0

̃
!

=
4⇡s̃c T̃c

k2
. (3.56)

For simplification, we can rewrite `c in (3.52) as the dimensionless form

⇠
c

⌘`cTc

sc

= (p+ 1)

"

⇠̃
p

(rc)�
rc ⇠̃

0
p

(rc)

(p� 1)

#

, (3.57)

⇠̃
p

(r) ⌘
Z

r

r0

dr̃ r2
0

r̃3f(r̃)

✓

1� rp�1
0

r̃p�1

◆

. (3.58)

4 Rindler Fluid and Holographic Wilson RG Flow

In the fluid/gravity duality with a finite cuto↵ surface, the running of the cuto↵ surface is interpreted
as the Wilson renormalization group flow [22–25], a recent discussion of the dual field theory can be
found in [71]. However, it has been the first order transport coe�cients, such as the ratio of shear
viscosity and entropy density ⌘/s = 1/4⇡, does not run with the cuto↵ surface. In the following, we
will show that the dimensionless sub-leading correction ⇠

c

, which is defined in (3.57), will run along
with the cuto↵ surface.

The breaking of translational invariance modifies the conservation equations of relativistic hy-
drodynamics into @

a

T a

b

= @
b

�IhOIi, where the Ward identity for the stress tensor controls how
momentum relaxes to equilibrium through scattering of the scalars. Notice that beyond the leading
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Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.
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we can recover the constraint relation of our toy model in (4). Considering (71) and plugging the ⇤CDM parameter-
ization (69) into the energy density (56) and pressure (57), we have
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. (74)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1

+ Sd, where
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M
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After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2
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0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+
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a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)

⌧�1
c ' k2

4⇡Tc
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Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.
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we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have
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It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER
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flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
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Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.
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where the gravitational accelerations gB and gD are given by their usual Newtonian expressions

gB(r) =
GMB(r)

r2
and gD(r) =

GMD(r)

r2
. (A5)

We will now discuss the consequences of equation (B3) and present it in di↵erent forms so that the comparison with
observations becomes more straightforward.

In this case one can simply di↵erentiate with respect to the radius while keeping the baryonic mass MB constant.
It is easily verified that this leads to the relation

gD(r) =
p
aMgB(r) with aM =

a
0

6
. (A6)

So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as

MB(r) =
4⇡r3

3
⇢B(r) and MD(r) =

4⇡r3

3
⇢D(r). (A7)

We also introduce the slope parameters

�B(r) = �d log ⇢B(r)

d log r
and �D(r) = �d log ⇢D(r)

d log r
. (A8)

When these slope parameters are approximately constant they give us the power law behavior of the averaged mass
densitities. By di↵erentiating (B1) with respect to r and rewriting the result using (B7) one finds that the average
apparent dark matter density obeys

⇢2D(r) =
⇣
4� �B(r)

⌘ a
0

8⇡G

⇢B(r)

r
. (A9)

For a central point mass MB the slope parameter �B is equal to 3, hence the prefactor would be equal to one. The
apparent dark matter has in that case a distribution with a slope �D = 2, which means that it falls o↵ like 1/r2. A
similar formula as (B9) holds in modified Newtonian dynamics, except without the prefactor.

As a final fun comment let us, just out of curiosity, take the formula (B9) and apply it to the entire universe. By
this we mean the following: we assume a constant baryonic mass density, so we set �B = 0, and in addition we take
the radius to be equal to the Hubble radius, i.e. we put r = L. Now we note that the critical mass density of the
universe equals

⇢c =
3H2

0

8⇡G
=

3a
0

8⇡G

1

L
= ⇤. (A10)

Hence, when we put r = L in the formula (B9) we obtain a relation between the standard cosmological density
parameters ⌦B = ⇢B/⇢crit and ⌦D = ⇢D/⇢crit of the baryonic and dark matter. We find

⌦2

D =
4

3
⌦B , ⇢2D =

4

3
⇢B⇢c. (A11)

This relation holds remarkably well for the values of ⌦D and ⌦B obtained by the WMAP and Planck collaborations. It
is far from clear that our derivation of the density formula (B9) would be applicable to the entire universe. For instance,
an immediate question that comes to mind is whether this relation continues to hold throughout the cosmological
evolution of the universe. We have worked exclusively in a static situation near the center of the static patch of a
dark energy dominated universe.

Appendix B: Review of Verlinde’s Emergent Gravity
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It is show in [12], that the EPR in 3+1 can be described by the worm hole in 4+1 dimensional AdS. In here,
3) Holography in Flat space. In our models, the holographic scree is embedded in one higher dimensional

spacetime. It is interesting to compare that with the holographic in flat space, where one sucussififul relasiation is
a flat holographic screen embeded in the accacting frame. The induced brown-York stress give the Rindler fluid,
[7]. which is quite similar to the Rindler holography. In there, the background is flat space time Rindler fluid with
⇢D = 0, pD = a, where a is the accaction. the geometry also gave the equation of state p = TUsU , with TU the
Untuh temperature. Also it is found that the Petrov Type I constraint equation give additional constrains relation of
induced stress tensor [8, 9], which is expected to generalized to our case.

4) AdS/dS and AdS/FRW.— mathematically, the dS or FRW metric can also be embedded in to the higher
dimensional AdS, as well as in the brane world model. Similar relation can be obtained from the constraint equations.
Although the holographic correspondence is more clear there, one meet another question on the origin of negative
cosmological constant. That’s why we choose the flat embedding in this paper, but that’s interesting for further study.

B. Conclusion

We give a new viewpoint on the dark components of our universe, which originates from the induced stress tensor
of higher dimensional flat spacetime.

Appendix A: Review of Verlinde’s Emergent Gravity

Recent theoretical progress indicates that spacetime and gravity emerge together from the entanglement structure
of an underlying microscopic theory. These ideas are best understood in Anti-de Sitter space, where they rely on the
area law for entanglement entropy. The extension to de Sitter space requires taking into account the entropy and
temperature associated with the cosmological horizon. Using insights from string theory, black hole physics and
quantum information theory we argue that the positive dark energy leads to a thermal volume law contribution to
the entropy that overtakes the area law precisely at the cosmological horizon. Due to the competition between area
and volume law entanglement the microscopic de Sitter states do not thermalise at sub-Hubble scales: they exhibit
memory e↵ects in the form of an entropy displacement caused by matter. The emergent laws of gravity contain
an additional ‘dark’ gravitational force describing the ‘elastic’ response due to the entropy displacement. We derive
an estimate of the strength of this extra force in terms of the baryonic mass, Newton’s constant and the Hubble
acceleration scale a

0

= cH
0

, and provide evidence for the fact that this additional ‘dark gravity force’ explains the
observed phenomena in galaxies and clusters currently attributed to dark matter.

One main result is the following integral relation for the surface mass density ⌃D for the apparent dark matter in
terms of the Newtonian potential for the baryonic matter

Z
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✓
8⇡G
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0

⌃D

◆
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✓
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d� 1
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�B

a
0

nidAi. (A1)

Since the integration region B can be chosen arbitrarily, we can also derive a local relation by first converting the
right hand side into a volume integral by applying Stokes’ theorem and then equating the integrands. In this way we
obtain

✓
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◆
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✓
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d� 1

◆
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✓
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ni

◆
. (A2)

For this situation we can take ni = xi/|x|, and easily evaluate the right hand side in terms of the mass distribution
⇢B of the baryonic matter.

When d = 4, this leads to
Z r

0

GM2

D(r0)

r02
dr0 =

MB(r)a0r

6
. (A3)

It allows one to make a direct comparison with observations. It describes the amount of apparent dark matter MD(r)
in terms of the amount of baryonic matter MB(r) for (approximately) spherically symmetric and isolated astronomical
systems in non-dynamical situations. After having determined MD(r) one can then compute the total acceleration

g(r) = gB(r) + gD(r) (A4)
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In the next subsection we will use this relation for a spherically symmetric situation to derive the mass density for
the apparent dark matter from a given distribution of baryonic matter. For this situation we can take ni = xi/|x|,
and easily evaluate the right hand side in terms of the mass distribution ⇢B of the baryonic matter.

When d = 4, this leads to
Z r

0

GM2

D(r0)

r02
dr0 =

MB(r)a0r

6
. (B3)

This is the main formula and central result of our paper, since it allows one to make a direct comparison with
observations. It describes the amount of apparent dark matter MD(r) in terms of the amount of baryonic matter
MB(r) for (approximately) spherically symmetric and isolated astronomical systems in non-dynamical situations.
After having determined MD(r) one can then compute the total acceleration

g(r) = gB(r) + gD(r) (B4)
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We will now discuss the consequences of equation (B3) and present it in di↵erent forms so that the comparison with
observations becomes more straightforward.

In this case one can simply di↵erentiate with respect to the radius while keeping the baryonic mass MB constant.
It is easily verified that this leads to the relation

gD(r) =
p
aMgB(r) with aM =
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. (B6)

So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as

MB(r) =
4⇡r3

3
⇢B(r) and MD(r) =

4⇡r3

3
⇢D(r). (B7)

We also introduce the slope parameters

�B(r) = �d log ⇢B(r)

d log r
and �D(r) = �d log ⇢D(r)

d log r
. (B8)
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So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as
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So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as

MB(r) =
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We also introduce the slope parameters
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d log r
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When these slope parameters are approximately constant they give us the power law behavior of the averaged mass
densitities. By di↵erentiating (B1) with respect to r and rewriting the result using (B7) one finds that the average
apparent dark matter density obeys

⇢2D(r) =
⇣
4� �B(r)

⌘ a
0

8⇡G

⇢B(r)

r
. (A11)

For a central point mass MB the slope parameter �B is equal to 3, hence the prefactor would be equal to one. The
apparent dark matter has in that case a distribution with a slope �D = 2, which means that it falls o↵ like 1/r2. A
similar formula as (B9) holds in modified Newtonian dynamics, except without the prefactor.

As a final fun comment let us, just out of curiosity, take the formula (B9) and apply it to the entire universe. By
this we mean the following: we assume a constant baryonic mass density, so we set �B = 0, and in addition we take
the radius to be equal to the Hubble radius, i.e. we put r = L. Now we note that the critical mass density of the
universe equals

⇢c =
3H2

0

8⇡G
=

3a
0

8⇡G

1

L
= ⇤. (A12)

Hence, when we put r = L in the formula (B9) we obtain a relation between the standard cosmological density
parameters ⌦B = ⇢B/⇢crit and ⌦D = ⇢D/⇢crit of the baryonic and dark matter. We find

⌦2

D =
4

3
⌦B , ⇢2D =

4

3
⇢B⇢c. (A13)

This relation holds remarkably well for the values of ⌦D and ⌦B obtained by the WMAP and Planck collaborations. It
is far from clear that our derivation of the density formula (B9) would be applicable to the entire universe. For instance,
an immediate question that comes to mind is whether this relation continues to hold throughout the cosmological
evolution of the universe. We have worked exclusively in a static situation near the center of the static patch of a
dark energy dominated universe.
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At the core of MONDian theories is the assumption that in the limit of su�ciently weak acceleration, gravitational
dynamics becomes non-linear, with the non-linearities tailored to yield flat rotation curves of galaxies. In the weak-
field quasi-static limit, where the metric can be written ds2 = �(1 + 2 )dt2 + (1� 2�)dx2, the field equations must
reduce to  = � and

r · [µ
⇣

|r�|
a0

⌘
r�] = 4⇡G⇢, (A1)

where G is Newton’s constant, a
0

⇡ 10�10 m/s2, and ⇢ is the matter density. The phenomenological MOND function
µ(x) satisfies µ(x) ! 1 when x � 1, so that Newton’s law of gravity is recovered in the strong acceleration limit, and
µ(x) ! x when x ⌧ 1, which yields flat rotation curves of galaxies at large distances from matter sources. Hence,
the equations of motion for the potential become non-linear when |r�| ⌧ a

0

. This stands in stark contrast to GR,
where the weak-field limit is governed by linear equations of motion. Popular MONDian theories of gravity include
TeVeS [? ], generalized Einstein-Aether theories [? ], and bimetric theories (BIMOND) [? ? ]. Recently Verlinde [2]
suggested that similar modifications can naturally occur in entropic gravity [1].

MONDian modifications to GR can alter gravitational wave physics in at least two ways. First, since MOND is an
acceleration based modification of gravity, MONDian theories can violate the equivalence principle. A consequence
of this is that gravitational waves can propagate subluminally. Second, since MONDian theories are non-linear in
the weak field limit, gravitational waves can by governed by non-linear equations, even in the weak-field limit. As
we elaborate on below, these features have unsavory consequences and can be used to restrict the set of allowed
MONDian theories.

As was pointed out long ago [? ], if the speed of gravitational waves is c
g

< 1 (in units where c = 1), then high
energy cosmic rays traveling at speed v ! 1 will lose energy via the emission of gravitational Cherenkov radiation,
with an energy loss rate dependent on the di↵erence 1 � c

g

. The observation of high energy cosmic rays on earth,
combined with an estimate of their distance of propagation, then sets lower bounds on c

g

, which have been estimated
to be 1� c

g

. 10�15 [? ? ]. In the MOND limit of the Einstein-Aether theory of Ref. [? ], we demonstrate that the
speed of gravitational waves depends on the local gravitational potential and generically cannot be set equal to the
speed of light, and that Cherenkov losses are unavoidable without making the theory pathological. These features
make this theory an unacceptable theory of gravity.

Second, if gravitational wave dynamics are non-linear in the weak-field limit, gravitational waves emitted in black
hole merger events can interact with themselves as well as with other gravitational waves, e↵ectively scrambling
the structure of the original waveforms as they propagate to earth. LIGO’s recent observation of GW150914 had
a gravitational waveform completely consistent with GR [? ], suggesting no such scrambling e↵ect. A natural
expectation is therefore that gravitational waves must satisfy linear equations of motion in the weak-field limit of any
acceptable theory of gravity.

We argue that interactions between gravitational wave packets in the weak-field limit of BIMOND [? ] alters the
structure of the original waveforms and can even lead to singular evolution. Therefore, if BIMOND reduces to GR in
the strong field limit — and thereby yields the same initial gravitational waveforms as GR in merger events — the
waveforms observed far away would not look anything like those predicted by GR. In BIMOND we argue non-linear
interactions become important at distances on the order 0.3 Gpc from merger events. In contrast, gravitational waves
from GW150914 are estimated to have propagated 0.4 Gpc. Our results and the experimental data from LIGO suggest
that BIMOND in its present form is not an acceptable theory of modified gravity.

Appendix B: Modified Entropy Gravity

In addition to the metric gµ⌫ , Einstein-Aether theories contain a time-like vector field Aµ which satisfies A2 = �1
and defines a preferred frame. Following Ref. [? ] we consider the gravitational action,

S =
1

16⇡G

Z
d4x

p
g
⇥
R+M2F( K

M2 ) + �(A2+1)
⇤
+ S

mat

, (B1)

where K ⌘ K↵�
��r↵A�r�A� is a quadratic function of derivatives of Aµ. In Eq. (B1) � is a Lagrange multiplier

which inforces the constraint A2 = �1, M is a constant with dimensions of mass, and S
mat

is the matter action.
The phenomenological function F determines the MOND function µ in (A1). The most general expression for K↵�
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involving no derivatives reads
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At the core of MONDian theories is the assumption that in the limit of su�ciently weak acceleration, gravitational
dynamics becomes non-linear, with the non-linearities tailored to yield flat rotation curves of galaxies. In the weak-
field quasi-static limit, where the metric can be written ds2 = �(1 + 2 )dt2 + (1� 2�)dx2, the field equations must
reduce to  = � and

r · [µ
⇣

|r�|
a0

⌘
r�] = 4⇡G⇢, (A1)

where G is Newton’s constant, a
0

⇡ 10�10 m/s2, and ⇢ is the matter density. The phenomenological MOND function
µ(x) satisfies µ(x) ! 1 when x � 1, so that Newton’s law of gravity is recovered in the strong acceleration limit, and
µ(x) ! x when x ⌧ 1, which yields flat rotation curves of galaxies at large distances from matter sources. Hence,
the equations of motion for the potential become non-linear when |r�| ⌧ a

0

. This stands in stark contrast to GR,
where the weak-field limit is governed by linear equations of motion. Popular MONDian theories of gravity include
TeVeS [? ], generalized Einstein-Aether theories [? ], and bimetric theories (BIMOND) [? ? ]. Recently Verlinde [2]
suggested that similar modifications can naturally occur in entropic gravity [1].

MONDian modifications to GR can alter gravitational wave physics in at least two ways. First, since MOND is an
acceleration based modification of gravity, MONDian theories can violate the equivalence principle. A consequence
of this is that gravitational waves can propagate subluminally. Second, since MONDian theories are non-linear in
the weak field limit, gravitational waves can by governed by non-linear equations, even in the weak-field limit. As
we elaborate on below, these features have unsavory consequences and can be used to restrict the set of allowed
MONDian theories.

As was pointed out long ago [? ], if the speed of gravitational waves is c
g

< 1 (in units where c = 1), then high
energy cosmic rays traveling at speed v ! 1 will lose energy via the emission of gravitational Cherenkov radiation,
with an energy loss rate dependent on the di↵erence 1 � c

g

. The observation of high energy cosmic rays on earth,
combined with an estimate of their distance of propagation, then sets lower bounds on c

g

, which have been estimated
to be 1� c

g

. 10�15 [? ? ]. In the MOND limit of the Einstein-Aether theory of Ref. [? ], we demonstrate that the
speed of gravitational waves depends on the local gravitational potential and generically cannot be set equal to the
speed of light, and that Cherenkov losses are unavoidable without making the theory pathological. These features
make this theory an unacceptable theory of gravity.

Second, if gravitational wave dynamics are non-linear in the weak-field limit, gravitational waves emitted in black
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that BIMOND in its present form is not an acceptable theory of modified gravity.
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where the ci are dimensionless contants. Following [? ] we shall set M = ✏2a
0

with ✏ a bookkeeping parameter which
can be set to one after all calculations.

The Einstein-Aether equations of motion read

Rµ⌫ � 1

2

Rgµ⌫ = Tµ⌫ + 8⇡GTmat

µ⌫ , (B3a)

r↵[F 0J↵
� ]� F 0y� = 2�A� , (B3b)

with Tmat

µ⌫ the matter stress and T↵� the vector stress,

T↵� = 1

2

r�{F 0[J �
(↵ A�) � J�

(↵A�) � J
(↵�)A

�]} (B4)

� F 0Y↵� + 1

2

g↵�M2F + �A↵A� ,
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1

[r⌫A↵r⌫A� �r↵A⌫r�A
⌫ ] (B5a)

�c
4

(A ·rA↵)(A ·rA�),

J↵
� = 2K↵�

��r�A
� , (B5b)

y� = 2c
4

r�Aµ(A ·rAµ). (B5c)

We wish to study Einstein-Aether waves in the MOND limit, particularly waves propagating in the background of
a weak, static and slowly varying gravitational field. Our goal here is to demonstrate that the propagation speeds
depend on the local background fields and cannot be set equal to the speed of light for all modes. To this end let
us first consider static, weak field, and slowly varying solutions to the Einstein-Aether system. Following [? ] we
consider the ansatz,

gµ⌫(t,x) = ⌘µ⌫ � 2✏�(✏x)�µ⌫ , (B6a)

Aµ(t,x) = [�1 + ✏�(✏x)]�µ0, (B6b)

and solve the equations of motion in the ✏ ! 0 limit. The above ansatz satisfies A2 = �1 +O(✏2). In the ✏ ! 0 limit
the Einstein-Aether equations of motion (B3) reduce to the MOND equation (A1) with µ(x) = x provided [? ]

F(x) = 1

c1�c4

h
�2x+ 4

3

p
�c1+c4

x3/2
i
. (B7)

A real-valued action therefore requires c
1

� c
4

< 0.

Consider now the ansatz

gµ⌫(t,x) = ⌘µ⌫ � 2✏�(✏x)�µ⌫ + ⇣ hµ⌫e
�i!t+ik·x, (B8a)

Aµ(t,x) = [�1 + ✏�(✏x)]�µ0 + ⇣ aµe
�i!t+ik·x, (B8b)

which describes small perturbations propagating on top of the static background potential �. Here ⇣ is another
bookkeeping parameter which parameterizes the strength of the propagating modes. We shall consider the ✏ ! 0
limit with ⇣ ⌧ ✏2. In this limit the exponentials vary in space much more rapidly than the potential. Note that hµ⌫

and aµ also depend on x. However, this dependence can be neglected at leading order. For simplicity we assume the
potential vanishes as the point x of interest and that k and r� point in the same direction at x.

The equations of motion for hµ⌫ and aµ, as well as the dispersion relation !(k), follow from substituting the ansatz
(B8) into (B3). With ⇣ ⌧ ✏2 and the presence of the background potential, the equations of motion for hµ⌫ and aµ
are linear. There are a total of five propagating modes, including two tensor modes, two vector modes, and one scalar
mode. We find linear dispersion relations ! = c

g

k for all modes, with propagation speeds,
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2

Let’s using some parameters from ⇤CDM [3], with a bit priori choice as following

⌦
⇤

= 0.685, ⌦D = 0.265, ⌦B = 0.050. (5)

Compare our formula with Verlinde’s, we have

�V ⌘ ⌦2

D � 4

3
⌦B ' 0.36% , (6)

�CSZ ⌘ ⌦2

D � 1

2
⌦

⇤

(⌦D � ⌦B) ' �0.34% . (7)

Although our relation hold as well as Verlinde’s, they are still some subtile derivation in approximation.

MOND limit

on-going...

II. INDUCED ⇤CDM UNIVERSE

Similar to the formula in (1), let’s write down the Einstein equation in d dimension as

Rµ⌫ � 1

2
Rgµ⌫ = d(Tµ⌫ + Tµ⌫), (8)

with µ, ⌫ = 0, 1, ..., (d�1), and d = 8⇡Gd/c4. The Tµ⌫ is the stress tensor of normal matters, and Tµ⌫ is the e↵ective
dark sectors of our universe, which can include the dark energy and dark matters. The trace lead to the Ricci scalar

R = � 2d

d� 2
(T + T ) . (9)

Now consider one higher dimension embedding of a hyper-surface into the d dimensional spacetime. with the normal
vector NM= 1

L (X0

, Xi) which is defined towards the direction of coordinates. From which we can define the induce
metric on the hypersurface gMN = ⌘MN �NMNN as well as the extrinsic curvature

Kµ⌫ ⌘ g M
µ g N

⌫ r
(MNN)

, (10)

with µ, ⌫ the index on the hypersurface, which depends on the coordinate choices.

The Hamiltonian constraint equation

K2 �Kµ⌫Kµ⌫ = R+ 2G(d+1)

MN NMNN , (11)

with M,N = 0, 1, ..., d. If we define the following Brown-York stress tensor,

Tµ⌫ = � 1

d+1

(Kgµ⌫ �Kµ⌫) , (12)

with d+1

the Einstein’s constant in d + 1 dimension. Notice that in the above defination, there is a minuse sign
compare with the usual brown-York formula, which means the opsite side of the normal vector N Then (11) gives

T 2

d� 1
� Tµ⌫T µ⌫ =

R+ 2G(d+1)

MN NMNN

(d+1

)2
. (13)

De Sitter Spacetime.— Without the normal matters Tµ⌫=0, and Tµ⌫ = T̄µ⌫ ⌘ � ⇤

d
gµ⌫ . The cosmological

constant ⇤ = (d�1)(d�2)

2L2 as the dark energy. It can be embedded into d+ 1 dimensional flat spacetime

ds2d+1

= ⌘MNdXMdXN = �dX2

0

+ dX2

i , (14)

with i = 1, 2, ..., d. It is a hyperbolid spacetime with radius L and the normal vector are

L2 = �T 2 +X2

i , NM =
1

L
(X

0

, Xi). (15)
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There’re two points of view, or say in duality:

1) In higher dimensional viewpoint, there’s only baryonic matters on the brane, and the dark energy and dark
matter are only relevant to the extrinsic curvature.

Except the constrans equations, we also have the dynamical equation

R(d)
µ⌫ = (Kgµ� �Kµ�)K�

⌫ +Mµ⌫ , (53)

Mµ⌫ ⌘ g M
µ g N

⌫ R(d+1)

MN � g M
µ NP g N

⌫ NQR(d+1)

MPNQ.

R(d) = (K2 �Kµ⌫Kµ⌫) +R� 2R(d+1)

MN NMNN , (54)

R = � 2d

d� 2
(T + T ) . (55)

Although R(d+1)

MN = 0 in flat spacetime, it is not necessary for R(d+1)

MPNQ, which depends on the coordinate choices. In
prinpicle we can also define the induced stress tensor from

Rµ⌫ � 1

2
Rgµ⌫ = T M

µ⌫ + TB
µ⌫ , (56)

T M
µ⌫ ⌘ (Kgµ� �Kµ�)K�

⌫ +Mµ⌫ � 1

2

�
K2 �K⇢�K⇢�

�
gµ⌫ ,

Mµ⌫ ⌘ g M
µ g N

⌫ R(d+1)

MN � g M
µ NP g N

⌫ NQR(d+1)

MPNQ.

which is more nature to describe the evolution of the hyper surface, and indeed in the De-sitter spacetime, Kµ� = 1

Lgµ⌫
lead to T M

µ⌫ = �⇤gµ⌫ . However, if we consider the perturbations, it is not easy to guarantee the conservation of this

stress tensor @µT M
µ⌫

?

= 0. While instead the Brown-York one ha That’s why we didn’t use this formula in this work.
We have tried the perturbation based on this formula, we didn’t obtained expected constraint of the dark matters.
But it still a candidate for further interesting of study.

2) On the induced metric of the brane, there’re e↵ective contribution from the holographic stress tensor, which
can be identified as the stress tensor of dark energy and dark matter. Let’s start with the Einstein-Hilbert action in
(d+1) dimension,

Sd+1

=
1

2d+1

Z
dd+1x

p
�g̃(Rd+1

) +

Z
ddx

p
�gKd (57)

With g̃MN the metric in d+ 1 dimension. After the variation, we have

�Sd+1

=
h
R(d+1)

MN � 1

2
R(d+1)g̃MN

i
�g̃MN

+ (Kµ⌫ �Kgµ⌫) �g
µ⌫ (58)

In modified entropic gravity, gravitational field equation is

f

✓
Rµ⌫ � 1

2
gµ⌫R

◆
�

✓
rµr⌫f � 1

2
gµ⌫r2f

◆
= 8⇡GTµ⌫ , (59)

(rµf)Gµ⌫ =rµTµ⌫ , (60)

0 =rµTµ⌫ +rµT D
µ⌫ , (61)

To study the gravitational waves in this modified theory, let us first look at the freely propagating degrees of freedom
of the gravitational field. We first set all the matter source to zero Tµ⌫ = 0. We will tend to the production of the
waves later.

fRµ⌫ �rµr⌫f = 8⇡G

✓
Tµ⌫ � 1

2
gµ⌫T

◆
, (62)

Ref: 1106.2476 [Living Rev. ’10]

2

I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)
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the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)

3

hT iµ⌫ ⌘ 1


4

L
(Kµ⌫ �Kgµ⌫) . (3)

They are expected to govern the late evolution of our universe. hT iµ⌫ will turn out to be the Brown-York stress energy
tensor [9] induced from higher dimensional space time.We will see L is related to the higher dimensional coupling
constant 

5

through L = 
5

/
4

. At the cosmological scale, we assume that Tµ⌫ only includes the stress energy tensor
of normal matter. While hT iµ⌫ in (3) represents the total dark components in our universe, such as the dark energy
and dark matter.

We are going to consider the parameterization in ⇤CDM model describing the evolution of the late universe, in
which the universe contains a positive cosmological constant ⇤ contribution to the dark energy with component ⌦

⇤

,
cold dark matter density parameter ⌦D, and baryon density parameter ⌦B . They satisfy ⌦D + ⌦B + ⌦

⇤

' 1 in
late universe since the radiation density parameter ⌦B ⇠ 10�4 is very small. Based on the modified Einstein field
equations (1) and constraint from the consistent embedding in higher dimensional flat bulk, we are going to show an
interesting constraint relation between these parameters,

CSZ: ⌦2

D =
1

2
⌦

⇤

(⌦D � ⌦B). (4)

Let us compare with the constraint relation in the Verlinde’s emergent gravity [6],

Verlinde: ⌦2

D =
4

3
⌦B . (5)

We take the parameters from the observation of the ⇤CDM model [13], with a bit priori choice of the parameters as

⌦
⇤

' 0.685, ⌦D ' 0.265, ⌦B ' 0.050. (6)

Comparing our formula (4) with Verlinde’s (5), we obtain

�CSZ ⌘ ⌦2

D � 1

2
⌦

⇤

(⌦D � ⌦B) ' �0.34% , (7)

�V ⌘ ⌦2

D � 4

3
⌦B ' 0.36% . (8)

We can see that our relation holds as well as the Verlinde’s with some di↵erence in approximation. We will show
exactly how to derive this equation (4) in the following.

A. Constraints From Hypersurface Embedding

Similar to the formula (2), let us write down the Einstein equation in d dimensional spacetime as

Rµ⌫ � 1

2
Rgµ⌫ = d [Tµ⌫ + hT iµ⌫ ] , (9)

with µ, ⌫ = 0, 1, ..., (d � 1), and d = 8⇡Gd/c
4. Tµ⌫ is the stress energy tensor of normal matters, and hT iµ⌫ is the

e↵ective dark components of our universe, which can include both of the dark energy and dark matter. The trace of
above equations yields the Ricci scalar

R = � 2d

d� 2
[T + hT i] . (10)

Now we assume that the geometry with metric gµ⌫ can be embedded into one higher dimensional spacetime, as a
hypersurface with the normal vector NA, and the indices A,B = 0, 1, ..., d. We can define the induced metric on the
hypersurface gAB = g̃AB �NANB as well as the extrinsic curvature Kµ⌫ ⌘ g A

µ g B
⌫ r̃

(ANB)

, with µ, ⌫ are the indices

on the hypersurface, which depend on the coordinate choices. r̃ is the covariant derivative associated with the bulk
metric g̃AB . Even though there are matters in the late universe, we require them to be localized on the hypersurface,

such that we still have G(d+1)

AB NANB = T (d+1)

AB NANB = 0 . Thus, considering the Gauss equations, the Hamiltonian
constraint equation of the hypersurface leads to

0 = 2G(d+1)

AB NANB ⌘ K2 �Kµ⌫Kµ⌫ �R. (11)
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Let’s using some parameters from ⇤CDM [3], with a bit priori choice as following

⌦
⇤

= 0.685, ⌦D = 0.265, ⌦B = 0.050. (5)

Compare our formula with Verlinde’s, we have

�V ⌘ ⌦2

D � 4

3
⌦B ' 0.36% , (6)

�CSZ ⌘ ⌦2

D � 1

2
⌦

⇤

(⌦D � ⌦B) ' �0.34% . (7)

Although our relation hold as well as Verlinde’s, they are still some subtile derivation in approximation.

MOND limit

on-going...

II. INDUCED ⇤CDM UNIVERSE

Similar to the formula in (1), let’s write down the Einstein equation in d dimension as

Rµ⌫ � 1

2
Rgµ⌫ = d(Tµ⌫ + Tµ⌫), (8)

with µ, ⌫ = 0, 1, ..., (d�1), and d = 8⇡Gd/c4. The Tµ⌫ is the stress tensor of normal matters, and Tµ⌫ is the e↵ective
dark sectors of our universe, which can include the dark energy and dark matters. The trace lead to the Ricci scalar

R = � 2d

d� 2
(T + T ) . (9)

Now consider one higher dimension embedding of a hyper-surface into the d dimensional spacetime. with the normal
vector NM= 1

L (X0

, Xi) which is defined towards the direction of coordinates. From which we can define the induce
metric on the hypersurface gMN = ⌘MN �NMNN as well as the extrinsic curvature

Kµ⌫ ⌘ g M
µ g N

⌫ r
(MNN)

, (10)

with µ, ⌫ the index on the hypersurface, which depends on the coordinate choices.

The Hamiltonian constraint equation

K2 �Kµ⌫Kµ⌫ = R+ 2G(d+1)

MN NMNN , (11)

with M,N = 0, 1, ..., d. If we define the following Brown-York stress tensor,

Tµ⌫ = � 1

d+1

(Kgµ⌫ �Kµ⌫) , (12)

with d+1

the Einstein’s constant in d + 1 dimension. Notice that in the above defination, there is a minuse sign
compare with the usual brown-York formula, which means the opsite side of the normal vector N Then (11) gives

T 2

d� 1
� Tµ⌫T µ⌫ =

R+ 2G(d+1)

MN NMNN

(d+1

)2
. (13)

De Sitter Spacetime.— Without the normal matters Tµ⌫=0, and Tµ⌫ = T̄µ⌫ ⌘ � ⇤

d
gµ⌫ . The cosmological

constant ⇤ = (d�1)(d�2)

2L2 as the dark energy. It can be embedded into d+ 1 dimensional flat spacetime

ds2d+1

= ⌘MNdXMdXN = �dX2

0

+ dX2

i , (14)

with i = 1, 2, ..., d. It is a hyperbolid spacetime with radius L and the normal vector are

L2 = �T 2 +X2

i , NM =
1

L
(X

0

, Xi). (15)

4

Interestingly, for the pure de-Sitter spacetime (15), after considering (10) with extrinsic curvature Kµ⌫ = 1
Lgµ⌫ ,

the Brown-York stress tensor (12) turns out to be Tµ⌫ = T̄µ⌫ = � 1
d+1

d�1
L gµ⌫ . Then we arrive at the stress tensor of

apparent dark energy,

T̄µ⌫ = �⇤d

d
gµ⌫ , when

d+1

d
=

2L

d� 2
. (18)

From (18) we read out the dark energy density formula

⇢⇤ = T̄µ⌫
uµu⌫

c4
=

⇤d

dc2
. (19)

After considering (14) with T = 0, we have the identity

T̄ 2

d� 1
� T̄ µ

⌫ T̄ ⌫
µ = � ⇢⇤c

2

d� 1
T̄ . (20)

Thus, assuming Tµ⌫ = T̄µ⌫ ⌘ � ⇤
d

gµ⌫ in the constraint equation (13), the pure de-Sitter spacetime satisfies the above
identity automatically. Notice here the Brown-York stress tensor plays the role of dark energy and there is no matter
or dark matter yet in the set-up.

Uniform Matter Perturbations. — Next we consider to add small amount of normal matters in with uniform
distribution, such that we treat the de-Sitter metric as background. It describes dark energy dominated universe like
today.

We consider that our university is uniform at large scale, and take the FLRM metric in d dimension,

ds2 =� c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦d�2

�
. (21)

In the ⇤CDM model, k = 0, and

H(a)2 = H2
0

⇥
⌦⇤ + (⌦D + ⌦B)a

�3 + ⌦Ra
�4

⇤
(22)

with H(a) ⌘ ȧ
a , and H0 is the Hubble constant today. Considering (18)(19), our assumption for the constraint relation

(14) becomes

T 2

d� 1
� Tµ⌫T µ⌫ = � ⇢⇤c

2

d� 1
(T + T ). (23)

This is the main constraint relation in this paper. Since in Einstein equation (8), Tµ⌫ is the Brown-York stress tensor
playing the role of dark matter and dark energy, and Tµ⌫ is the baryonic visible matter with mass density ⇢B ⌧ ⇢⇤.
The baryonic matter and radiation are with energy density,

TB
µ⌫ = ⇢Buµu⌫ , TR

µ⌫ = ⇢Ruµu⌫ + pRhµ⌫ . (24)

Now assume that the dark matter is induced with mass density ⇢D ⌧ ⇢⇤. The dark energy and cold dark matters
are all assumed to be related to the extrinsic curvature.

Tµ⌫ = T ⇤
µ⌫ + T D

µ⌫ , Tµ⌫ = TB
µ⌫ + TR

µ⌫ , (25)

where T ⇤
µ⌫ = �(⇢⇤c2)gµ⌫ and T D

µ⌫ = ⇢Duµu⌫ . Putting them back into the constraint equation (23), and subtracting
equation (20),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤(d⇢⇤ + ⇢D + ⇢B). (26)

If setting ⇢̃⇤ = ⇢⇤, we arrive at,

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If setting ⇢D ' 5⇢B , ⇢⇤ ' ⇢c � ⇢D � ⇢B ,

we can recover Verlinde’s constraint relation (4) approximately. Considering that the critical mass density of the
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Lgµ⌫ ,

the Brown-York stress tensor (12) turns out to be Tµ⌫ = T̄µ⌫ = � 1
d+1

d�1
L gµ⌫ . Then we arrive at the stress tensor of

apparent dark energy,

T̄µ⌫ = �⇤d

d
gµ⌫ , when
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d� 2
. (18)

From (18) we read out the dark energy density formula

⇢⇤ = T̄µ⌫
uµu⌫

c4
=

⇤d

dc2
. (19)

After considering (14) with T = 0, we have the identity

T̄ 2

d� 1
� T̄ µ

⌫ T̄ ⌫
µ = � ⇢⇤c

2

d� 1
T̄ . (20)

Thus, assuming Tµ⌫ = T̄µ⌫ ⌘ � ⇤
d

gµ⌫ in the constraint equation (13), the pure de-Sitter spacetime satisfies the above
identity automatically. Notice here the Brown-York stress tensor plays the role of dark energy and there is no matter
or dark matter yet in the set-up.

Uniform Matter Perturbations. — Next we consider to add small amount of normal matters in with uniform
distribution, such that we treat the de-Sitter metric as background. It describes dark energy dominated universe like
today.

We consider that our university is uniform at large scale, and take the FLRM metric in d dimension,

ds2 =� c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦d�2

�
. (21)

In the ⇤CDM model, k = 0, and
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�4

⇤
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with H(a) ⌘ ȧ
a , and H0 is the Hubble constant today. Considering (18)(19), our assumption for the constraint relation

(14) becomes

T 2

d� 1
� Tµ⌫T µ⌫ = � ⇢⇤c

2

d� 1
(T + T ). (23)

This is the main constraint relation in this paper. Since in Einstein equation (8), Tµ⌫ is the Brown-York stress tensor
playing the role of dark matter and dark energy, and Tµ⌫ is the baryonic visible matter with mass density ⇢B ⌧ ⇢⇤.
The baryonic matter and radiation are with energy density,

TB
µ⌫ = ⇢Buµu⌫ , TR

µ⌫ = ⇢Ruµu⌫ + pRhµ⌫ . (24)

Now assume that the dark matter is induced with mass density ⇢D ⌧ ⇢⇤. The dark energy and cold dark matters
are all assumed to be related to the extrinsic curvature.

Tµ⌫ = T ⇤
µ⌫ + T D

µ⌫ , Tµ⌫ = TB
µ⌫ + TR

µ⌫ , (25)

where T ⇤
µ⌫ = �(⇢⇤c2)gµ⌫ and T D
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⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)
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c2

i
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When d = 4, the stress tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If setting ⇢D ' 5⇢B , ⇢⇤ ' ⇢c � ⇢D � ⇢B ,

we can recover Verlinde’s constraint relation (4) approximately. Considering that the critical mass density of the
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6

It is our main result in (4). If we further consider ⌦
⇤

+ ⌦D + ⌦B ' 1 in the late universe, then

⌦2

D =
1

3
(⌦D � ⌦B + ⌦2

B). (32)

Considering ⌦D ' 5⌦B from (6), as well as ⌦B ' 0.05 ⌧ 1, we can also arrive at the Verlinde’s ⌦2

D ' 4

3

⌦B in
(5). On the other hand, since ⌦B + ⌦D . ⌦

⇤

, despite being not so precise, our de Sitter background is still a
good approximation. However, if we consider the dark matter in smaller scales around the galaxies and compare
with galactic rotational curves, we need to consider the e↵ects of back-reaction of normal matters. This is the same
situation in the earlier universe, when matters or radiations dominate the universe component and can not be treated
as perturbations on the background anymore. In such cases, this toy model turns out to be not enough, we will resort
to the more complicated model in the next section.

III. CONNECTION WITH BRANE WORLD MODEL IN A FLAT BULK

In this section, we consider a more consistent embedding of the FRW metric into one higher dimensional flat
spacetime [14]. We take the assumption that the total stress energy tensor of the dark components, including dark
matter and dark energy, are provided by the holographic stress tensor. We discuss its connection to the well studied
DGP brane world model, and with some special parameter choice, we can recover the constrain relation (4) in our
toy model.

Consider the 4 + 1 dimensional flat bulk M with action S
5

and metric g̃AB , along with the 3 + 1 dimensional time
like boundary @M with action S

4

and induced metric gµ⌫ , where

S
5

=
1

2
5

Z
M

d5x
p

�g̃R+
1


5

Z
@M

d4x
p�gK, (33)

S
4

=
1

2
4

Z
@M

d4x
p�g R+

Z
@M

d4x
p�gLM . (34)

K is the trace of extrinsic curvature, and LM is the Lagrange density of matters localized on the boundary. If choosing
the Gaussian normal coordinates of the bulk metric g̃AB , we have

ds2
5

= g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (35)

Assume the hypersurface @M located at y = 0. It is the shared boundary of the half bulk M
+

which covers the
region y > 0 and the half bulk M� which covers the region y < 0.

The bulk equations of motion are given by the variation of the total action with the bulk metric g̃µ⌫ ,

1


5

✓
RAB � 1

2
Rg̃AB

◆
+

1


4

✓
Rµ⌫ � 1

2
Rgµ⌫

◆
g̃µAg̃

⌫
B�(y) = TM

µ⌫ g̃
µ
Ag̃

⌫
B�(y) . (36)

with the matching junction condition at the hypersurface y = 0.

hT iK+

µ⌫ � hT iK�
µ⌫ +

1


4

Gµ⌫ = TM
µ⌫ . (37)

where Gµ⌫ ⌘ Rµ⌫ � 1

2

Rgµ⌫ . The e↵ective stress energy tensor from extrinsic curvature is

hT iK±
µ⌫ ⌘ 1


5

�K±
µ⌫ �K±gµ⌫

�
. (38)

We include the e↵ective cosmological constant in the Lagrangian LM , which leads to the stress tensor

TM
µ⌫ = � 2p�g

�

�gµ⌫

✓Z
@M

d4x
p�gLM

◆
. (39)

The extrinsic curvature is K±
µ⌫ ⌘ g̃Aµ g̃

B
⌫ r̃

(AN±
B)

|@M, and N± is chosen as the normal vector of @M along with the
±y directions, respectively.

We consider that our university is uniform and isotropic at large scale, and take the spatially flat FRW metric in
d = 4 dimensions, with the spatially flat metric

ds2
4

=� c2dt2 + a(t)2
⇥
dr2 + r2d⌦

2

⇤
. (40)
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hT iK+

µ⌫ � hT iK�
µ⌫ +

1


4

Gµ⌫ = TM
µ⌫ . (37)

where Gµ⌫ ⌘ Rµ⌫ � 1

2

Rgµ⌫ . The e↵ective stress energy tensor from extrinsic curvature is

hT iK±
µ⌫ ⌘ 1


5

�K±
µ⌫ �K±gµ⌫

�
. (38)

We include the e↵ective cosmological constant in the Lagrangian LM , which leads to the stress tensor

TM
µ⌫ = � 2p�g

�

�gµ⌫

✓Z
@M

d4x
p�gLM

◆
. (39)

The extrinsic curvature is K±
µ⌫ ⌘ g̃Aµ g̃

B
⌫ r̃

(AN±
B)

|@M, and N± is chosen as the normal vector of @M along with the
±y directions, respectively.

We consider that our university is uniform and isotropic at large scale, and take the spatially flat FRW metric in
d = 4 dimensions, with the spatially flat metric

ds2
4

=� c2dt2 + a(t)2
⇥
dr2 + r2d⌦

2

⇤
. (40)

7

The consistent embedding in higher dimensional flat spacetime has been discussed in [15], where the bulk metric (35)
in Gaussian normal coordinates

ds2
5

= g̃ABdx
AdxB = dy2�n(y, t)2c2dt2 + a(y, t)2

⇥
dr2 + r2d⌦

2

⇤
. (41)

The consistency embedding functions are solved as [16],

a(y, t)2 = a(t)2 + y2
ȧ(t)2

c2
± 2y

r
a(t)2

ȧ(t)2

c2
+ I, (42)

n(y, t) =
@ta(y, t)

ȧ(t)
. (43)

Here I is the integration constant, with dimension of [L]�2.

A. Parameterization in DGP Brane World Model

In the usual DGP model [10], the Z
2

symmetry along the brane in the bulk has been imposed. In the self
accelerating branch of the DGP model (sDGP), TM

µ⌫ includes the matters. In the normal branch of the DGP model
(nDGP), depending on the parameterization, a cosmological constant needs to be supplemented. And hT iKµ⌫ provides
the e↵ective dark energy. The boundary condition is chosen as hT iK+

µ⌫ = �hT iK�
µ⌫ , with the modified Einstein field

equations

1


4

Gµ⌫ = TM
µ⌫ + hT iKµ⌫ , hT iKµ⌫ ⌘ 2hT iK�

µ⌫ =
2


5

�K�
µ⌫ �K�gµ⌫

�
. (44)

On the other hand, I = 0 in (42) is usually chosen, then the metric (41) becomes

ds2
5

= dy2 �

1± |y|

c

ä(t)

ȧ(t)

�
2

c2dt2 +


1± |y|

c

ȧ(t)

a(t)

�
2

a(t)2
�
dr2 + r2d⌦

2

�
. (45)

The above two equations will lead to the modified Friedmann equation,

H(t)2 =

4

c4

3
[⇢M (t) + ⇢K(t)] , (46)

as well as the energy conservation equation for each component

⇢̇ı(t) = �3H(t)
⇥
⇢ı(t) + pı(t)/c

2

⇤
, ı = M,K . (47)

Plugging the metric (45) into hT iKµ⌫ in (44), we can read out the e↵ective energy density and pressure

⇢K = ± 2


5

c4
3H(t), (48)

pK = ⌥ 2


5

c2

h
3H(t) +

Ḣ(t)

H(t)

i
. (49)

The positive ⇢K and negative pK correspond to the self-accelerating branch in DGP model. The negative ⇢K and
positive pK correspond the normal branch in DGP model, and the extra e↵ective cosmological constant is required
in equation (46). Since hT iKµ⌫ in (44) is proportional to the Brown-York stress energy tensor, it is natural to see that
the Hamiltonian constraint equation on the brane in the bulk (11) is satisfied and leads to

hT i2K
3

� hT iKµ⌫hT iµ⌫K = � 
4

(
5

/2)2
[TM + hT iK] . (50)

Comparing with the constraint relation in our toy model (15), the coupling constant 
5

is replaced by 
5

/2 in (50).
It is due to the double copies of the Brown-York stress in hT iKµ⌫ at (44).

Here we pay attention to the self accelerating branch where the modified Friedmann equation is summarized as

H(t)2

H2

0

=
⌦M

a(t)3
+ ⌦1/2

`

H(t)

H
0

, ⌦` =
c2

`2H2

0

, ` ⌘ (
5

/2)


4

. (51)
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ȧ(t)2

c2
+ I, (42)

n(y, t) =
@ta(y, t)
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H(t)2

H2

0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2

0

+
⌦I

a(t)4

�
1/2

(63)

H2

H2

0

' ⌦B

a3
+

s
⌦

⇤

⇣H2

H2

0

+
⌦I

a4

⌘
(64)

S
Cuto↵

= S
CFT

� S
AdS

|1rc (65)

(66)

S
Rindler

= S
CFT

� S
AdS

|1r0+✏ (67)

(68)

S
AdS

= S
CFT

(69)

Or equivalently we have

H(t)2

H2

0

=
⌦M

a(t)3
+

⌦
⇤

2
+


⌦2

⇤

4
+

⌦
⇤

⌦M

a(t)3
+

⌦
⇤

⌦I

a(t)4

�
1/2

. (70)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2

0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦

⇤

. (71)

If only setting ⌦M = ⌦B , and equal the right hand sides of (68) and (69) at a(t
0

) = 1, we arrive at

⌦2

D = ⌦
⇤

⌦I � ⌦
⇤

(⌦D � ⌦B) . (72)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (73)

we can recover the constraint relation of our toy model in (4). Considering (71) and plugging the ⇤CDM parameter-
ization (69) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤

+ ⌦D), pH ' �⇢c⌦⇤

. (74)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1

+ Sd, where

Sd+1

=
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1

� 2⇤d+1

+ LM] +
1

d+1

Z
@M

ddx
p�gK, (75)
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After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)

9

H(t)2

H2
0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
(63)

H2

H2
0

' ⌦B

a3
+

s
⌦⇤

⇣H2

H2
0

+
⌦I

a4

⌘
(64)

Or equivalently we have

H(t)2

H2
0

=
⌦M

a(t)3
+

⌦⇤

2
+


⌦2

⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (65)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2
0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦⇤. (66)

If only setting ⌦M = ⌦B , and equal the right hand sides of (65) and (66) at a(t0) = 1, we arrive at

⌦2
D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B) . (67)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (68)

we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤ + ⌦D), pH ' �⇢c⌦⇤. (69)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1 � 2⇤d+1 + LM] +
1

d+1

Z
@M

ddx
p�gK, (70)

Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.

⌧�1
c ' k2

4⇡Tc
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I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)
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After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)

⌧�1
c ' k2

4⇡Tc

9

H(t)2

H2
0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
(63)

H2

H2
0

' ⌦B

a3
+

s
⌦⇤

⇣H2

H2
0

+
⌦I

a4

⌘
(64)

Or equivalently we have

H(t)2

H2
0

=
⌦M

a(t)3
+

⌦⇤

2
+


⌦2

⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (65)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2
0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦⇤. (66)

If only setting ⌦M = ⌦B , and equal the right hand sides of (65) and (66) at a(t0) = 1, we arrive at

⌦2
D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B) . (67)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (68)

we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤ + ⌦D), pH ' �⇢c⌦⇤. (69)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1 � 2⇤d+1 + LM] +
1

d+1

Z
@M

ddx
p�gK, (70)

Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.
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I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)

Ref: 1712.09326 [Cai, Sun, Zhang]

https://inspirehep.net/author/profile/Yun.Long.Zhang.1


Yum-Long Zhang   “Holographic Screens in Flat Spacetime” 

https://inspirehep.net/author/profile/Yun.Long.Zhang.1


➢

➢

➢

➢ I. Bredberg, C. Keeler, V. Lysov and A. Strominger, arXiv:1101.2451

23Yum-Long Zhang   “Holographic Screens in Flat Spacetime” 

http://inspirehep.net/author/profile/Y.L.Zhang.1


Yum-Long Zhang   “Holographic Screens in Flat Spacetime” 

⌘

s
' 1

4⇡

~
kB

5

After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)
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H(t)2

H2
0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
(63)

H2

H2
0

' ⌦B

a3
+

s
⌦⇤

⇣H2

H2
0

+
⌦I

a4

⌘
(64)

Or equivalently we have

H(t)2

H2
0

=
⌦M

a(t)3
+

⌦⇤

2
+


⌦2

⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (65)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2
0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦⇤. (66)

If only setting ⌦M = ⌦B , and equal the right hand sides of (65) and (66) at a(t0) = 1, we arrive at

⌦2
D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B) . (67)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (68)

we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤ + ⌦D), pH ' �⇢c⌦⇤. (69)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1 � 2⇤d+1 + LM] +
1

d+1

Z
@M

ddx
p�gK, (70)

Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.
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