YITP long-term workshop

Gravity and Cosmology 2018

January 29 - March 9, 2018 Yukawa Institute for Theoretical Physics, Kyoto University

Seeing stochastic inflation

David Wands

Institute of Cosmology and Gravitation, University of Portsmouth work with

Rob Hardwick, Chris Pattison, Vincent Vennin, Hooshyar Assadullahi

Chris Byrnes, Hassan Firouzjahi, Mahdiyar Noorbala & Jesus Torrado

27th February 2018

Three applications of stochastic inflation

1. Primordial density perturbations can be sensitive to **Planck scale physics**

Assasdullahi, Firouzjahi, Noorbala, Vennin & Wands (2016)

 Stochastic approach gives full probability distribution function for density perturbations needed, e.g., for primordial black hole abundance

Pattison, Assadullahi, Vennin & Wands (2017)

3. Bayesian model comparison sensitive to stochastic distribution of multiple fields

Torrado, Byrnes, Hardwick, Vennin & Wands (2017)

Inflation = origin of super-Hubble structure $\delta \ddot{\rho} + 3H\delta \dot{\rho} + (c_s / \lambda)^2 \delta \rho = 0$

Characteristic timescales for density waves with fixed comoving wavelength

- small-scales = late times, $\lambda / c_s < H^{-1}$, under-damped oscillator
- large-scales = early times , $\lambda / c_s > H^{-1}$, "frozen-in"

Inflation = origin of super-Hubble structure $\delta \ddot{\rho} + 3H\delta \dot{\rho} + (c_s / \lambda)^2 \delta \rho = 0$

Characteristic timescales for density waves with fixed comoving wavelength

- small-scales = late times, $\lambda / c_s < H^{-1}$, under-damped oscillator
- large-scales = early times , $\lambda / c_s > H^{-1}$, "frozen-in"

initial vacuum state on sub-Hubble scales

vacuum fluctuations

$$\delta\ddot{\varphi} + 3H\delta\dot{\varphi} + \frac{k^2}{a^2}\delta\varphi = 0$$

- *sub-Hubble/underdamped zero-point oscillations:*
- super-Hubble/overdamped perturbations in squeezed state:

$$\left\langle \delta \phi^2 \right\rangle_{k=aH} \approx \frac{4\pi k^3 \left| \delta \phi_k^2 \right|}{\left(2\pi\right)^3} = \left(\frac{H}{2\pi}\right)^2$$

sub-Hubble vacuum fluctuations are constantly crossing the Hubble scale (k=aH) into the coarse-grained super-Hubble field

δN formalism for primordial density perturbations

Starobinsky `85;

Sasaki & Stewart '96;

Lyth & Rodriguez '05

after inflation: curvature perturbation ζ on uniform-density hypersurface

during inflation: field perturbations $\phi(x,t_i)$ on initial spatially-flat hypersurface

on super-Hubble scales, evolve as "separate universes" (neglect spatial gradients):

$$\zeta = N(\phi_{initial}) - \overline{N} \approx \sum_{I} \frac{\partial N}{\partial \phi_{I}} \delta \phi_{I}$$

Seeing vacuum fluctuations

Planck collaboration 2015

Three applications of stochastic inflation

1. Primordial density perturbations can be sensitive to **Planck scale inflation**

Assasdullahi, Firouzjahi, Noorbala, Vennin & Wands (2016)

2. Stochastic approach gives full probability distribution function for density perturbations needed, e.g., for primordial black hole abundance

Pattison, Assadullahi, Vennin & Wands (2017)

3. Bayesian model comparison sensitive to stochastic distribution of multiple fields

Torrado, Byrnes, Hardwick, Vennin & Wands (2017)

Stochastic inflation

• Quantum fluctuations swept up to super-Hubble scales give stochastic kick, $\xi(N)$, to coarse-grained (k<aH) field

$$\frac{d\varphi}{dN} = -\frac{V'}{3H^2} + \frac{H}{2\pi}\xi(N)$$

• Number of e-folds to the end of inflation, \mathcal{N} , from a given field value, φ , becomes a stochastic variable

Stochastic N Vennin & Starobinsky (2015)

$$\frac{\partial \phi}{\partial N} + \frac{V'}{3H^2} = \frac{H}{2\pi} \xi \longleftrightarrow \frac{\partial}{\partial N} P(\phi, N) = \frac{\partial}{\partial \phi} \left[\frac{V'}{3H^2} P(\phi, N) \right] + \frac{\partial^2}{\partial \phi^2} \left[\frac{H^2}{8\pi^2} P(\phi, N) \right]$$

$$= -\mathcal{L}_{FP} \cdot P(\phi, N)$$
Fokker-Planck equation

First Passage Time: Louis Bachelier, 1900

 $\mathcal{L}_{\mathrm{FP}}^{\dagger} \cdot \langle \mathcal{N} \rangle \left(\phi_* \right) = 1$

$$\left< \mathcal{N} \right>'' v - \left< \mathcal{N} \right>' rac{v'}{v} = -1$$
 where $v = V/(24\pi^2 M_{
m Pl}^4)$

$$\langle \mathcal{N} \rangle = \int_{\phi_{\text{end}}}^{\phi_*} \frac{\mathrm{d}x}{M_{\text{Pl}}} \int_x^{\bar{\phi}} \frac{\mathrm{d}y}{M_{\text{Pl}}} \frac{1}{v(y)} \exp\left[\frac{1}{v(y)} - \frac{1}{v(x)}\right]$$

• integration domain covers the entire field space

Saddle Point Approximation

Infinite inflation and number of fields (D)

• integration domain covers the entire field space

• what if $r_+ \to \infty$? $v(r) \propto r^p \longrightarrow \langle \mathcal{N} \rangle = \infty$ if $p \leq D$

Stochastic δN

Vennin, Assadullahi, Firouzjahi, Noorbala & Wands (2016)

D>2 requires UV regularisation (boundary) at $v_+ \sim M_{\rm Pl}$

Stochastic δN

Vennin, Assadullahi, Firouzjahi, Noorbala & Wands (2016)

D>2 requires UV regularisation (boundary) at $v_+ \sim M_{\rm Pl}$

Three applications of stochastic inflation

- 1. Primordial density perturbations can be sensitive to **Planck scale physics**
 - > Assasdullahi, Firouzjahi, Noorbala, Vennin & Wands (2016)
- Stochastic approach gives full probability distribution function for density perturbations needed, e.g., for primordial black hole abundance

Pattison, Assadullahi, Vennin & Wands (2017)

- 3. Bayesian model comparison sensitive to stochastic distribution of multiple fields
 - Torrado, Byrnes, Hardwick, Vennin & Wands (2017)

Primordial black holes from inflation

• primordial density perturbations when modes re-enter Hubble-scale after inflation $\frac{\delta \rho}{\rho}\Big|_{h=\sigma H} \sim \zeta$

 rare fluctuations exceeding critical value, ζ > ζ_c ~1, collapse to form black holes

Classical vs quantum inflation

Classical slow-roll inflates universe

$$N = \int H \, dt = \int \frac{H}{\dot{\varphi}} \, d\varphi$$

Quantum field fluctuations lead to primordial metric perturbations

Classical vs quantum inflation

Classical slow-roll inflates universe

$$N = \int H \, dt = \int \frac{H}{\dot{\varphi}} \, d\varphi$$

Quantum field fluctuations lead to primordial metric perturbations

Plateau at end of inflation Pattison et al (2017)

• large deviations from classical δN when quantum diffusion dominates over classical drift near end of inflation: $\phi < \phi_{end} + \Delta \phi_{well}$

Full PDF for δ*N* Pattison et al (2017)

- number of e-folds is a stochastic variable, $\mathcal{N}(\phi)$ $\zeta = \mathcal{N} \langle \mathcal{N} \rangle$
- define characteristic function (includes all the moments) $\chi_{\mathcal{N}}(t,\varphi) = \langle e^{it\mathcal{N}(\varphi)} \rangle = \int e^{it\mathcal{N}(\varphi)} P(\mathcal{N},\varphi) \, d\mathcal{N}$
- obeys differential equation

$$\left(\frac{\partial^2}{\partial\phi^2} - \frac{v'}{v^2}\frac{\partial}{\partial\phi} + \frac{it}{vM_{\rm Pl}^2}\right)\chi_{\mathcal{N}}(t,\phi) = 0$$

• inverse Fourier transform gives full probability distribution $P(\mathcal{N},\varphi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-it\mathcal{N}} \chi_{\mathcal{N}}(t,\varphi) dt$

Plateau at end of inflation Pattison et al (2017)

 large deviations from classical δN when quantum diffusion dominates over classical drift -> non-Gaussian probability distribution

Plateau at end of inflation Pattison et al (2017)

Three applications of stochastic inflation

- 1. Primordial density perturbations can be sensitive to **Planck scale physics**
 - Assasdullahi, Firouzjahi, Noorbala, Vennin & Wands (2016)
- 2. Stochastic approach gives full probability distribution function for density perturbations needed, e.g., for primordial black hole abundance

Pattison, Assadullahi, Vennin & Wands (2017)

- 3. Bayesian **model comparison sensitive to stochastic distribution** of multiple fields
 - Torrado, Byrnes, Hardwick, Vennin & Wands (2017)

what is the origin of primordial density perturbations?

see also multi-field inflation, modulated reheating, inhomogeneous end of inflation... curvaton

adiabatic field perturbations

along background trajectory

 $\zeta \sim R_{\chi} \left(\frac{\delta \chi}{\gamma} + \dots \right)$

Inflaton

Inflaton models + curvaton field, χ

Curvaton scenarios with quadratic potential $V(\phi, \chi) = U(\phi) + m_{\chi}^2 \chi^2 / 2$

more reheating parameters: $\Gamma_{\phi} \rightarrow \Gamma_{\phi}, \ \Gamma_{\chi}, \ m_{\chi}, \ \chi_{\rm end}$

primordial perturbations directly dependent on reheating (not just through the expansion N_{*})

large-field inflaton (LFI) plus quadratic curvaton, χ

Vennin, Koyama and Wands (2015)

Bayesian Approach

to model comparison

Bayesian evidence: Integral of the likelihood over parameter prior

$$\mathcal{E}\left(\mathcal{M}
ight) = \mathcal{L}_{\max} \ rac{\Delta \mathcal{L}}{\Delta \pi}$$

Compromise between quality of fit and simplicity

 $\ln (B_{ij}) > 5$

 $\ln (B_{ij}) > 1$

In (B_{ij}) > 2.5

Bayes factor = ratio of evidence

$$B_{ij} = E(M_i) / E(M_j)$$

Jeffreys scale

- Strong evidence
- Moderate evidence
- Weak evidence
 - Inconclusive In (B_{ii}) < 1

Inflaton models plus weakly-coupled scalar field, χ

Vennin, Koyama and Wands (2015)

Inflaton models plus weakly-coupled scalar field, χ

Vennin, Koyama and Wands (2015)

evidence depends on theory priors

- Stochastic evolution can predict statistical distribution of curvaton field value during inflation
- Weakly-coupled curvaton does not reach the stationary distribution during large-field inflation
- Curvaton variance grows with the duration of inflation

Observing the duration of inflation

Torrado, Byrnes, Hardwick, Vennin & Wands (2017)

- Curvaton variance grows with duration of inflation
- Observational data can be used to infer likelihood ("observe") the duration of inflation in the curvaton scenario...

stochastic inflation has observational implications

- (not just our place in the eternally inflating multiverse and all that...)
- Density perturbations beyond the perturbative approach
 - \bigcirc Stochastic δN formalism
 - Enqvist et al (2008); Fujita et al (2013, 2014); Vennin & Starobinsky (2015)
 - Infinite inflation requires UV cut-off
 - Assadullahi, Firouzjahi, Noorbala, Vennin & Wands, arXiv:1604.04502
 - Quantum diffusion and PBHs from inflation
 - Pattison, Vennin, Assasdullahi & Wands, arXiv:1707.00537
- Probability distributions for field values in inflation
 - O The stochastic spectator
 - Hardwick, Vennin, Byrnes, Torrado & Wands, arXiv:1701.06473
 - Theoretical priors for Bayesian model comparison
 - Torrado, Byrnes, Hardwick, Vennin & Wands, arXiv:1712.05364

best wishes to Sasaki-san!

- phase-space evolution (animation c/o Vincent Vennin)
- *small-scale/underdamped zero-point oscillations:*

 $\delta \phi_k \approx \frac{e^{-ik\eta}}{\sqrt{2k}}$

• *large-scale/overdamped perturbations in squeezed state:*

$$\left\langle \delta \phi^2 \right\rangle_{k=aH} \approx \frac{4\pi k^3 \left| \delta \phi_k^2 \right|}{\left(2\pi\right)^3} = \left(\frac{H}{2\pi}\right)^2$$

Primordial black holes from inflation

e.g., Carr, Kohri, Sendouda & Yokoyama (2009)

• $\beta(M)$ = mass fraction

summary

- Stochastic δN needed to calculate primordial density perturbations beyond perturbative approach
- We constructed full probability distribution function
 solve for characteristic function, then Fourier transform
 calculated abundance of primordial black holes produced in simple plateau models
 e.g., running-mass model of inflation
- Primordial Black Hole bounds require N < 1 in quantum diffusion regime

further work:

alternative PBH models

 transient non-slow-roll backgrounds, e.g., inflection point inflation (e.g., Garcia-Bellido & Ruiz, Germani & Prokopec, Motohashi & Hu 2017)

explore nature of non-Gaussianity beyond leading order (classical) δN

- O corrections to tail of distribution even close to classical limit?
- understand consistency of non-Gaussian pdf with absence of correlation between large and small physical scales in single-clock inflation (e.g., Pajer, Schmidt & Zaldarriaga 2013)

Large-Field Exploration & Number of Fields

• integration domain covers the entire field space

• what if $r_+ \to \infty$? $v(r) \propto r^p \longrightarrow \langle \mathcal{N} \rangle = \infty$ if $p \leq D$ $p_+ > 0$ if D > 2

Classical Limit

$$\mathcal{P}_{\zeta}\left(\phi_{*}\right) = 2\left\{\int_{\phi_{*}}^{\bar{\phi}} \frac{\mathrm{d}x}{M_{\mathrm{Pl}}} \frac{1}{v\left(x\right)} \exp\left[\frac{1}{v\left(x\right)} - \frac{1}{v\left(\phi_{*}\right)}\right]\right\}^{-1} \times \int_{\phi_{*}}^{\bar{\phi}} \frac{\mathrm{d}x}{M_{\mathrm{Pl}}} \left\{\int_{x}^{\bar{\phi}} \frac{\mathrm{d}y}{M_{\mathrm{Pl}}} \frac{1}{v\left(y\right)} \exp\left[\frac{1}{v\left(y\right)} - \frac{1}{v\left(x\right)}\right]\right\}^{2} \exp\left[\frac{1}{v\left(x\right)} - \frac{1}{v\left(\phi_{*}\right)}\right]$$
Saddle Point Approximation
$$\left|2v - \frac{v''v^{2}}{v'^{2}}\right| \ll 1$$

$$\mathcal{P}_{\zeta}\left(\phi_{*}\right) \simeq \frac{2}{M_{\mathrm{Pl}}^{2}} \frac{v^{3}\left(\phi_{*}\right)}{v'^{2}\left(\phi_{*}\right)} \left[1 + 5v\left(\phi_{*}\right) - 4\frac{v^{2}\left(\phi_{*}\right)v''\left(\phi_{*}\right)}{v'^{2}\left(\phi_{*}\right)} + \cdots\right]$$
Classical result

Stochastic δN

D>2 requires UV regularisation (boundary) at some v_+

Large-field inflation Pattison et al (2017)

large deviations from classical δN close to Planck energies

-> non-Gaussian probability distribution

Stochastic δN

• number of e-folds is a stochastic variable, $\mathcal{N}(\phi)$

$$\zeta = \mathcal{N} - \langle \mathcal{N} \rangle$$

moments obey an iterative relation (Vennin & Starobinsky 2015)

$$f_n \equiv \langle \mathcal{N}^n \rangle$$

$$\Rightarrow f_n'' - \frac{v'}{v^2} f_n' = -\frac{n}{v M_P^2} f_{n-1}$$

…but PBHs require full probability distribution function

non-linearity parameter for quadratic curvaton

Sasaki, Valiviita & Wands (2006) see also Malik & Lvth (2006)

curvaton scenario:

Linde & Mukhanov 1997; Enqvist & Sloth, Lyth & Wands, Moroi & Takahashi 2001

curvaton χ = weakly-coupled, late-decaying scalar field

- light field (m<H) during inflation acquires an almost scale-invariant,
 Gaussian distribution of field fluctuations on large scales
- quadratic energy density for free field, $\rho_{\chi} = m^2 \chi^2/2$
- spectrum of initially isocurvature density perturbations

$$\zeta_{\chi} \approx \frac{1}{3} \frac{\delta \rho_{\chi}}{\rho_{\chi}} \approx \frac{1}{3} \left(\frac{2\chi \delta \chi + \delta \chi^2}{\chi^2} \right)$$

- **transferred to radiation when curvaton decays** after inflation with some **efficiency**, $\theta < R_{\chi} < 1$, where $R_{\chi} \approx \Omega_{\chi,decay}$ $\zeta = R_{\chi}\zeta_{\chi} \approx \frac{R_{\chi}}{3} \left(2\frac{\delta\chi}{\chi} + \frac{\delta\chi^2}{\chi^2}\right)$

$$= \zeta_G + \frac{3}{4R_{\chi}} \zeta_G^2 \implies f_{NL} = \frac{5}{4R_{\chi}}$$

 $V(\boldsymbol{\chi})$

χ

Inflaton model predictions and Observations

LFI+curvaton vs Higgs inflation

FIG. 2: Marginal posterior distributions over the key observables from inflation for plateau-like inflation (blue, darker) and quartic inflation (orange, clearer) with a spectator field. In the quartic case, the posterior fraction below the lower (upper) dotted line has more than 90% (50%) of primordial density perturbations generated by the curvaton field. Post-2020 CMB experiments would likely distinguish between or rule out both scenarios in terms of $n_{\rm s}$ and r. In combination with LSS data, the typical value of $f_{\rm NL} = -5/4$ associated with the curvaton scenario could also be distinguished in the future from $f_{\rm NL} \sim \mathcal{O}(10^{-2})$ in the inflaton scenario.