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> Relativist’s background: thermodynamics with “A™?

» Setting up: Some de Sitter stuff

» The rolling scalar: Scalar flow cf Slow Roll







ack hole has temperature, entropy, and satisties a first

law:
OM =T0oS
Can derive this by varying the Schwarzschild potential:
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Now vary the Schwarzschild potential with lambda:
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Rearrange to
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e idea of a varying Lambda is very familiar — in slow ro
inflation, lambda varies gradually, while our universe is quasi-
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de Sitter.




dependent — so what does “slow roll” mean? The
Schwarzschild de Sitter solution is not time dependent:
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potential:

f=1—Hr?

— not the familiar (flat) cosmological coordinates
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With a black hole, intuition is that the geometry is
approximately SDS, the scalar still slow-rolls, but that
this produces a sub-leading effect on the background
black hole geometry. The spacetime slides from one
Lambda to a lower one, and the black hole accretes a

¢ = ¢o +0PsRr
Guv = Gopv T 595RW/

little mass.




foor2 g
into something like a slow roll equation by assuming ® = ®(T),

where

T =t+&(r)
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Dropping second term, and remember ® = ®(T), we

must have 1
/
= (1) = =3

y constant, and hence




Final answer gives T:
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Cosmological Horizon
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cosmological time asymptotically.

SINGULARITY FUTURE INFINITY
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3v(T) = r

but with friction parameter modified from H:
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Physical effect of black hole is to add friction to roll, or
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Spatial profile is
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in (T,r) coords:
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The energy momentum of the scalar has 2 independent cpts:
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identify the key dependences in these equations.

The scalar equation is straightforward to see,

= 2.. 2 ,.
: fh b G S

r2

But the equivalent of Friedmann is:
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Taking the same general slow roll requirements, these now
depend on position:
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As usual in slow-roll, take background values of metric
functions, and can bound these r-dependent background
functions to the usual slow roll type parameters
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implies
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We can solve for h(r,T) as well, and we find that to leading
order, for a slow roll scalar the black hole geometry takes
its “Schwarzschild” form in the scalar T-coordinate (regular
on both horizons) but with A and M now time varying.

We get a remarkably simple expression for the time-
dependence of the horizon areas:
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thermodynamic first laws:

» De Sitter patch:
k| Ap + |ke|Ae + VA =0

» Black hole first law:




ayward et al suggested a dynamical temperature
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Which we can calculate for our solution

Kayn () = (f' +h) = £ (T) + O(eT)
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Then can extract the behaviour of the horizon, directly
depending on the gravitational strength of the scalar
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And write Q@ = sothat ¢? = n?




orizon gro epends primarily on A but the rate o
growth determined by the slow roll friction parameter
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(Can integrate horizon behaviour exactly in null coord
system)




growth determined by the slow roll friction parameter
AlA,
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» Have generalised slow-roll description to non-
homogeneous black hole background.

» The friction parameter for the scalar is increased by
the black hole

» Checked the first law — holds dynamically during the
flow.

» Explored dynamical temperature




