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Figure 5: Measurements of the coefficient (1 + )/2 from light deflection and time delay measurements.

Its GR value is unity. The arrows at the top denote anomalously large values from early eclipse
expeditions. The Shapiro time-delay measurements using the Cassini spacecraft yielded an agreement

with GR to 10–3  percent, and VLBI light deflection measurements have reached 0.02 percent. Hipparcos
denotes the optical astrometry satellite, which reached 0.1 percent.



“Gravitational Lens”

Gravitational deflection angle of light 
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Relativistic deflection of background
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Kailash C. Sahu,1* Jay Anderson,1 Stefano Casertano,1 Howard E. Bond,2

Pierre Bergeron,3 Edmund P. Nelan,1 Laurent Pueyo,1 Thomas M. Brown,1

Andrea Bellini,1 Zoltan G. Levay,1 Joshua Sokol,1 Martin Dominik,4 Annalisa Calamida,1

Noé Kains,1 Mario Livio5

Gravitational deflection of starlight around the Sun during the 1919 total solar eclipse
provided measurements that confirmed Einstein’s general theory of relativity. We have
used the Hubble Space Telescope to measure the analogous process of astrometric
microlensing caused by a nearby star, the white dwarf Stein 2051 B. As Stein 2051 B
passed closely in front of a background star, the background star’s position was deflected.
Measurement of this deflection at multiple epochs allowed us to determine the mass
of Stein 2051 B—the sixth-nearest white dwarf to the Sun—as 0.675 ± 0.051 solar masses.
This mass determination provides confirmation of the physics of degenerate matter and
lends support to white dwarf evolutionary theory.

O
ne of the key predictions of general rela-
tivity set forth by Einstein (1) was that the
curvature of space near a massive body
causes a ray of light passing near it to be
deflected by twice the amount expected

fromclassicalNewtonian gravity. The subsequent
experimental verification of this effect during the
1919 total solar eclipse (2, 3) confirmed Einstein’s

theory, whichwas declared “one of the greatest—
perhaps the greatest—of achievements in the
history of human thought” (4).
In a paper in this journal 80 years ago, Einstein

(5) extended the concept to show that the cur-
vature of space nearmassive objects allows them
to act like lenses, with the possibility of substan-
tially increasing the apparent brightness of a back-

ground star. Despite Einstein’s pessimistic view
that “there is no hope of observing this phenom-
enon directly” (5), the prospect of detecting dark
matter through this effect (6), now known as
microlensing, revived interest in this subject. Cou-
pledwith improvements in instrumentation, this
led to the detection of large numbers of micro-
lensing brightening events in the Galactic bulge
(7), theMagellanic Clouds (8, 9), and the Androm-
edaGalaxy (10).Monitoring of these events has led
to thediscovery of several extrasolar planets (11, 12).
Other forms of gravitational lensing by intervening
massive galaxies and dark matter produce multi-
ple or distorted images of background galaxies (13).
Within the Milky Way, all microlensing en-

counters discovered so far have been brightening
events. No shift in the apparent position of a back-
ground star caused by an intervening massive
body has been observed outside the solar system—
which is not surprising, because the deflections
are tiny. Even for the nearest stars, the angular
offset is two to three orders ofmagnitude smaller
than the deflection of 1.75 arcsec measured dur-
ing the 1919 solar eclipse.

Relativistic deflections by
foreground stars

When a foreground star (the lens) is perfectly
superposed on a background star (the source),
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Fig. 1. Hubble Space Telescope image show-
ing the close passage of the nearby white
dwarf Stein 2051 B in front of a distant
source star. This color image was made by
combining the F814W (orange) and F606W
(blue) frames, obtained at epoch E1. The path of
Stein 2051 B across the field due to its proper
motion toward southeast, combined with its
parallax due to the motion of Earth around the
Sun, is shown by the wavy cyan line. The small
blue squares mark the position of Stein 2051
B at each of our eight observing epochs, E1
through E8. Its proper motion in 1 year is shown
by an arrow. Labels give the observation date
at each epoch. The source is also labeled; the
motion of the source is too small to be visible on
this scale. Linear features are diffraction spikes
from Stein 2051 B and the red dwarf star Stein
2051 A, which falls outside the lower right of the
image. Stein 2051 B passed 0.103 arcsec from
the source star on 5 March 2014. Individual
images taken at all the eight epochs, and an
animated video showing the images at all epochs
are shown in fig. S1 and movie S1 (24).
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First measure of gravitational deflection angle 
of the nearby white dwarf (Stein 2051B) 



Gravitational bending of light 
(Gravitational Lens) 

1) Testing gravity theories

2) Astronomical tool (natural telescope)



Derivation of Standard formula (at textbook level)

� =
4GM

bc2

assumes asymptotic source and observer(receiver). 

However, in practice, 

rR, rS ��

rRS �=�



Ishihara+(2016)

I. INTRODUCTION

II. OPTICAL METRIC AND GAUSS-BONNET THEOREM

A. Static and spherically symmetric spacetime

We consider a static and spherically symmetric (SSS) spacetime. The SSS spacetime is

described as

ds2 = gµνdxµdxν

= gtt(r)dt2 + grr(r)dr2 + r2dΩ2, (1)

where µ and ν run from 0 to 3, and dΩ2 ≡ dθ2 + sin2 θdφ2. By introducing the notation as

A(r) ≡ −gtt and B(r) ≡ grr, this is rewritten as

ds2 = −A(r)dt2 + B(r)dr2 + r2dΩ2. (2)

B. Optical metric

In this paper, we consider light rays. The trajectories satisfy the null condition as ds2 = 0,

which is rearranged as, for Eq. (2),

dt2 = γijdxidxj

=
B(r)

A(r)
dr2 +

r2

A(r)
dΩ2, (3)

where i and j denote 1, 2 and 3. γij is often called the optical metric [1]. The optical metric

defines a three-dimensional space (denoted as Mopt), in which the light ray is expressed as

a curve.

Without loss of the generality, we can choose the photon orbital plane as the equatorial

plane (θ = π/2), because of the spherical summery of the spacetime. The two-dimensional

coordinates on the equatorial plane are denoted as xI , where I denotes r, φ. The nonvan-

ishing components of the optical metric are

γrr =
B(r)

A(r)
, (4)

γφφ =
r2

A(r)
. (5)
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�

�
dt = 0 Fermat’s principle

In this space with      ,  light rays are spatial geodesic.�ij

Light ray

�ij �= gijNote 

Optical metric

We consider a  space defined by optical metric.

�

� �

�ij

�
dxi

dt

� �
dxj

dt

�
dt = 0



geometrical configuration

Light ray



D. Angles

For the spherically symmetric spacetime, it is convenient to use the polar coordinates,

where we can define the dyad as

eI
rad =

(
1

√
γrr

, 0

)
, (12)

eI
ang =

(
0,

1
√

γφφ

)
, (13)

respectively. They correspond to the unit vector along the radial direction and that along

the angular direction, respectively.

We denote the angle of the light ray measured from the radial direction as Ψ. It can be

defined by

cos Ψ ≡ γIJeI
radKJ , (14)

where we used that eI
rad and KJ are unit vectors. This expression is rewritten as

cos Ψ = γrre
r
radKr

=

√
γrrbA(r)

r2

dr

dφ
. (15)

This is rewritten as

sin Ψ =
b
√

A(r)

r
, (16)

where we used the orbit equation.

Let ΨR and ΨS denote the angle measured at the receiver position and the source position,

respectively. The separation angle between the receiver and source measured at the center of

the lens object, namely at the origin of the spatial coordinates, is denoted as φRS ≡ φR−φS,

where the longitudes of the receiver and the source are denoted as φR and φS, respectively.

From the three angles ΨR, ΨS and φRS, let us define

α ≡ ΨR − ΨS + φRS. (17)

Every two points among the three points of the receiver (R), the source (S) and the lens

center (L) are connected by the geodesics in the space Mopt. Hence, the three points in

a non-Euclidean space consist of a triangle, which may be denoted as ∆LRS. The above

definition of α depends on the angles that are defined in a covariant way but at three

different points. Is α well-defined? We shall discuss this below.

4

We define

This definition seems to make no sense, because

1)  Two “Ψ”s are angles at different positions. 

2) “Φ” is merely an angular coordinate. 

 We examine this definition in more detail.



FIG. 1: Top: Triangle embedded in a curved space. αΨ does not always vanish. Bottom: Triangle

in Euclidean space. It follows that αΨ = 0.

FIG. 2: Schematic figure for the Gauss-Bonnet theorem.
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Gauss-Bonnet theorem
��

T
KdS +

�

�T
�gd� +

N�

a=1

�a = 2��



FIG. 1: Schematic figure for the Gauss-Bonnet theorem.

FIG. 2: Quadrilateral ∞
R !∞

S embedded in a curved space in Mopt.
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Euclidean space

Let us consider a quadrilateral ∞
R !∞

S , which consists of the spatial curve for the light ray,

two outgoing radial lines from R and from S and a circular arc segment Cr of coordinate

radius rC (rC → ∞) centered at the lens which intersects the radial lines through the receiver

or the source. See Figure 2. Henceforth, we restrict ourselves within the asymptotically flat

spacetime, for which κg → 1/rC and d" → rCdφ as rC → ∞ (See e.g. [27]). Hence,
∫

Cr
κgd" → φRS. Applying this result to the Gauss-Bonnet theorem for ∞

R !∞
S , we obtain

α = ΨR − ΨS + φRS

= −
∫∫

∞
R !∞

S

KdS. (9)

Eq. (9) shows that α is invariant in differential geometry and α is well-defined even if L is

a singularity point. Moreover, it follows that α = 0 in Euclidean space.

Eq. (9) recovers the deflection angle of light in the far limit of the source and the receiver

as

α∞ = 2

∫ u0

0

du√
F (u)

− π, (10)

where u is the inverse of r, u0 is the inverse of the closest approach (often denoted as r0)

and F (u) is defined as

F (u) ≡
(

du

dφ

)2

, (11)

which can be computed from Eq. (3).

Next, we consider another case that the distance from the source to the receiver is finite

because every observed stars and galaxies are located at finite distance from us (e.g., at

finite redshift in cosmology) and the distance is much larger than the size of the lens. Let

uR and uS denote the inverse of rR and rS, respectively, where rR and rS are finite. Eq. (7)

becomes [28]

α =

∫ u0

uR

du√
F (u)

+

∫ u0

uS

du√
F (u)

+ ΨR − ΨS. (12)

III. EXTENSION TO A STRONG DEFLECTION LIMIT

In the previous section for the weak deflection, a spatial curve from the source to the

receiver is simple. In the strong deflection limit, however, a spatial curve from the source to

the receiver may have a winding number that can exceed unity. Therefore, the spatial curve

5

coordinate-invariant
Ishihara et al. (2016)

See also Gibbons&Werner (2008) for r=∞ case 
(R and S are in Euclid space)

Asymptotically flat spacetime



Let us consider the triangle ∆LRS. The angle φRS is the inner angle at the apex L, while

the angle ΨS is the outer angle at the apex S. By the definition of the angle ΨR, finally, ΨR

is the vertical angle of the inner angle at the apex R and hence it is the same as the inner

angle at R. Therefore, α is rearranged as

α =
3∑

a=1

εa − π, (18)

where εa (a = 1, 2 and 3) denote the inner angles in the triangle ∆LRS such as φRS and ΨR.

If the space Mopt is flat, it follows that α = 0. Hence, this might allow us to interpret α as

a measure of the deviation from Euclidean space. We shall apply Gauss-Bonnet theorem to

the triangle ∆LRS in the following.

E. Local Gauss-Bonnet theorem

Suppose that M is a two-dimensional Riemannian manifold and T is a domain with

boundary ∂T that is a piecewise regular curve. Let the jump angles between the curves be

θa (a = 1, 2, · · · , N). Then,
∫∫

T

KdS +

∫

∂T

κgd( +
N∑

a=1

θa = 2π, (19)

where K denotes the Gaussian curvature of the space T , dS is the area element of the surface,

κg means the geodesic curvature of ∂T , and ( is the line element along the boundary.

By using the local Gauss-Bonnet theorem for N = 3 case, Eq. (18) is rewritten as

α =

∫∫

∆LRS

KdS +

∫

∂∆LRS

κgd(, (20)

where ∂∆LRS is the boundary of the triangle ∆LRS and we use εa + θa = π. For our case,

κg = 0. Therefore, we obtain

α =

∫∫

∆LRS

KdS. (21)

Eq. (21) shows precisely that α is invariant in differential geometry and thus the definition

by Eq. (17) can be justified. Geometricians might define α by Eq. (21).

III. EXAMPLES

There are two ways of calculating α. One method is that we use Eq. (18). For this

method, we need to calculate the three angles of ΨR, ΨS and φRS. The other method is to

5

use Eq. (21), where we first calculate the Gaussian curvature K with the optical metric and

next we integrate it over the triangle ∆LRS. Hence, it is likely that the first method is much

easier than the second one.

A. Asymptotically flat case

Let us consider an asymptotically flat spacetime. Then, we have A(r) → 1 and B(r) → 1

as r → ∞. As usual, moreover, we assume that the source and receiver are located at the

null infinity. Namely, we assume rR → ∞ and rS → ∞ . Then, ΨR = 0 and ΨS = π. Hence,

we obtain

α = φRS − π. (22)

What we have to do is to compute φRS.

The orbit equation for the light ray for the SSS spacetime is in a general form as

(
du

dφ

)2

= F (u), (23)

where u is the inverse of r. Please see Eq. (11) for more detail.

Integrating Eq. (23) leads to the angle φRS as

φRS = 2

∫ u0

0

du√
F (u)

, (24)

where u0 is the inverse of the closest approach that is often denoted as r0. Therefore, we

obtain

α = 2

∫ u0

0

du√
F (u)

− π. (25)

This is exactly the deflection angle of light in the literatures. Therefore, α may be interpreted

as the deflection angle of light.

B. Finite distance cases

In practice, it may be a good approximation in astronomical situations to assume that

they are nearly at the null infinity. To be more precise, we assume the finite distance between

the source and the receiver, since we observe astronomical objects such as stars and galaxies

at finite distance (e.g., at finite redshift in cosmology). It is correct in principle to assume
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the source and the receiver, since we observe astronomical objects such as stars and galaxies

at finite distance (e.g., at finite redshift in cosmology). It is correct in principle to assume

6
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Substituting Eqs. (10) and (17) into the right-hand side of Eq. (18) and rearranging it, we

obtain

δα = (ΨR − ΨS + π) +

∫ 0

uR

du√
F (u)

+

∫ 0

uS

du√
F (u)

. (19)

This expression suggests two origins of the finite-distance corrections. One origin is the

angles ΨR and ΨS that are defined at the receiver and the source at finite distance, where the

space is non-Euclidean [34]. The other origin is the two path integrals, one from the receiver

position to the spatial infinity and the other from the source to the infinity. Therefore, if

both the receiver and the source are in the weak field region as is common in astronomy,

the finite-distance correction comes only from the weak field region but not from the strong

field region, even if the light ray passes near the photon sphere (r0 ∼ rph), where rph denotes

the photon sphere radius. This is quite reasonable.

B. Approximations

As a concrete example, henceforth, we focus on the Schwarzschild black hole with mass

M . Then, Eq. (11) becomes

F (u) =
1

b2
− u2 + 2Mu3. (20)

Eq. (17) with F (u) given by Eq. (20) can be solved analytically but leads to cumbersome

expressions involving incomplete elliptic integrals of the first kind. In the case that the source

and the receiver are far from the lens (rS # b, rR # b) but the light ray passes near the

photon sphere (r0 ∼ 3M), Eq. (17) can be approximated and simplified considerably as

α =
2M

b

[√
1 − b2u2

R +
√

1 − b2u2
S − 2

]

+ 2 log

(
12(2 −

√
3)r0

r0 − 3M

)
− π

+ O

(
M2

rR
2
,
M2

rS
2
, 1 − 3M

r0

)
, (21)

where the logarithmic term [31] was used for the last term of Eq. (17). Here, the leading

terms in ΨR and ΨS cancel out with the terms coming from the integrals. Therefore, ΨR

and ΨS do not appear in the final expression of Eq. (21). See Appendix for more details.

As stated above, it is natural that the logarithmic term due to the strong field is inde-

pendent of finite-distance corrections such as a multiplication by
√

1 − (buS)2. By chance,

8

Schwarzschild metric

δα for the strong deflection limit (See Eq. (17)) is the same as that for the weak deflection

case (See e.g. Eq. (29) in [28]). This suggests that the finite-distance correction for the

strong deflection limit is of the same order as

δα ∼ O

(
Mb

rS
2

+
Mb

rR
2

)
, (22)

for the weak field case (e.g. [28]). Namely, the correction is linear in the impact parameter.

This implies that the finite-distance correction for the weak deflection case (large b) is larger

than that in the strong deflection limit (small b), if the other parameters are fixed. In the

next section, we shall discuss in more detail.

IV. POSSIBLE OBSERVATIONAL CANDIDATES

A. Gravitational bending of light by the Sun

We assume that an observer at the Earth sees the light bending by the solar mass, while

the source is practically at the asymptotic region. If the light ray passes near the solar

surface, Eq. (22) implies that the finite-distance correction to this case is of the order of

δα ∼ Mb

rR
2

∼ 10−5arcsec. ×
(

M

M"

)(
b

R"

)(
1AU

rR

)2

, (23)

where 4M"/R" ∼ 1.75 arcsec., and R" denotes the solar radius. Note that Eq. (23) comes

from Eq. (29) in Ref. [28] for the weak-field limit and therefore it is independent of Eq.

(21) for the strong deflection limit.

This correction of ∼ 10−5 arcsec. (= 10 micro arcseconds), is close to the angular

accuracy within the capability of near-future astronomy. For instance, a current astrometry

space mission Gaia [35] and a future one JASMINE (Japan Astrometry Satellite Mission for

Infrared Exploration) [36] are expected to approach nearly ten micro arcseconds, though the

solar direction is too bright and even dangerous for these telescopes. In order to measure

the above finite-distance correction, a specially dedicated instrument such as a corona graph

might be needed or a total solar eclipse for an astrometry satellite could be used along the

original idea by Arthur Eddington.

9

For both weak and strong deflection limits, 

Next, we consider a case of two loops as shown by Figure 5, for which we draw auxiliary

lines to split the configuration into four quadrilaterals (See Figure 6). For each quadrilateral,

we obtain

α(1) = (π − θ1) − ΨS + φ(1)
RS,

α(2) = (π − θ3) − θ2 + φ(2)
RS,

α(3) = (π − θ5) − θ4 + φ(3)
RS,

α(4) = ΨR − θ6 + φ(4)
RS, (15)

where φ(1)
RS + φ(2)

RS + φ(3)
RS + φ(4)

RS = φRS. We thus obtain

α = α(1) + α(2) + α(3) + α(4)

= ΨR − ΨS + φRS, (16)

where we use θ1 + θ2 = θ3 + θ4 = θ5 + θ6 = π. While Eq. (16) is derived for the two-loop

case, it reveals again the form of Eq. (7). Note that one loop, from which the quadrilaterals

(2) and (3) can be constructed, makes the contribution to α only in terms of φ(2)
RS + φ(3)

RS.

Finally, we consider any winding number W . We construct 2W quadrilaterals, for which

the inner angles at finite distance from L are denoted as θ0, · · · , θ2W in order from S to R.

Here, θ0 = ΨS and θ2W = π − ΨR. See Figure 7 for one of the quadrilaterals. Any pair of

neighboring quadrilaterals (N) and (N+1) makes the contribution to α only by φ(N)
RS +φ(N+1)

RS ,

because θ2N−1 + θ2N = θ2N+1 + θ2N+2 = π and the auxiliary lines cancel out. By induction,

therefore, Eq. (7) can be derived for any winding number.

Eq. (7), which is equivalent to Eq. (12) by using the orbit equation, is rearranged as

α = ΨR − ΨS + φRS

= ΨR − ΨS +

∫ 0

uR

du√
F (u)

+

∫ 0

uS

du√
F (u)

+ 2

∫ u0

0

du√
F (u)

. (17)

The finite-distance correction to the deflection angle of light, denoted as δα, is the differ-

ence between the asymptotic deflection angle and the deflection angle for the finite distance

case. It is expressed as

δα = α − α∞. (18)

7
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δα for the strong deflection limit (See Eq. (17)) is the same as that for the weak deflection

case (See e.g. Eq. (29) in [28]). This suggests that the finite-distance correction for the

strong deflection limit is of the same order as

δα ∼ O

(
Mb

rS
2

+
Mb

rR
2

)
, (22)

for the weak field case (e.g. [28]). Namely, the correction is linear in the impact parameter.

This implies that the finite-distance correction for the weak deflection case (large b) is larger

than that in the strong deflection limit (small b), if the other parameters are fixed. In the

next section, we shall discuss in more detail.

IV. POSSIBLE OBSERVATIONAL CANDIDATES

A. Gravitational bending of light by the Sun

We assume that an observer at the Earth sees the light bending by the solar mass, while

the source is practically at the asymptotic region. If the light ray passes near the solar

surface, Eq. (22) implies that the finite-distance correction to this case is of the order of

δα ∼ Mb

rR
2

∼ 10−5arcsec. ×
(

M

M"

)(
b

R"

)(
1AU

rR

)2

, (23)

where 4M"/R" ∼ 1.75 arcsec., and R" denotes the solar radius. Note that Eq. (23) comes

from Eq. (29) in Ref. [28] for the weak-field limit and therefore it is independent of Eq.

(21) for the strong deflection limit.

This correction of ∼ 10−5 arcsec. (= 10 micro arcseconds), is close to the angular

accuracy within the capability of near-future astronomy. For instance, a current astrometry

space mission Gaia [35] and a future one JASMINE (Japan Astrometry Satellite Mission for

Infrared Exploration) [36] are expected to approach nearly ten micro arcseconds, though the

solar direction is too bright and even dangerous for these telescopes. In order to measure

the above finite-distance correction, a specially dedicated instrument such as a corona graph

might be needed or a total solar eclipse for an astrometry satellite could be used along the

original idea by Arthur Eddington.

9

Examples

Sun

Sgr A*

Figure 8 shows numerical calculations of the bending angle of light due to the finite

distance of the receiver. These analytic and numerical results, Eq. (23) and Figure 8,

are consistent with each other and they suggest that δα by the solar mass might not be

negligible in future astrometry observations. Note that the above correction happens to be

comparable to the deflection of light at the second post-Newtonian order. If a 2PN test of

the light bending by the Sun is done in the future, therefore, the above correction might be

relevant.

B. Sgr A∗

Next, we consider the strong deflection limit. One of the most plausible candidates for

the strong deflection is at the center of our Galaxy. It is identified with Sgr A∗. In this case,

the receiver distance is much larger than the impact parameter of light, while a source star

may be in the central region of our Galaxy.

For Sgr A∗, Eq. (22) implies

δα ∼ Mb

rS
2

∼ 10−5arcsec. ×
(

M

4 × 106M#

) (
b

3M

)(
0.1pc

rS

)2

, (24)

where we assume the mass of the central black hole as M ∼ 4 × 106M# and the strong

deflection limit as b ∼ 3M . This angle might be reachable in near-future astronomy.

Please see Figure 9 for numerical calculations of the finite-distance correction due to the

source location. This figure and also Eq. (24) suggest that δα can be of the order of ten (or

more) micro arcseconds, if a source star is sufficiently close to Sgr A∗, for instance within a

tenth of one parsec from Sgr A∗. In other words, for such a close source case, even though

the source is still in the weak field, the infinite-distance limit is no longer sufficient. We have

to take account of finite-distance corrections that are proposed in this paper.

V. CONCLUSION

For a static, spherically symmetric and asymptotically flat spacetime, we used the Gauss-

Bonnet theorem to show that Eq. (17) gives the exact bending angle of light especially by

taking account of the finite distance from a lens object to a light source and a receiver,

10



1×10 5×10 1×10 5×10 1×10
10

10 6

10 5

10 4

rR [ km ]

|
|
[a
rc
se
c
]

FIG. 8: δα given by Eq. (23) for the Sun. The vertical axis denotes the finite-distance correction to

the deflection angle of light and the horizontal axis denotes the receiver distance rR. The solid curve

(blue in color) and dashed one (red in color) correspond to b = R! and b = 10R!, respectively.

The dotted line (yellow in color) corresponds to 10 micro arcseconds.
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FIG. 9: δα given by Eq. (24) for the Sgr A∗. The vertical axis denotes the finite-distance correc-

tion to the deflection angle of light and the horizontal axis denotes the source distance rS . The

solid curve (blue in color) and dashed one (red in color) correspond to b = 6M and b = 102M ,

respectively. The dotted line (yellow in color) corresponds to 10 micro arcseconds.
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Hence, we obtain

φRS =π − arcsin(buR) − arcsin(buS)

+
rg

b

[
1√

1 − b2u2
R

(
1 − 1

2
b2u2

R

)
+

1√
1 − b2u2

S

(
1 − 1

2
b2u2

S

)]

+
Λb3

6

[
uR√

1 − b2u2
R

+
uS√

1 − b2u2
S

]
+

rgΛb

12

[
2 − 3b2u2

R

(1 − b2u2
R)

3
2

+
2 − 3b2u2

S

(1 − b2u2
S)

3
2

]
+ O(r2

g , Λ
2).

(36)

By using Eqs. (34) and (36), we obtain the correct deflection angle of light as

α =
rg

b

[√
1 − b2u2

R +
√

1 − b2u2
S

]

− Λb

6

[√
1 − b2u2

R

uR
+

√
1 − b2u2

S

uS

]

+
rgΛb

12

[
1√

1 − b2u2
R

+
1√

1 − b2u2
S

]
+ O(r2

g , Λ
2). (37)

Some terms in this expression may apparently diverge in the limit as both buR → 0 and

buS → 0. Note that this limit has no relevance with astronomical observations in the Kottler

spacetime. Therefore, the apparent divergence does not matter.

Aghili, Bolen and Bombelli have recently discussed numerically effects of a slowly varying

Hubble parameter on the gravitational lensing [25]. It is left as a future work to examine

an application of the present approach to such a cosmological model with a slowly varying

Hubble parameter.

B. Weyl conformal gravity case

Weyl conformal gravity introduces three independent parameters (often denoted as β, γ

and k) into the spherical solution, for which Birkhoff’s theorem was proven in conformal

gravity [26]. The line element with the three parameters is [24]

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2(dθ2 + sin2 θdφ2),

A(r) = 1 − 3mγ − 2m

r
+ γr − kr2, (38)

where we defined m ≡ β(2 − 3βγ)/2. The term with the coefficient k makes the same

contribution as the cosmological constant in the Kottler spacetime that has been studied

above. Henceforth, we omit the r2 term for brevity.
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By using Eq. (16), ΨR − ΨS is expanded in a power series in β and γ as

ΨR − ΨS ≡ΨSch
R − ΨSch

S

+
bγ

2

(
uR√

1 − b2u2
R

+
uS√

1 − b2u2
S

)

− mγ

2

[
buR(2 − b2u2

R)

(1 − b2u2
R)3/2

+
buS(2 − b2u2

S)

(1 − b2u2
S)3/2

]
+ O(m2, γ2). (39)

Note that this series expansion of ΨR − ΨS is divergent as uS → 0 and uR → 0. This is

because the non-asymptotic flatness of the spacetime does not allow the limit of uS → 0

and uR → 0. Hence, we must use Eq. (39) within its certain radius of convergence.

For the conformal gravity case with k = 0, F (u) becomes

F (u) =
1

b2
− u2 + 2mu3 + Γu2 − γu. (40)

Then, φRS is obtained as

φRS =[π − arcsin(buR) − arcsin(buS)]

+
m

b

(
2 − b2u2

R√
1 − b2u2

R

+
2 − b2u2

S√
1 − b2u2

S

)

− γ

2

(
b√

1 − b2u2
R

+
b√

1 − b2u2
R

)

+
mγ

2

[
b3u3

R

(1 − b2u2
R)3/2

+
b3u3

S

(1 − b2u2
S)3/2

]
+ O(m2, γ2). (41)

In total, we obtain α for the Weyl conformal gravity case as

α =
2m

b

(√
1 − b2u2

R +
√

1 − b2u2
S

)

− mγ

(
buR√

1 − b2u2
R

+
buS√

1 − b2u2
S

)
+ O(m2, γ2). (42)

The terms linear in γ cancel out in the expression for the deflection angle of light. Hence,

this might correct the results in previous papers [27–29] that reported non-zero contributions

from γ.

C. Far source and receiver

Finally, let us consider an asymptotic case as buS $ 1 and buR $ 1, which mean that

both the source and the receiver are very far from the lens object. Note that buS → 0 and
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FIG. 3: One-loop diagram for the photon trajectory in Mopt.
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1 loop case

FIG. 4: Two quadrilaterals from the photon orbit in Figure 3. They are embedded in a non-

Euclidean space.
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By induction, one can prove 
for any winding number

Next, we consider a case of two loops as shown by Figure 5, for which we draw auxiliary

lines to split the configuration into four quadrilaterals (See Figure 6). For each quadrilateral,

we obtain

α(1) = (π − θ1) − ΨS + φ(1)
RS,

α(2) = (π − θ3) − θ2 + φ(2)
RS,

α(3) = (π − θ5) − θ4 + φ(3)
RS,

α(4) = ΨR − θ6 + φ(4)
RS, (15)

where φ(1)
RS + φ(2)

RS + φ(3)
RS + φ(4)

RS = φRS. We thus obtain

α = α(1) + α(2) + α(3) + α(4)

= ΨR − ΨS + φRS, (16)

where we use θ1 + θ2 = θ3 + θ4 = θ5 + θ6 = π. While Eq. (16) is derived for the two-loop

case, it reveals again the form of Eq. (7). Note that one loop, from which the quadrilaterals

(2) and (3) can be constructed, makes the contribution to α only in terms of φ(2)
RS + φ(3)

RS.

Finally, we consider any winding number W . We construct 2W quadrilaterals, for which

the inner angles at finite distance from L are denoted as θ0, · · · , θ2W in order from S to R.

Here, θ0 = ΨS and θ2W = π − ΨR. See Figure 7 for one of the quadrilaterals. Any pair of

neighboring quadrilaterals (N) and (N+1) makes the contribution to α only by φ(N)
RS +φ(N+1)

RS ,

because θ2N−1 + θ2N = θ2N+1 + θ2N+2 = π and the auxiliary lines cancel out. By induction,

therefore, Eq. (7) can be derived for any winding number.

Eq. (7), which is equivalent to Eq. (12) by using the orbit equation, is rearranged as

α = ΨR − ΨS + φRS

= ΨR − ΨS +

∫ 0

uR

du√
F (u)

+

∫ 0

uS

du√
F (u)

+ 2

∫ u0

0

du√
F (u)

. (17)

The finite-distance correction to the deflection angle of light, denoted as δα, is the differ-

ence between the asymptotic deflection angle and the deflection angle for the finite distance

case. It is expressed as

δα = α − α∞. (18)
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A. Stationary, axisymmetric spacetime and optical metric

We consider a stationary axisymmetric spacetime. The line element for this spacetime is

[43–45]

ds2 =gµνdxµdxν

= − A(yp, yq)dt2 − 2H(yp, yq)dtdφ

+ F (yp, yq)(γpqdypdyq) + D(yp, yq)dφ2, (13)

where µ, ν run from 0 to 3, p, q take 1 and 2, t and φ coordinates are associated with the

Killing vectors, and γpq is a two-dimensional symmetric tensor. It is more convenient to

reexpress this metric into a form in which γpq is diagonalized. The present paper prefers

the polar coordinates rather than the cylindrical ones, because the Kerr metric in the polar

coordinates is considered in Section IV. In the polar coordinates, Eq. (13) becomes [46]

ds2 = − A(r, θ)dt2 − 2H(r, θ)dtdφ

+ B(r, θ)dr2 + C(r, θ)dθ2 + D(r, θ)dφ2. (14)

The null condition ds2 = 0 is solved for dt as [36]

dt =
√

γijdxidxj + βidxi, (15)

where i, j run from 1 to 3, γij and βi are defined as

γijdxidxj ≡B(r, θ)

A(r, θ)
dr2 +

C(r, θ)

A(r, θ)
dθ2 +

A(r, θ)D(r, θ) + H2(r, θ)

A2(r, θ)
dφ2, (16)

βidxi ≡− H(r, θ)

A(r, θ)
dφ. (17)

This spatial metric γij( #= gij) may define the arc length (&) along the light ray as

d&2 ≡ γijdxidxj, (18)

for which γij is defined by γijγjk = δi
k. Note that & defined in this way is an affine parameter

along the light ray. See e.g. Appendix of Ref. [36] for the proof on the affine parameter [47].

γij defines a 3-dimensional Riemannian space (3)M in which the motion of the photon is

described as a motion in a spatial curve. The unit tangential vector along the spatial curve

is defined as

ei ≡ dxi

d&
. (19)
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p, q =1, 2

Lewis(1932), Levy and Robinson (1963), Papapetrou (1966)

(Cylindrical coordinates => Weyl-Lewis-Papapetrou form)

We choose spherical coordinates

Ono et al. (2017)
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Induced by rotation

L =
1
2
mv2 � q�v · �A

cf. charged particle in magnetic field



�B or �Bg

Lorentz (Lorentz-like) force is direction-dependent



Let us consider the photon orbits on the equatorial plane.

Again, we define 

Here, ξ satisfies

1

ξ
=

A(r)[H(r) + A(r)b]

A(r)D(r) + H2(r)
, (36)

which can be derived from γijeiej = 1 by using Eq. (32).

The unit radial vector in the equatorial plane is

Ri =
( 1
√

γrr
, 0, 0

)
, (37)

where we choose the outgoing direction for a sign convention.

Therefore, we can define the angle measured from the outgoing radial direction by

cos Ψ ≡γije
iRj

=
√

γrr
A(r)[H(r) + A(r)b]

A(r)D(r) + H2(r)

dr

dφ
, (38)

where Eqs. (35), (36) and (37) are used. This can be rewritten as

sin Ψ =
H(r) + A(r)b√

A(r)D(r) + H2(r)
, (39)

where we use Eq. (32). Note that sin Ψ by Eq. (39) is more convenient in practical

calculations, because it needs only the local quantities, whereas cos Ψ by Eq. (38) needs the

derivative as dr/dφ.

D. Deflection angle of light

For the equatorial case in the axisymmetric spacetime, we define

α ≡ ΨR − ΨS + φRS. (40)

This definition seems to rely on a choice of the angular coordinate φ. By using the Gauss-

Bonnet theorem Eq. (8), this is rewritten as

α = −
∫∫

∞
R !∞

S

KdS −
∫ S

R

κgd&, (41)

where d& is positive for the prograde motion of the photon and it is negative for the retrograde

motion. Eq. (41) shows that α is coordinate-invariant also for the axisymmetric case.

Up to this point, equations for gravitational fields are not specified. Therefore, the above

discussion and results are not limited within the theory of general relativity (GR) but they

are applicable to a certain class of modified gravity theories if the light ray in the four-

dimensional spacetime obeys the null geodesic.
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We use the Gauss-Bonnet theorem...
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caused by rotation
(gravitomagnetic effect)

New correction

coordinate-invariant



Prograde

Retrograde

infinity limit

infinity limit

agrees with the known result

By using this, we obtain

ΨR − ΨS = arcsin(buR) + arcsin(buS) − π

− MbuR
2

√
1 − b2uR

2
− MbuS

2

√
1 − b2uS

2

+
2aMuR

2

√
1 − b2uR

2
+

2aMuS
2

√
1 − b2uS

2

+ O
(
M2u2

R,M2u2
S, a2u2

R, a2u2
S, aM2u3

R, aM2u3
S

)
. (43)

E. Deflection angle of light in Kerr spacetime

By substituting Eqs. (40) and (43) into Eq. (29), the deflection angle of light on the

equatorial plane in the Kerr spacetime is obtained as

αprog =
2M

b

(√
1 − b2uS

2 +
√

1 − b2uR
2
)

− 2aM

b2

(√
1 − b2uR

2 +
√

1 − b2uS
2
)

+ O

(
M2

b2

)
, (44)

where we assume the prograde motion of light. For the retrograde case, it is

αretro =
2M

b

(√
1 − b2uS

2 +
√

1 − b2uR
2
)

+
2aM

b2

(√
1 − b2uR

2 +
√

1 − b2uS
2
)

+ O

(
M2

b2

)
. (45)

Note that a2 terms at the second order in the deflection angle cancel out. See Appendix A

for more detail.

For both cases, we take the far limit as uR → 0 and uS → 0. Then, we obtain

α∞ prog →4M

b
− 4aM

b2
+ O

(
M2

b2

)
, (46)

α∞ retro →
4M

b
+

4aM

b2
+ O

(
M2

b2

)
, (47)

which show that Eqs. (44) and (45) recover the asymptotic deflection angles that are known

in literature [4, 33, 34].

F. Finite-distance corrections to the gravitomagnetic deflection angle of light

The above calculations discuss the deflection angle of light due to the rotation of the lens

(its spin parameter a). In particular, we do not assume that the receiver and the source are
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agrees with the known result



Summary

The gravitational deflection angle of light 
by using the GB theorem

stationary and axisymmetric

Extensions are future work
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