

BLACK HOLES AND SLOW ROLL SCALARS

RUTH GREGORY

CENTRE FOR PARTICLE THEORY

DAVID KASTOR + JENNIE TRASCHEN

1707.06586 [hep-th]

How does a Black Hole respond to a cosmological scalar?

 \triangleright Relativist's background: thermodynamics with " Λ "?

> Setting up: Some de Sitter stuff

> The rolling scalar: Scalar flow cf Slow Roll

Back-reaction on the geometry

ORIGINAL MOTIVATION: THERMODYNAMICS WITH VARIABLE LAMBDA

THERMODYNAMICS

A black hole has temperature, entropy, and satisfies a first law:

$$\delta M = T \delta S$$

Can derive this by varying the Schwarzschild potential:

$$\delta f(r_{+} + \delta r_{+}) = -\frac{2\delta M}{r_{+}} + \frac{2M}{r_{+}^{2}} \delta r_{+} = 0$$

But we are used to

$$dU = TdS - pdV$$

THERMODYNAMICS AND LAMBDA

Now vary the Schwarzschild potential with lambda:

$$\delta f(r_{+} + \delta r_{+}) = -\frac{\delta \Lambda}{3} r_{+}^{2} - \frac{2\delta M}{r_{+}} + f'(r_{+})\delta r_{+} = 0$$

Rearrange to

$$\delta M = T\delta S - \frac{4\pi r_{+}^{3}}{3}\delta\left(\frac{\Lambda}{8\pi}\right)$$

ENTHALPY

THERMODYNAMIC VOLUME

THERMODYNAMIC PRESSURE

How to vary Lambda:

ANALOGOUS TO RG FLOW IN ADS/CFT — USE A SCALAR TO CHANGE LAMBDA

BUT THIS IS FAMILIAR ..!

VARYING LAMBDA

The idea of a varying Lambda is very familiar – in slow roll inflation, lambda varies gradually, while our universe is quaside Sitter.

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{1}{3M_p^2} \left[\frac{\dot{\phi}^2}{2} + W(\phi)\right]$$

$$\ddot{\phi} + 3H\dot{\phi} = -\frac{\partial W}{\partial \phi}$$

Small slow-roll parameters ensure that inflation in maintained:

$$\varepsilon = \frac{M_p^2}{2} \frac{W'^2}{W^2} \qquad \Gamma = 2M_p^2 \frac{W''}{W}$$

ADD BLACK HOLE?

But a key difference is that our geometry is not explicitly time dependent – so what does "slow roll" mean? The Schwarzschild de Sitter solution is not time dependent:

$$ds^2 = fdt^2 - \frac{dr^2}{f} - r^2 d\Omega_{II}^2$$

where

$$f = 1 - \frac{2M}{r} - \frac{\Lambda}{3}r^2$$

STATIC DE SITTER

Without the black hole, have a "static patch" de Sitter potential:

$$f = 1 - H^2 r^2$$

- not the familiar (flat) cosmological coordinates

$$d\tau^2 - e^{2H\tau} d\mathbf{x}^2$$

The transformation to cosmological time is nontrivial:

$$\tau_{cos} = t_s + \frac{1}{2H} \log(1 - H^2 r_s^2)$$

$$\rho_{cos} = \frac{r_s e^{-Ht_s}}{\sqrt{1 - H^2 r_s^2}}$$

And with black hole, even this relative simplicity is lost.

BLACK HOLE APPROXIMATION

With a black hole, intuition is that the geometry is approximately SDS, the scalar still slow-rolls, but that this produces a sub-leading effect on the background black hole geometry. The spacetime slides from one Lambda to a lower one, and the black hole accretes a little mass.

$$\phi = \phi_0 + \delta\phi_{SR}$$

$$g_{\mu\nu} = g_{0\mu\nu} + \delta g_{SR\mu\nu}$$

$$\Omega = 0$$

SCALAR FIELD EQN

Idea is to turn e.o.m for Φ

$$\frac{\phi_{,tt}}{f} - \frac{1}{r^2} \left(r^2 f \phi_{,r} \right)_{,r} = -\frac{\partial W}{\partial \phi}$$

into something like a slow roll equation by assuming $\Phi = \Phi(T)$, where

$$T = t + \xi(r)$$

T is constructed so that Φ is regular at both horizons, with only in(out) going modes at black hole (cosmological) horizon.

Substitute in:

$$\frac{1}{r^2} \left(r^2 f \xi' \right)' \dot{\phi} - \frac{\ddot{\phi}}{f} \left(1 - f^2 \xi'^2 \right) = \frac{\partial W}{\partial \phi}$$

Dropping second term, and remember $\Phi = \Phi(T)$, we must have

$$\frac{1}{r^2} \left(r^2 f \xi' \right)' = -3\gamma$$

γ constant, and hence

$$\xi' = \frac{1}{f} \left(-\gamma r + \frac{\beta}{r^2} \right)$$

Find γ and β by regularity: $\Phi(T)$ must be ingoing on event horizon and outgoing on cosmological horizon. Final answer gives T:

$$T = t - \frac{1}{2\kappa_c} \log \left| \frac{r - r_c}{r_c} \right| + \frac{1}{2\kappa_b} \log \left| \frac{r - r_b}{r_b} \right|$$

$$+ \frac{r_b r_c}{r_c - r_b} \log \frac{r}{r_0} + \left(\frac{r_c}{4\kappa_b r_b} - \frac{r_b}{4\kappa_c r_c} \right) \log \left| \frac{r - r_n}{r_n} \right|$$

For those familiar with Kruskals, T looks like V at the black hole horizon (r_b) and U at the cosmological horizon (r_c)

T looks like an Eddington-Finkelstein coord on each horizon, at r_h a fn of v, and at r_c a fn of U.

THE T COORDINATE

The T coordinate is timelike at each horizon, and could be a cosmological time asymptotically.

PHI EQUATION

The phi equation is now a standard slow-roll type

$$3\gamma\dot{\phi}(T) = -\frac{\partial W}{\partial\phi}$$

but with friction parameter modified from H:

$$\gamma = \frac{r_c^2 + r_h^2}{r_c^3 - r_h^3} = \frac{A_{TOT}}{3V}$$

Physical effect of black hole is to add friction to roll, or to slow down the scalar.

PHI PROFILE

BACK-REACTION

Given this Eddington-Finkelstein behaviour, look at SDS metric in (T,r) coords:

$$ds^{2} = f(r,T) dT^{2} - 2h(r,T) dTdr - \frac{dr^{2}}{f} (1 - h^{2}) - r^{2} d\Omega^{2}$$

The energy momentum of the scalar has 2 independent cpts:

$$T_{TT} = \left(W(\phi) + \frac{1 + h^2}{2f}\dot{\phi}^2\right)|g_{TT}|,$$

$$T_{ab} = \left(-W(\phi) + \frac{1 - h^2}{2f}\dot{\phi}^2\right)g_{ab}$$

Which we relate to the Einstein tensor:

$$G_{TT} = \left[\frac{1}{r^2} (1 - f - rf') - \frac{h\dot{f}}{rf} \right] |g_{TT}|$$

$$G_{rr} = \left[-\frac{1}{r^2} (1 - f - rf') + \frac{h\dot{f}}{rf} + \frac{2\dot{h}}{r(1 - h^2)} \right] g_{rr}$$

$$G_{rT} = \left[-\frac{1}{r^2} (1 - f - rf') - \frac{(1 - h^2)\dot{f}}{rhf} \right] g_{rT}$$

$$G_{\theta\theta} = \left[\frac{f''}{2} + \frac{f'}{r} - \frac{h'\dot{f}}{2f} + \frac{\dot{h}f'}{2f} + \frac{\dot{h}}{r} + \dot{h}' + \frac{1}{2} \left(\frac{(h^2 - 1)}{f} \right)^{...} \right] g_{\theta\theta} = \frac{G_{\phi\phi}}{\sin^2 \theta}$$

? SLOW ROLL?

Need to have control of the slow-roll approximation to identify the key dependences in these equations.

The scalar equation is straightforward to see,

$$\frac{1 - h^2}{f}\ddot{\phi} - \frac{(r^2h)'}{r^2}\dot{\phi} = -W'(\phi)$$

But the equivalent of Friedmann is:

$$\left[\frac{1}{r^2}(1 - f - rf') + \frac{(1 - h^2)\dot{f}}{rhf}\right] = \frac{1}{M_p^2} \left(W(\phi) - \frac{1 - h^2}{2f}\dot{\phi}^2\right)$$

SLOW ROLL WITH A BLACK HOLE

Taking the same general slow roll requirements, these now depend on position:

$$\frac{1-h^2}{f}\dot{\phi}^2 \ll W$$
, $\frac{1-h^2}{f}\ddot{\phi} \ll \frac{1}{r^2} \left| (r^2h)'\dot{\phi} \right|$

As usual in slow-roll, take background values of metric functions, and can bound these r-dependent background functions to the usual slow roll type parameters

$$\varepsilon = M_p^2 \frac{W'^2}{W^2} \ll 1 \qquad \qquad \Gamma = M_p^2 \frac{W''}{W} \ll 1$$

This allows us to solve the Einstein equations to leading order in the slow-roll parameters.

FIT + Tr:
$$\dot{f} = -rh\,\frac{\phi^2}{M_p^2}$$

implies

$$f(r,T) = f_0(r) + \delta f(r,T) - rh_0 \int \frac{\phi^2}{M_p^2}$$

Where δf is order $\epsilon \Gamma$, but slowly varying. We can then integrate the ϕ kinetic energy:

$$\int_{T_0}^{T} \dot{\phi}^2 dT' = -\frac{1}{3\gamma} \left\{ W(\phi(T)) - W(\phi(T_0)) \right\} = -\frac{\delta W}{3\gamma}$$

And end up with a familiar expression:

$$f(r,T) = 1 - \frac{\Lambda(T)}{3M_p^2}r^2 - \frac{2GM(T)}{r} + \delta f$$

With

$$\Lambda(T) = W[\phi(T)] \qquad M(T) = M_0 - 4\pi\beta \frac{\delta W}{3\gamma}$$

And end up with a familiar expression:

$$f(r,T) = 1 - \frac{\Lambda(T)}{3M_p^2}r^2 - \frac{2GM(T)}{r} + f$$

With

$$\Lambda(T) = W[\phi(T)] \qquad M(T) = M_0 - 4\pi\beta \frac{\delta W}{3\gamma}$$

A somewhat finicky argument shows that delta f is transient, and of sub-leading order ($\epsilon\Gamma$) to the changes in Λ and M.

We can solve for h(r,T) as well, and we find that to leading order, for a slow roll scalar the black hole geometry takes its "Schwarzschild" form in the scalar T-coordinate (regular on both horizons) but with Λ and M now time varying. We get a remarkably simple expression for the timedependence of the horizon areas:

$$\dot{A}_h = \frac{A_h}{|\kappa_h|} \frac{\dot{\phi}^2}{M_p^2}$$

THERMODYNAMICS

We can find exact, differential forms of the various thermodynamic first laws:

> De Sitter patch:

$$|\kappa_b|\dot{A}_b + |\kappa_c|\dot{A}_c + V\dot{\Lambda} = 0$$

➤ Black hole first law:

$$\frac{\dot{M}}{M_p^2} - |\kappa_b|\dot{A}_b + V_b\dot{\Lambda} = 0$$

Which of course begs the question of temperature..

DYNAMICAL TEMPERATURE

Hayward et al suggested a dynamical temperature

$$\kappa_{dyn} = \frac{1}{2} \star d \star dr$$

Which we can calculate for our solution

$$\kappa_{dyn}(T) = (f' + \dot{h}) = \kappa_b(T) + \mathcal{O}(\varepsilon\Gamma)$$

i.e. the instantaneous temperature of the time-dependent SdS potential.

EXPLICIT EXAMPLE

Double well potential

Cosmological soln:

$$\phi^2 = \frac{\eta^2}{2} \left[1 + \tanh\left(\frac{H_f \Gamma}{4}\tau\right) \right]$$

At black hole horizon in terms of E-F advanced time:

$$\kappa_h T \simeq \ln(2\kappa_h v) = \ln \hat{v}$$

And write
$$a=rac{\Gamma H_i^2}{2\gamma\kappa_h}$$
 so that $\phi^2=\eta^2rac{\hat{v}^a}{1+\hat{v}^a}$

Then can extract the behaviour of the horizon, directly depending on the gravitational strength of the scalar

$$\Delta = \frac{\eta^2}{M_p^2}$$

HORIZON GROWTH

Horizon growth depends primarily on Δ but the rate of growth determined by the slow roll friction parameter

$$\mathcal{A} = 4\pi B = \mathcal{A}_0 \left(1 - \frac{a\Delta \hat{v}}{8} \mathcal{I}[\hat{v}, a] \right)$$

(Can integrate horizon behaviour exactly in null coord system)

$$\mathcal{I}[\hat{v}, a] = -\int_{\hat{v}}^{\infty} \frac{y^a (2 + y^a) dy}{y^2 (1 + y^a)^2}$$

$$= -\frac{(1 + a(1 + \hat{v}^a))}{a\hat{v}(1 + \hat{v}^a)} + \frac{1 + a}{a\hat{v}} \left(1 - {}_{2}F_{1}\left[1, \frac{1}{a}; \frac{1 + a}{a}; -\hat{v}^{-a}\right]\right)$$

HORIZON GROWTH

Horizon growth depends primarily on Δ but the rate of growth determined by the slow roll friction parameter

DYNAMICAL T:

And temperature variation:

SUMMARY

- Have generalised slow-roll description to nonhomogeneous black hole background.
- The friction parameter for the scalar is increased by the black hole
- Checked the first law holds dynamically during the flow.
- Explored dynamical temperature
- The black hole geometry is to a very good approximation quasi-Schwarzschild de Sitter.