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It is natural that the universe is born 
out of a landscape of superstrings 
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Is there new trans-Plankian physics imprinted on the 
Cosmic Microwave Background? 



New physics always 
shows up as small 

deviations  
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Fig. 2. Planck TT (top), high-` T E (centre), and high-` EE (bot-
tom) angular power spectra. HereD` ⌘ `(` + 1)C`/(2⇡).

tion mask the union of the WMAP P06 and Planck lowP polar-
ization masks and keeping 74 % of the sky. The polarization part
of the combined low-multipole likelihood is called lowP+WP.
This combined low-multipole likelihood gives ⌧ = 0.071+0.011

�0.013
(Planck Collaboration XI, 2015).

Planck high-` likelihood

Following Planck Collaboration XV (2014), and Planck
Collaboration XI (2015) for polarization, we use a Gaussian
approximation for the high-` part of the likelihood (30 < ` <
2500), so that
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where a constant offset has been discarded. Here Ĉ is the data
vector, C(✓) is the model prediction for the parameter value vec-
tor ✓, and M is the covariance matrix. For the data vector, we
use 100 GHz, 143 GHz, and 217 GHz half-mission cross-power
spectra, avoiding the Galactic plane as well as the brightest point

sources and the regions where the CO emission is the strongest.
We retain 66 % of the sky for 100 GHz, 57 % for 143 GHz, and
47 % for 217 GHz for the T masks, and respectively 70 %, 50 %,
and 41 % for the Q, U masks. Following Planck Collaboration
XXX (2014), we do not mask for any other Galactic polarized
emission. All the spectra are corrected for the beam and pixel
window functions using the same beam for temperature and po-
larization. (For details see Planck Collaboration XI (2015).)

The model for the cross-spectra can be written as

Cµ,⌫(✓) =
Ccmb(✓) +Cfg

µ,⌫(✓)pcµc⌫
, (13)

where Ccmb(✓) is the CMB power spectrum, which is indepen-
dent of the frequency, Cfg

µ,⌫(✓) is the foreground model contribu-
tion for the cross-frequency spectrum µ ⇥ ⌫, and cµ is the cal-
ibration factor for the µ ⇥ µ spectrum. The model for the fore-
ground residuals includes the following components: Galactic
dust, clustered CIB, tSZ, kSZ, tSZ correlations with CIB, and
point sources, for the TT foreground modeling; and for polar-
ization, only dust is included. All the components are modelled
by smooth C` templates with free amplitudes, which are deter-
mined along with the cosmological parameters as the likelihood
is explored. The tSZ and kSZ models are the same as in 2013
(see Planck Collaboration XV, 2014), while the CIB and tSZ-
CIB correlation models use the updated CIB models described
in Planck Collaboration XXX (2014). The point source contam-
ination is modelled as Poisson noise with an independent am-
plitude for each frequency pair. Finally, the dust contribution
uses an effective smooth model measured from high frequency
maps. Details of our dust and noise modelling can be found in
Planck Collaboration XI (2015). The dust is the dominant fore-
ground component for TT at ` < 500, while the point source
component, and for 217⇥217 also the CIB component, dom-
inate at high `. The other foreground components are poorly
determined by Planck. Finally, our treatment of the calibration
factors and beam uncertainties and mismatch are described in
Planck Collaboration XI (2015).

The covariance matrix accounts for the correlation due to
the mask and is computed following the equations in Planck
Collaboration XV (2014), extended to polarization in Planck
Collaboration XI (2015) and references therein. The fiducial
model used to compute the covariance is based on a joint fit of
base ⇤CDM and nuisance parameters obtained with a previous
version of the matrix. We iterate the process until the parame-
ters stop changing. For more details, see Planck Collaboration
XI (2015).

The joint unbinned covariance matrix is approximately of
size 23 000⇥ 23 000. The memory and speed requirements for
dealing with such a huge matrix are significant, so to reduce its
size, we bin the data and the covariance matrix to compress the
data vector size by a factor of 10. The binning uses varying bin
width with �` = 5 for 29 < ` < 100, �` = 9 for 99 < ` < 2014,
and �` = 33 for 2013 < ` < 2509, and a weighting in `(` + 1)
to flatten the spectrum. Where a higher resolution is desirable,
we also use a more finely binned version (“bin3”, unbinned up
to ` = 80 and �` = 3 beyond that) as well as a completely
unbinned version (“bin1”). We use odd bin sizes, since for an
azimuthally symmetric mask, the correlation between a multi-
pole and its neighbours is symmetric, oscillating between posi-
tive and negative values. Using the base ⇤CDM model and sin-
gle parameter classical extensions, we confirmed that the cos-
mological and nuisance parameter fits with or without binning
are indistinguishable.
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•  Cosmic Variance: Planck XX arXiv:1502.02114 
•  Modified inflation effective potential 

–  Harza, et al. arXiv:1405.2012,  
–  Kitazawa and Sagnotti 1411.6396v2,  
–  Yang and Ma arXiv:1501.00282  

•  …. 
•  …. 
•  Planck-mass particles coupled to inflation 

–   GJM, M. R. Gangopadhyay, K. Ichiki, and T. Kajino, Phys. 
Rev. D92, 123519 (2015).  arXiv: 1504.06913 
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Motivations Results Conclusions

Inflation Resonant particle Production

• Early rapid expansion of the universe is achieved through the
vacuum energy of the inflaton field

• Inflaton is coupled to the massive particles (mass ⇠ inflaton
field value)[Chung et al. arXiv hep-ph/9910437, Mathews et al. arXiv

astro-ph/0406046 ]

• The total Lagrangian density is given as :

L
tot

=
1

2
@µ�@

µ�� V (�)

+ i  ̄�µ �m ̄ + N�� ̄ (1)

Motivations Results Conclusions

• Then the fermion has the e↵ective mass :

M(�) = m � N�� (2)

• This vanishes for a critical value of the inflaton field,
�⇤ = m/N�
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flaton to other particle species near the end of inflation is
not only natural, but probably required. This is because
the energy density in the inflaton must be converted to
entropy in light or heavy particle species at the end of in-
flation as a means to reheat the universe. Hence, the ex-
istence of Planck-scale mass particles which couple to the
inflaton near the end of inflation is a scenario worthy of
study. Moreover, this provides a significant opportunity
to uncover new physics in the trans-Planckian regime.

In our previous study [37] a similar analysis
was made of a possible bump in the CMB in
the range of very high multipoles. At that time
there appeared to be an excess power in the
CMB power spectrum for multipoles in the range
` = 2000 � 3500 in the combined (CBI [38–40],
ACBAR [41], BIMA [42], and VSA [43]) data, con-
trary to the expectation from the WMAP results
[44]. Since that time, however, better high reso-
lution data have eliminated the apparent excess.

The present analysis, however, is completely
di↵erent from that previous work In place of a
bump we now seek to fit a dip in the power spec-
trum. Also, the feature we fit here is at low mul-
tipoles and therefore much more likely a part of
the primordial spectrum. Moreover, the deduced
particle properties are much di↵erent that that of
the previous study and even of opposite sign cou-
pling. Indeed, due to the sign of the coupling in
that paper the resonant particle production was
more likely for a massive boson than a fermion.
Hence, here we present new results on possible
resonant fermion particle production during in-
flation.

II. RESONANT PARTICLE PRODUCTION
DURING INFLATION

The details of the resonant particle creation paradigm
during inflation have been explained in Refs. [36, 37]. In-
deed, the idea was originaly introduced [45] as a means
for reheating after inflation. Since [36] subsequent work
[46–49] has elaborated on the basic scheme into a model
with coupling between two scalar fields. Here, we sum-
marize essential features of the canonical single Fermion
field coupled to the inflaton as a means to clarify the
possible physics of the ` = 10� 30 dip.

In this minimal extension from the basic picture, the
inflaton � is postulated to couple to particles whose mass
is of order the inflaton field value. These particles are
then resonantly produced as the field obtains a critical
value during inflation. If even a small fraction of the
inflaton field is a↵ected in this way, it can produce an
observable feature in the primordial power spectrum. In
particular, there can be either and excess in the power
spectrum as noted in [36, 37], or dip in the in the power
spectrum as described in this paper. Such a dip o↵ers
important new clues to the trans-Planckian physics of

the early universe.
We note that particle creation corresponding to an

imaginary part of the e↵ective action of quantum fields
has been considered in [50]. In that case the same cre-
ation should occur at the present time. Thus, compatibil-
ity with the di↵use �-ray background can be used to rule
out the possibility of measurable e↵ects from this type of
trans-Planckian particle creation in the CMB anisotropy.
However, the e↵ect of interest here is a perturbation in
the simple scalar field due to direct coupling to Planck-
mass particles at energies for which the inflation potential
is comparable to the particle mass and cannot occur at
the present time. The present scenario, therefore is not
constrained by the di↵use gamma-ray background.
In the simplest slow roll approximation [3, 4] for the

generation of density perturbations during inflation, the
amplitude, �H(k), of a density fluctuation when it crosses
the Hubble radius is just,

�H(k) ⇡ H2

5⇡�̇
, (1)

where H is the expansion rate, and �̇ is the rate of change
of the inflaton field when the comoving wave number k
crosses the Hubble radius during inflation. If resonant
particle production a↵ects the inflaton field, then the con-
jugate momentum in the field �̇ is altered. This causes ei-
ther an increase or a diminution in �H(k) (the primordial
power spectrum) for those wave numbers which exit the
horizon during the resonant particle production epoch.
Of course when �̇ is accelerates due to particle produc-

tion, it may deviate from the slow-roll condition. This
would lead to a correction to Eq. (1). However, in [36],
this correction was analyzed and found to be << 20%.
Hence, for our purposes we ignore this correction.
For the application here, we adopt a positive Yukawa

coupling of strength � between the inflaton field � and
the field  of N fermion species. This di↵ers from [36,
37] who adopted a negative Yukawa coupling. With our
choice, the total lagrangian density including the inflaton
scalar field �, the dirac fermion field, and the Yukawa
coupling term is then written,

L
tot

=
1

2
@µ�@

µ�� V (�)

+ i ̄/@µ � m ̄ + N�� ̄ . (2)

For this Lagrangian, it is obvious that the fermions have
an e↵ective mass of

M(�) = m � N�� . (3)

This vanishes for a critical value of the inflaton field, �⇤ =
m/N�. Resonant fermion production will then occur in a
narrow range of inflaton field amplitude around � = �⇤.
Note, that the vanishing of the e↵ective mass

term with a negative coupling term as in [36, 37]
would also require a positive mass term in the as-
sociated free particle Lagrangian. In that paper,

7

Obviously there is a need for more precise determina-
tions of the CMB power spectrum for multipoles in the
range of ` = 10 � 30, although this may ultimately be
limited by the cosmic variance.

Nevertheless, in spite of these caveats, we conclude
that if the present analysis is correct, this may be one
of the first hints at observational evidence of new par-
ticle physics at the Planck scale. Indeed, one expects a
plethora of particles at the Planck scale, particularly in
the context of string theory. Perhaps, the presently ob-
served CMB power spectrum contains the first suggestion
that a subset of such particles may have coupled to the
inflaton field leaving a relic signature of their existence

in the CMB primordial power spectrum.
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When φ = φ*, resonant particle 
production occurs 
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is labeled a⇤ at the time t⇤ at which resonant particle
production occurs. Considering a small interval around
this epoch, one can treat H = H⇤ as approximately con-
stant (slow roll inflation). The number density n of par-
ticles can be taken as zero before t⇤ and afterwards as
n = n⇤[a⇤/a(t)]3. The fermion vacuum expectation value
can then be written,

h ̄ i = n⇤⇥(t � t⇤) exp [�3H⇤(t � t⇤)] . (5)

where ⇥ is a step function.
Then following the derivation in [35, 36], we have the

following modified equation of motion for the scalar field
coupled to  :

�̈+ 3H�̇ = �V 0(�) + N�h ̄ i , (6)

where V 0(�) = dV/d�. The solution to this di↵erential
equation after particle creation (t > t⇤) is then similar to
that derived in Refs. [35, 36] but with a sign change for
the coupling term, i.e.

�̇(t > t⇤) = �̇⇤ exp [�3H(t � t⇤)]

� V 0(�)⇤
3H⇤

⇥
1� exp [�3H(t � t⇤)]

⇤

+ N�n⇤(t � t⇤) exp [�3H⇤(t � t⇤)] . (7)

The physical interpretation here is that the rate of change
of the scalar field rapidly increases due to the coupling
to particles created at the resonance � = �⇤.

Then, using Eq. (1) for the fluctuation as it exits the
horizon, and constant H ⇡ H⇤ in the slow-roll condition
along with

d ln a = Hdt , (8)

one obtains the perturbation in the primordial power
spectrum as it exits the horizon:

�H =
[�H(a)]N�=0

1 +⇥(a � a⇤)(N�n⇤/|�̇⇤|H⇤)(a⇤/a)3 ln (a/a⇤)
.

(9)
Here, it is clear that the power in the fluctuation of the
inflaton field will diminish as the particles are resonantly
created when the universe grows to some critical scale
factor a⇤.

Using k⇤/k = a⇤/a, then the perturbation spectrum
Eq. (9) can be reduced [36] to a simple two-parameter
function.

�H(k) =
[�H(a)]N�=0

1 +⇥(k � k⇤)A(k⇤/k)3 ln (k/k⇤)
. (10)

where the amplitude A and characteristic wave number
k⇤ (k/k⇤ � 1) can be fit to the observed power spectrum
from the relation:

k⇤ =
`⇤
rlss

, (11)

where rlss is the comoving distance to the last scattering
surface, taken here to be 14 Gpc. The values of A

and k⇤ determined from from the CMB power
spectrum relate to the inflaton coupling � and
fermion mass m, for a given inflation model via
Eqs. (9) and (10).

A = |�̇⇤|�1N�n⇤H
�1

⇤ . (12)

The connection between resonant particle creation and
the CMB temperature fluctuations is straightforward. As
usual, temperature fluctuations are expanded in spherical
harmonics, �T/T =

P
l

P
m almYlm(✓,�) (2  l < 1

and �l  m  l). The anisotropies are then described by
the angular power spectrum, Cl = h|alm|2i, as a function
of multipole number l. One then merely requires the
conversion from perturbation spectrum �H(k) to angular
power spectrum Cl. This is easily accomplished using the
CAMB code [50]. When converting to the angular power
spectrum, the amplitude of the narrow particle creation
feature in �H(k) is spread over many values of `. Hence,
the particle creation feature looks like a broad dip in the
power spectrum.
We have made a multi-dimensional Markov Chain

Monte-Carlo analysis [51, 52] of the CMB using the
Planck data [1] and the CosmoMC code [52]. For simplic-
ity and speed in the present study we only marginalized
over parameters which do not alter the matter or CMB
transfer functions. Hence, we only varied A and k⇤, along
with the six parameters, ⌦bh

2,⌦ch
2, ✓, ⌧, ns, As. Here,

⌦b is the baryon content, ⌦c is the cold dark matter con-
tent, ✓ is the acoustic peak angular scale, ⌧ is the optical
depth, ns is the power-law spectral index, and As is the
normalization. As usual, both ns and As are normalized
at k = 0.05 Mpc�1.
Figure 2 shows contours of likelihood for the reso-

nant particle creation parameters, A and k⇤. Adding
this perturbation to the primordial power spectrum im-
proves the total �2 for the fit from 9803 to 9798. One
expects that the e↵ect of interest here would only make
a small change (��2 = 5) in the overall fit because it
only a↵ects a limited range of l values with large er-
ror bars. Nevertheless, from the likelihood contours we
can deduce a mean value of A = 1.7 ± 1.5 with a max-
imum likelihood value of A = 1.5, and a mean value of
k⇤ = 0.0011± 0.0004 h Mpc�1

Of course, it is obvious that adding extra parameters
should improve the goodness of fit. One should quantify
the statistical significance of the improvement over a sim-
ple power-law primordial power spectrum. A ��2 = 5 in
the fit corresponds to a 92% confidence level for two free
parameters, hence less than a 2� confidence limit. To be
more precise, the Bayesian information criterion (BIC)
can be used to select whether one model is better than
another by introducing a penalty term for the number
of parameters in the model fit. Under the assumption
that the model errors are independent and obey a nor-
mal distribution, then the BIC can be rewritten in terms
of ��2 as BIC⇡ ��2 + df · lnn where df is the number
of degrees of freedom in the test and n is the number of

5

k* 

A 

FIG. 2: (Color online) Constraints on parameters A and k⇤
from the MCMC analysis of the CMB power spectrum. Con-
tours show 1 and 2� limits. The horizontal axis is in units of
(h Mpc�1).

points in the observed data. For the 30 multipoles in the
range of the fit, the introduction of 2 new free parameters
then corresponds to a BIC= 1.8. Generally, BIC> 2 is
considered positive evidence for an improvement in the
fit. Hence, one must conclude that the evidence for this
fit is statistically weak. Nevertheless, it is worthwhile
to examine the possible physical meaning of the deduced
parameters.

III. PHYSICAL PARAMETERS

The coe�cient A can be related directly to the coupling
constant � using the approximation [35, 53–55] for the
particle production Bogoliubov coe�cient

|�k|2 = exp

✓
�⇡k2

a2

⇤N�|�̇⇤|

◆
. (13)

Then,

n⇤ =
2

⇡2

Z 1

0

dkp k2

p |�k|2 =
N�3/2

2⇡3

|�̇⇤|3/2 . (14)

This gives

A =
N�5/2

2⇡3

q
|�̇⇤|

H⇤
(15)

⇡ N�5/2

2
p
5⇡7/2

1p
�H(k⇤)|�=0

. (16)

where we have used the usual approximation for the pri-
mordial slow roll inflationary spectrum [3, 4]. This means
that regardless of the exact nature of the inflationary
scenario, for any fixed inflationary spectrum �H(k)|�=0

without the back reaction, we have the particle produc-
tion giving a dip of the form Eq. (10) with the parameter
A expressed in terms of the coupling constant through
Eq. (16). Given that the CMB normalization requires
�H(k)|�=0

⇠ 10�5, we then have

A ⇠ 1.3N�5/2. (17)

Hence, for the maximum likelihood value of A ⇠ 1.5, we
have

� ⇡ (1.0± 0.5)

N2/5
. (18)

So, �  1 requires N > 1 as expected.
The fermion particle mass m can then be deduced from

m = N��⇤. From Eq. (18) then we have m ⇡ �⇤/�3/2.
For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here, we adopt a general monomial poten-
tial whereby:

V (�) = ⇤�m4

pl

✓
�

mpl

◆↵

, (19)

for which there is a simple analytic relation [3] between
the value of �⇤ and the number of e-folds N (k⇤) between
when k⇤ exits the horizon and the end of inflation, i.e.

N (k⇤) =
1

m2

pl

Z �⇤

�end

V (�)

V 0(�)
d� , (20)

implies

�⇤ =
p
2↵Nmpl . (21)

For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =
ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠
50� 60. We note, however, that one can have the num-
ber of e-folds as low as N ⇠ 25 in the case of thermal
inflation [3]. For standard inflation a monomial potential
with ↵ = 2 would have �⇤ ⇠ (14 � 15) mpl. However,
the limits on the tensor to scalar ration from the Planck

analysis [2] rule out ↵ = 2 at the 95% confidence level.
Monomial potentials are more consistent with ↵ = 1
(�⇤ = (10�11) mpl), or even ↵ = 2/3 (�⇤ = (8�9) mpl).
Hence, we have roughly the constraint,

m ⇠ (8� 11)
m

pl

�3/2
. (22)

So, one can deduce a family of possible properties of
the resonantly produced particle (i.e. its mass and cou-
pling strength) in terms of a single parameter, the de-
generacy N . This is illustrated in Figure 3 that shows
allowed values and uncertainty in the coupling constant
and particle mass as a function of the number of degen-
erate species for a �2/3 inflaton e↵ective potential expe-
riencing 50 e-folds of inflation.
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tours show 1 and 2� limits. The horizontal axis is in units of
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points in the observed data. For the 30 multipoles in the
range of the fit, the introduction of 2 new free parameters
then corresponds to a BIC= 1.8. Generally, BIC> 2 is
considered positive evidence for an improvement in the
fit. Hence, one must conclude that the evidence for this
fit is statistically weak. Nevertheless, it is worthwhile
to examine the possible physical meaning of the deduced
parameters.
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The coe�cient A can be related directly to the coupling
constant � using the approximation [35, 53–55] for the
particle production Bogoliubov coe�cient
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where we have used the usual approximation for the pri-
mordial slow roll inflationary spectrum [3, 4]. This means
that regardless of the exact nature of the inflationary
scenario, for any fixed inflationary spectrum �H(k)|�=0

without the back reaction, we have the particle produc-
tion giving a dip of the form Eq. (10) with the parameter
A expressed in terms of the coupling constant through
Eq. (16). Given that the CMB normalization requires
�H(k)|�=0

⇠ 10�5, we then have

A ⇠ 1.3N�5/2. (17)

Hence, for the maximum likelihood value of A ⇠ 1.5, we
have

� ⇡ (1.0± 0.5)

N2/5
. (18)

So, �  1 requires N > 1 as expected.
The fermion particle mass m can then be deduced from

m = N��⇤. From Eq. (18) then we have m ⇡ �⇤/�3/2.
For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here, we adopt a general monomial poten-
tial whereby:

V (�) = ⇤�m4

pl

✓
�

mpl

◆↵

, (19)

for which there is a simple analytic relation [3] between
the value of �⇤ and the number of e-folds N (k⇤) between
when k⇤ exits the horizon and the end of inflation, i.e.

N (k⇤) =
1

m2

pl

Z �⇤

�end

V (�)

V 0(�)
d� , (20)

implies

�⇤ =
p
2↵Nmpl . (21)

For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =
ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠
50� 60. We note, however, that one can have the num-
ber of e-folds as low as N ⇠ 25 in the case of thermal
inflation [3]. For standard inflation a monomial potential
with ↵ = 2 would have �⇤ ⇠ (14 � 15) mpl. However,
the limits on the tensor to scalar ration from the Planck

analysis [2] rule out ↵ = 2 at the 95% confidence level.
Monomial potentials are more consistent with ↵ = 1
(�⇤ = (10�11) mpl), or even ↵ = 2/3 (�⇤ = (8�9) mpl).
Hence, we have roughly the constraint,

m ⇠ (8� 11)
m

pl

�3/2
. (22)

So, one can deduce a family of possible properties of
the resonantly produced particle (i.e. its mass and cou-
pling strength) in terms of a single parameter, the de-
generacy N . This is illustrated in Figure 3 that shows
allowed values and uncertainty in the coupling constant
and particle mass as a function of the number of degen-
erate species for a �2/3 inflaton e↵ective potential expe-
riencing 50 e-folds of inflation.



How does this affect inflation? 

•  Causes a jump in the evolution of the scalar 
field 

9 

4

is labeled a⇤ at the time t⇤ at which resonant particle
production occurs. Considering a small interval around
this epoch, one can treat H = H⇤ as approximately con-
stant (slow roll inflation). The number density n of par-
ticles can be taken as zero before t⇤ and afterwards as
n = n⇤[a⇤/a(t)]3. The fermion vacuum expectation value
can then be written,

h ̄ i = n⇤⇥(t � t⇤) exp [�3H⇤(t � t⇤)] . (5)

where ⇥ is a step function.
Then following the derivation in [35, 36], we have the

following modified equation of motion for the scalar field
coupled to  :

�̈+ 3H�̇ = �V 0(�) + N�h ̄ i , (6)

where V 0(�) = dV/d�. The solution to this di↵erential
equation after particle creation (t > t⇤) is then similar to
that derived in Refs. [35, 36] but with a sign change for
the coupling term, i.e.

�̇(t > t⇤) = �̇⇤ exp [�3H(t � t⇤)]

� V 0(�)⇤
3H⇤

⇥
1� exp [�3H(t � t⇤)]

⇤

+ N�n⇤(t � t⇤) exp [�3H⇤(t � t⇤)] . (7)

The physical interpretation here is that the rate of change
of the scalar field rapidly increases due to the coupling
to particles created at the resonance � = �⇤.

Then, using Eq. (1) for the fluctuation as it exits the
horizon, and constant H ⇡ H⇤ in the slow-roll condition
along with

d ln a = Hdt , (8)

one obtains the perturbation in the primordial power
spectrum as it exits the horizon:

�H =
[�H(a)]N�=0

1 +⇥(a � a⇤)(N�n⇤/|�̇⇤|H⇤)(a⇤/a)3 ln (a/a⇤)
.

(9)
Here, it is clear that the power in the fluctuation of the
inflaton field will diminish as the particles are resonantly
created when the universe grows to some critical scale
factor a⇤.

Using k⇤/k = a⇤/a, then the perturbation spectrum
Eq. (9) can be reduced [36] to a simple two-parameter
function.

�H(k) =
[�H(a)]N�=0

1 +⇥(k � k⇤)A(k⇤/k)3 ln (k/k⇤)
. (10)

where the amplitude A and characteristic wave number
k⇤ (k/k⇤ � 1) can be fit to the observed power spectrum
from the relation:

k⇤ =
`⇤
rlss

, (11)

where rlss is the comoving distance to the last scattering
surface, taken here to be 14 Gpc. The values of A

and k⇤ determined from from the CMB power
spectrum relate to the inflaton coupling � and
fermion mass m, for a given inflation model via
Eqs. (9) and (10).

A = |�̇⇤|�1N�n⇤H
�1

⇤ . (12)

The connection between resonant particle creation and
the CMB temperature fluctuations is straightforward. As
usual, temperature fluctuations are expanded in spherical
harmonics, �T/T =

P
l

P
m almYlm(✓,�) (2  l < 1

and �l  m  l). The anisotropies are then described by
the angular power spectrum, Cl = h|alm|2i, as a function
of multipole number l. One then merely requires the
conversion from perturbation spectrum �H(k) to angular
power spectrum Cl. This is easily accomplished using the
CAMB code [50]. When converting to the angular power
spectrum, the amplitude of the narrow particle creation
feature in �H(k) is spread over many values of `. Hence,
the particle creation feature looks like a broad dip in the
power spectrum.
We have made a multi-dimensional Markov Chain

Monte-Carlo analysis [51, 52] of the CMB using the
Planck data [1] and the CosmoMC code [52]. For simplic-
ity and speed in the present study we only marginalized
over parameters which do not alter the matter or CMB
transfer functions. Hence, we only varied A and k⇤, along
with the six parameters, ⌦bh

2,⌦ch
2, ✓, ⌧, ns, As. Here,

⌦b is the baryon content, ⌦c is the cold dark matter con-
tent, ✓ is the acoustic peak angular scale, ⌧ is the optical
depth, ns is the power-law spectral index, and As is the
normalization. As usual, both ns and As are normalized
at k = 0.05 Mpc�1.
Figure 2 shows contours of likelihood for the reso-

nant particle creation parameters, A and k⇤. Adding
this perturbation to the primordial power spectrum im-
proves the total �2 for the fit from 9803 to 9798. One
expects that the e↵ect of interest here would only make
a small change (��2 = 5) in the overall fit because it
only a↵ects a limited range of l values with large er-
ror bars. Nevertheless, from the likelihood contours we
can deduce a mean value of A = 1.7 ± 1.5 with a max-
imum likelihood value of A = 1.5, and a mean value of
k⇤ = 0.0011± 0.0004 h Mpc�1

Of course, it is obvious that adding extra parameters
should improve the goodness of fit. One should quantify
the statistical significance of the improvement over a sim-
ple power-law primordial power spectrum. A ��2 = 5 in
the fit corresponds to a 92% confidence level for two free
parameters, hence less than a 2� confidence limit. To be
more precise, the Bayesian information criterion (BIC)
can be used to select whether one model is better than
another by introducing a penalty term for the number
of parameters in the model fit. Under the assumption
that the model errors are independent and obey a nor-
mal distribution, then the BIC can be rewritten in terms
of ��2 as BIC⇡ ��2 + df · lnn where df is the number
of degrees of freedom in the test and n is the number of
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• The density fluctuation when it crosses the Hubble radius in
case of simplest slow roll approximation is:

�H(k) ⇡
H2

5⇡�̇
(5)

• In this case using the above equation for the fluctuation as it
exists the horizon the perturbation in the primordial power
spectrum is :

�H =
[�H(a)]N�=0

1 +⇥(a� a⇤)(N�n⇤/|�̇⇤|H⇤)(a⇤/a)3 ln (a/a⇤)
(6)

Causes Dip 

Alters the primordial power spectrum 

�H(a) =
H2

5⇡�̇

€ 

Cl = π
dk
k0

∞

∫ jl
2 2k
H0

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
δH
2 (k)
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is labeled a⇤ at the time t⇤ at which resonant particle
production occurs. Considering a small interval around
this epoch, one can treat H = H⇤ as approximately con-
stant (slow roll inflation). The number density n of par-
ticles can be taken as zero before t⇤ and afterwards as
n = n⇤[a⇤/a(t)]3. The fermion vacuum expectation value
can then be written,

h ̄ i = n⇤⇥(t � t⇤) exp [�3H⇤(t � t⇤)] . (5)

where ⇥ is a step function.
Then following the derivation in [35, 36], we have the

following modified equation of motion for the scalar field
coupled to  :

�̈+ 3H�̇ = �V 0(�) + N�h ̄ i , (6)

where V 0(�) = dV/d�. The solution to this di↵erential
equation after particle creation (t > t⇤) is then similar to
that derived in Refs. [35, 36] but with a sign change for
the coupling term, i.e.

�̇(t > t⇤) = �̇⇤ exp [�3H(t � t⇤)]

� V 0(�)⇤
3H⇤

⇥
1� exp [�3H(t � t⇤)]

⇤

+ N�n⇤(t � t⇤) exp [�3H⇤(t � t⇤)] . (7)

The physical interpretation here is that the rate of change
of the scalar field rapidly increases due to the coupling
to particles created at the resonance � = �⇤.

Then, using Eq. (1) for the fluctuation as it exits the
horizon, and constant H ⇡ H⇤ in the slow-roll condition
along with

d ln a = Hdt , (8)

one obtains the perturbation in the primordial power
spectrum as it exits the horizon:

�H =
[�H(a)]N�=0

1 +⇥(a � a⇤)(N�n⇤/|�̇⇤|H⇤)(a⇤/a)3 ln (a/a⇤)
.

(9)
Here, it is clear that the power in the fluctuation of the
inflaton field will diminish as the particles are resonantly
created when the universe grows to some critical scale
factor a⇤.

Using k⇤/k = a⇤/a, then the perturbation spectrum
Eq. (9) can be reduced [36] to a simple two-parameter
function.

�H(k) =
[�H(a)]N�=0

1 +⇥(k � k⇤)A(k⇤/k)3 ln (k/k⇤)
. (10)

where the amplitude A and characteristic wave number
k⇤ (k/k⇤ � 1) can be fit to the observed power spectrum
from the relation:

k⇤ =
`⇤
rlss

, (11)

where rlss is the comoving distance to the last scattering
surface, taken here to be 14 Gpc. The values of A

and k⇤ determined from from the CMB power
spectrum relate to the inflaton coupling � and
fermion mass m, for a given inflation model via
Eqs. (9) and (10).

A = |�̇⇤|�1N�n⇤H
�1

⇤ . (12)

The connection between resonant particle creation and
the CMB temperature fluctuations is straightforward. As
usual, temperature fluctuations are expanded in spherical
harmonics, �T/T =

P
l

P
m almYlm(✓,�) (2  l < 1

and �l  m  l). The anisotropies are then described by
the angular power spectrum, Cl = h|alm|2i, as a function
of multipole number l. One then merely requires the
conversion from perturbation spectrum �H(k) to angular
power spectrum Cl. This is easily accomplished using the
CAMB code [50]. When converting to the angular power
spectrum, the amplitude of the narrow particle creation
feature in �H(k) is spread over many values of `. Hence,
the particle creation feature looks like a broad dip in the
power spectrum.
We have made a multi-dimensional Markov Chain

Monte-Carlo analysis [51, 52] of the CMB using the
Planck data [1] and the CosmoMC code [52]. For simplic-
ity and speed in the present study we only marginalized
over parameters which do not alter the matter or CMB
transfer functions. Hence, we only varied A and k⇤, along
with the six parameters, ⌦bh

2,⌦ch
2, ✓, ⌧, ns, As. Here,

⌦b is the baryon content, ⌦c is the cold dark matter con-
tent, ✓ is the acoustic peak angular scale, ⌧ is the optical
depth, ns is the power-law spectral index, and As is the
normalization. As usual, both ns and As are normalized
at k = 0.05 Mpc�1.
Figure 2 shows contours of likelihood for the reso-

nant particle creation parameters, A and k⇤. Adding
this perturbation to the primordial power spectrum im-
proves the total �2 for the fit from 9803 to 9798. One
expects that the e↵ect of interest here would only make
a small change (��2 = 5) in the overall fit because it
only a↵ects a limited range of l values with large er-
ror bars. Nevertheless, from the likelihood contours we
can deduce a mean value of A = 1.7 ± 1.5 with a max-
imum likelihood value of A = 1.5, and a mean value of
k⇤ = 0.0011± 0.0004 h Mpc�1

Of course, it is obvious that adding extra parameters
should improve the goodness of fit. One should quantify
the statistical significance of the improvement over a sim-
ple power-law primordial power spectrum. A ��2 = 5 in
the fit corresponds to a 92% confidence level for two free
parameters, hence less than a 2� confidence limit. To be
more precise, the Bayesian information criterion (BIC)
can be used to select whether one model is better than
another by introducing a penalty term for the number
of parameters in the model fit. Under the assumption
that the model errors are independent and obey a nor-
mal distribution, then the BIC can be rewritten in terms
of ��2 as BIC⇡ ��2 + df · lnn where df is the number
of degrees of freedom in the test and n is the number of
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the statistical significance of the improvement over a sim-
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parameters, hence less than a 2� confidence limit. To be
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83 deviation, as it could point the way to new interesting
84 physics at and above the Planck scale.
85 Indeed, in the Planck cosmological analysis [2] the
86 inflaton potential and the Hubble parameter evolution were
87 reconstructed during the observable part of inflation by using
88 a Taylor expansion of the inflaton potential or HðϕÞ. When
89 higher-order termswere allowed, both reconstructions found
90 a change in the slope of the potential at the beginning of the
91 observable range, thus better fitting the low-l temperature
92 deficit. As noted in that paper, however, these models were
93 not significantly favored compared to lower-order parameter-
94 izations that lead to slow-roll evolution at all times.
95 In addition, in the Planck analysis three distinct methods
96 to reconstruct the primordial power spectrum all independ-
97 ently found common patterns in the primordial power
98 spectrum of curvature perturbations related to the dip at
99 l ¼ 10–30 in the temperature power spectrum.

100 Although it is of weak statistical significance, a number
101 of works have proposed explanations of this particular dip
102 anomaly as a possible hint of new physics. One way to
103 explain the anomaly is by a phase transition in the inflation
104 potential [8]. This is consistent with the abrupt changes in
105 the slope of the inflation potential noted in the Planck
106 reconstruction [2].
107 In Ref. [8] this feature was fit with a class of models
108 dubbed first-order Wiggly Whipped inflation, whereby the
109 field starts rolling from a steeper power-law potential and
110 smoothly transitions to a flat power-law potential. This
111 sharp feature in the inflaton potential produces a departure
112 from the initial slow-roll phase, imprinting a large-scale
113 suppression in the scalar primordial power spectrum. The
114 best fits to the dip in such large-field models were found to
115 have a transition from a faster roll to the slow-roll inflation
116 at an inflaton field value of ϕ ≈ 15mpl.
117 As noted in that paper, however, in general this transition
118 and any features in the large-field potential produce a
119 suppression of scalar relative to tensor modes at small k.
120 This, however, is not consistent with the latest Planck
121 results [2] indicating a small tensor-to-scalar ratio. This fit
122 also introduces wiggles in the primordial perturbation.
123 Such wiggles in the matter power spectrum might also
124 be used to constrain this possibility.
125 In [31,32] the suppression of low multipoles and the dip
126 for l ¼ 10–30 were simultaneously fit in a string-theory
127 brane symmetry breaking mechanism. This mechanism
128 splits boson and fermion excitations in string theory,
129 leaving behind an exponential potential that is too steep
130 for the inflaton to emerge from the initial singularity while
131 descending it. As a result, the scalar field generically
132 “bounces against an exponential wall.” Just as in [8], this
133 steep potential then introduces an infrared depression and a
134 preinflationary break in the power spectrum of scalar
135 perturbations, reproducing the observed feature.
136 In [30] the dip at l ¼ 10–30 is explicitly related to the
137 CMB cold spot with an angular radius of ∼10° noted in

138both the Planck [1] and the WMAP [5] sky maps in the
139direction ðl; bÞ ¼ ð209°;−57°Þ. In their scenario, this could
140be due to a scattering of a multiple-field inflationary
141trajectory off of a hidden feature in the isocurvature
142direction. The inflaton then loses some energy. If only a
143patch of the sky hits that feature due to stochastic fluctua-
144tions, then a cold spot in the sky and a corresponding dip in
145the temperature power spectrum ensues.
146In the present work, however, rather than addressing the
147implications for the inflation-generating potential, we
148consider the possibility that new trans-Planckian physics
149occurs near the end of the inflation epoch corresponding to
150the resonant creation [35,36] of Planck-scale particles that
151couple to the inflaton field. Our best fit is shown by the
152solid line in Fig. 1, which we describe in detail in the
153following sections.
154This interpretation has the intriguing aspect that, if
155correct, an opportunity emerges to use the CMB to probe
156properties of new particle species that existed at and above
157the Planck scale (mpl ∼ 1019 GeV). That is the goal of the
158present work.
159Indeed, string theory compactification schemes generi-
160cally postulate the existence of massive particles at or above
161the Planck scale from the Kaluza-Klein states, winding
162modes, string excitations, etc. Moreover, the coupling of the
163inflaton to other particle species near the end of inflation is
164not only natural, but probably required. This is because the
165energy density in the inflaton must be converted to entropy
166in light or heavy particle species at the end of inflation as a
167means to reheat the Universe. Hence, the existence of
168Planck-scale mass particles that couple to the inflaton near
169the end of inflation is a scenario that is both natural and even
170required. This provides a possible opportunity to uncover
171new physics in the trans-Planckian regime.
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FIG. 2: (Color online) Constraints on parameters A and k⇤
from the MCMC analysis of the CMB power spectrum. Con-
tours show 1 and 2� limits. The horizontal axis is in units of
(h Mpc�1).

points in the observed data. For the 30 multipoles in the
range of the fit, the introduction of 2 new free parameters
then corresponds to a BIC= 1.8. Generally, BIC> 2 is
considered positive evidence for an improvement in the
fit. Hence, one must conclude that the evidence for this
fit is statistically weak. Nevertheless, it is worthwhile
to examine the possible physical meaning of the deduced
parameters.

III. PHYSICAL PARAMETERS

The coe�cient A can be related directly to the coupling
constant � using the approximation [35, 53–55] for the
particle production Bogoliubov coe�cient

|�k|2 = exp
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Then,
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where we have used the usual approximation for the pri-
mordial slow roll inflationary spectrum [3, 4]. This means
that regardless of the exact nature of the inflationary
scenario, for any fixed inflationary spectrum �H(k)|�=0

without the back reaction, we have the particle produc-
tion giving a dip of the form Eq. (10) with the parameter
A expressed in terms of the coupling constant through
Eq. (16). Given that the CMB normalization requires
�H(k)|�=0

⇠ 10�5, we then have

A ⇠ 1.3N�5/2. (17)

Hence, for the maximum likelihood value of A ⇠ 1.5, we
have

� ⇡ (1.0± 0.5)

N2/5
. (18)

So, �  1 requires N > 1 as expected.
The fermion particle mass m can then be deduced from

m = N��⇤. From Eq. (18) then we have m ⇡ �⇤/�3/2.
For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here, we adopt a general monomial poten-
tial whereby:

V (�) = ⇤�m4

pl

✓
�

mpl

◆↵

, (19)

for which there is a simple analytic relation [3] between
the value of �⇤ and the number of e-folds N (k⇤) between
when k⇤ exits the horizon and the end of inflation, i.e.

N (k⇤) =
1

m2

pl

Z �⇤

�end

V (�)

V 0(�)
d� , (20)

implies

�⇤ =
p
2↵Nmpl . (21)

For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =
ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠
50� 60. We note, however, that one can have the num-
ber of e-folds as low as N ⇠ 25 in the case of thermal
inflation [3]. For standard inflation a monomial potential
with ↵ = 2 would have �⇤ ⇠ (14 � 15) mpl. However,
the limits on the tensor to scalar ration from the Planck

analysis [2] rule out ↵ = 2 at the 95% confidence level.
Monomial potentials are more consistent with ↵ = 1
(�⇤ = (10�11) mpl), or even ↵ = 2/3 (�⇤ = (8�9) mpl).
Hence, we have roughly the constraint,

m ⇠ (8� 11)
m

pl

�3/2
. (22)

So, one can deduce a family of possible properties of
the resonantly produced particle (i.e. its mass and cou-
pling strength) in terms of a single parameter, the de-
generacy N . This is illustrated in Figure 3 that shows
allowed values and uncertainty in the coupling constant
and particle mass as a function of the number of degen-
erate species for a �2/3 inflaton e↵ective potential expe-
riencing 50 e-folds of inflation.
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For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here, we adopt a general monomial poten-
tial whereby:

V (�) = ⇤�m4

pl

✓
�

mpl

◆↵

, (19)

for which there is a simple analytic relation [3] between
the value of �⇤ and the number of e-folds N (k⇤) between
when k⇤ exits the horizon and the end of inflation, i.e.

N (k⇤) =
1

m2

pl

Z �⇤

�end

V (�)

V 0(�)
d� , (20)

implies

�⇤ =
p
2↵Nmpl . (21)

For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =
ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠
50� 60. We note, however, that one can have the num-
ber of e-folds as low as N ⇠ 25 in the case of thermal
inflation [3]. For standard inflation a monomial potential
with ↵ = 2 would have �⇤ ⇠ (14 � 15) mpl. However,
the limits on the tensor to scalar ration from the Planck

analysis [2] rule out ↵ = 2 at the 95% confidence level.
Monomial potentials are more consistent with ↵ = 1
(�⇤ = (10�11) mpl), or even ↵ = 2/3 (�⇤ = (8�9) mpl).
Hence, we have roughly the constraint,

m ⇠ (8� 11)
m

pl

�3/2
. (22)

So, one can deduce a family of possible properties of
the resonantly produced particle (i.e. its mass and cou-
pling strength) in terms of a single parameter, the de-
generacy N . This is illustrated in Figure 3 that shows
allowed values and uncertainty in the coupling constant
and particle mass as a function of the number of degen-
erate species for a �2/3 inflaton e↵ective potential expe-
riencing 50 e-folds of inflation.
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FIG. 2: (Color online) Constraints on parameters A and k⇤
from the MCMC analysis of the CMB power spectrum. Con-
tours show 1 and 2� limits. The horizontal axis is in units of
(h Mpc�1).

points in the observed data. For the 30 multipoles in the
range of the fit, the introduction of 2 new free parameters
then corresponds to a BIC= 1.8. Generally, BIC> 2 is
considered positive evidence for an improvement in the
fit. Hence, one must conclude that the evidence for this
fit is statistically weak. Nevertheless, it is worthwhile
to examine the possible physical meaning of the deduced
parameters.

III. PHYSICAL PARAMETERS

The coe�cient A can be related directly to the coupling
constant � using the approximation [35, 53–55] for the
particle production Bogoliubov coe�cient

|�k|2 = exp
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where we have used the usual approximation for the pri-
mordial slow roll inflationary spectrum [3, 4]. This means
that regardless of the exact nature of the inflationary
scenario, for any fixed inflationary spectrum �H(k)|�=0

without the back reaction, we have the particle produc-
tion giving a dip of the form Eq. (10) with the parameter
A expressed in terms of the coupling constant through
Eq. (16). Given that the CMB normalization requires
�H(k)|�=0

⇠ 10�5, we then have

A ⇠ 1.3N�5/2. (17)

Hence, for the maximum likelihood value of A ⇠ 1.5, we
have

� ⇡ (1.0± 0.5)

N2/5
. (18)

So, �  1 requires N > 1 as expected.
The fermion particle mass m can then be deduced from

m = N��⇤. From Eq. (18) then we have m ⇡ �⇤/�3/2.
For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here, we adopt a general monomial poten-
tial whereby:

V (�) = ⇤�m4

pl
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for which there is a simple analytic relation [3] between
the value of �⇤ and the number of e-folds N (k⇤) between
when k⇤ exits the horizon and the end of inflation, i.e.

N (k⇤) =
1

m2

pl

Z �⇤

�end

V (�)

V 0(�)
d� , (20)

implies

�⇤ =
p
2↵Nmpl . (21)

For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =
ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠
50� 60. We note, however, that one can have the num-
ber of e-folds as low as N ⇠ 25 in the case of thermal
inflation [3]. For standard inflation a monomial potential
with ↵ = 2 would have �⇤ ⇠ (14 � 15) mpl. However,
the limits on the tensor to scalar ration from the Planck

analysis [2] rule out ↵ = 2 at the 95% confidence level.
Monomial potentials are more consistent with ↵ = 1
(�⇤ = (10�11) mpl), or even ↵ = 2/3 (�⇤ = (8�9) mpl).
Hence, we have roughly the constraint,

m ⇠ (8� 11)
m

pl

�3/2
. (22)

So, one can deduce a family of possible properties of
the resonantly produced particle (i.e. its mass and cou-
pling strength) in terms of a single parameter, the de-
generacy N . This is illustrated in Figure 3 that shows
allowed values and uncertainty in the coupling constant
and particle mass as a function of the number of degen-
erate species for a �2/3 inflaton e↵ective potential expe-
riencing 50 e-folds of inflation.
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FIG. 2: (Color online) Constrains on parameters A and k⇤
from the MCMC analysis of the CMB power spectrum. Con-
tours show 1 and 2� limits. The horizontal axis is in units of
(h Mpc�1).
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where we have used the usual approximation for the pri-
mordial slow roll inflationary spectrum [3, 4]. This means
that regardless of the exact nature of the inflationary
scenario, for any fixed inflationary spectrum �H(k)|�=0

without the back reaction, we have the particle produc-
tion giving us a dip of the form Eq. (10) with the pa-
rameter A expressed in terms of the coupling constant
through Eq. (16). Given that the CMB normalization
requires �H(k)|�=0

⇠ 10�5, we then have

A ⇠ 1.3N�5/2. (17)

Hence, for the maximum likelihood value of A ⇠ 1.5, we
have

N ⇡
(1.1+1.1

�0.9)

�5/2
⇠ 1

�5/2
. (18)

So, �  1 requires N > 1 as expected.
The fermion particle mass m can then be deduced from

m = N��⇤. From Eq. (18) then we have m ⇡ �⇤/�3/2.
For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here we adopt a general monomial potential
whereby:

V (�) = ⇤�m4
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, (19)

for which there is a simple analytic relation [3] (cf.
Eq. (9)) between the value of �⇤ and the number of e-
folds N (k⇤) between when k⇤ exits the horizon and the
end of inflation, i.e.

N (k⇤) =
1

mpl2

Z �⇤

�end

V (�)
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d� , (20)

implies

�⇤ =
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For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =
ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠ 50
although one can have the number of e-folds as low as
N ⇠ 25 in the case of thermal inflation [3]. So, for a
monomial potential with ↵ = 2 we have �⇤ ⇠ 10�14 mpl.
On the other hand, the limits on the tensor to scalar ra-
tion from the Planck analysis [2] are more consistent with
↵ = 1 (�⇤ = 7�10 mpl), or even ↵ = 2/3 (�⇤ = 6�8 mpl).
Hence, we have roughly the constraint,

m ⇠ 6� 14
m

pl

�3/2
, (22)

well in excess of the Planck mass and independently of
the number of degenerate species.
We note, however, that it is not unnatural [7] to have

such trans-Plankian massive particles. Such particles oc-
cur generally in numerous extensions of the Standard
Model. Examples such as supergravity and superstring
theories, adopt the Planck mass as a fundamental scale.
However, such extra-dimensional theories generally con-
tain a spectrum of particles with masses well in excess
of the Planck mass. The extra-dimensions are compact
and smaller than the three large spatial dimensions. It
is, therefore, possible to dimensionally reduce the sys-
tem to obtain an e↵ective (3+1) dimensional theory that
produces a tower of Kaluza-Klein (KK) states [16, 17].
The mass of states in this tower is of order of the inverse
size of the extra dimension. Since the extra dimensions
are expected to have a size characteristic of the Planck
length, these KK states therefore have masses in excess
of the Planck masses. Furthermore, these KK states can
be nearly degenerate, with the level of degeneracy de-
pending upon the geometrical structure of the compact
space. It is, therefore, natural to deduce that a large
number of nearly degenerate fermions existed during in-
flation with a mass well in excess of mpl, and that these
particles couple to the inflaton field that drives inflation.
For our purposes this degeneracy factor is described by
the parameter N , and in such theories N can easily of
the order of 100. Hence, such a detectable signature in
the CMB power is not unexpected.

III. MATTER POWER SPECTRUM

It is straight forward to determine the matter power
spectrum. To convert the amplitude of the perturbation
as each wave number k enters the horizon, �H(k), to the
present-day power spectrum, P (k), which describes the
amplitude of the fluctuation at a fixed time, one must
make use of a transfer function, T (k) [18] which is easily
computed using the CAMB code [10] for various sets of
cosmological parameters (e.g. ⌦, H

0

, ⇤, ⌦B). An ad-
equate approximate expression for the structure power
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FIG. 2: (Color online) Constrains on parameters A and k⇤
from the MCMC analysis of the CMB power spectrum. Con-
tours show 1 and 2� limits. The horizontal axis is in units of
(h Mpc�1).
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where we have used the usual approximation for the pri-
mordial slow roll inflationary spectrum [3, 4]. This means
that regardless of the exact nature of the inflationary
scenario, for any fixed inflationary spectrum �H(k)|�=0

without the back reaction, we have the particle produc-
tion giving us a dip of the form Eq. (10) with the pa-
rameter A expressed in terms of the coupling constant
through Eq. (16). Given that the CMB normalization
requires �H(k)|�=0

⇠ 10�5, we then have

A ⇠ 1.3N�5/2. (17)

Hence, for the maximum likelihood value of A ⇠ 1.5, we
have

N ⇡
(1.1+1.1

�0.9)

�5/2
⇠ 1

�5/2
. (18)

So, �  1 requires N > 1 as expected.
The fermion particle mass m can then be deduced from

m = N��⇤. From Eq. (18) then we have m ⇡ �⇤/�3/2.
For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here we adopt a general monomial potential
whereby:

V (�) = ⇤�m4
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for which there is a simple analytic relation [3] (cf.
Eq. (9)) between the value of �⇤ and the number of e-
folds N (k⇤) between when k⇤ exits the horizon and the
end of inflation, i.e.
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For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =
ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠ 50
although one can have the number of e-folds as low as
N ⇠ 25 in the case of thermal inflation [3]. So, for a
monomial potential with ↵ = 2 we have �⇤ ⇠ 10�14 mpl.
On the other hand, the limits on the tensor to scalar ra-
tion from the Planck analysis [2] are more consistent with
↵ = 1 (�⇤ = 7�10 mpl), or even ↵ = 2/3 (�⇤ = 6�8 mpl).
Hence, we have roughly the constraint,
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well in excess of the Planck mass and independently of
the number of degenerate species.
We note, however, that it is not unnatural [7] to have

such trans-Plankian massive particles. Such particles oc-
cur generally in numerous extensions of the Standard
Model. Examples such as supergravity and superstring
theories, adopt the Planck mass as a fundamental scale.
However, such extra-dimensional theories generally con-
tain a spectrum of particles with masses well in excess
of the Planck mass. The extra-dimensions are compact
and smaller than the three large spatial dimensions. It
is, therefore, possible to dimensionally reduce the sys-
tem to obtain an e↵ective (3+1) dimensional theory that
produces a tower of Kaluza-Klein (KK) states [16, 17].
The mass of states in this tower is of order of the inverse
size of the extra dimension. Since the extra dimensions
are expected to have a size characteristic of the Planck
length, these KK states therefore have masses in excess
of the Planck masses. Furthermore, these KK states can
be nearly degenerate, with the level of degeneracy de-
pending upon the geometrical structure of the compact
space. It is, therefore, natural to deduce that a large
number of nearly degenerate fermions existed during in-
flation with a mass well in excess of mpl, and that these
particles couple to the inflaton field that drives inflation.
For our purposes this degeneracy factor is described by
the parameter N , and in such theories N can easily of
the order of 100. Hence, such a detectable signature in
the CMB power is not unexpected.

III. MATTER POWER SPECTRUM

It is straight forward to determine the matter power
spectrum. To convert the amplitude of the perturbation
as each wave number k enters the horizon, �H(k), to the
present-day power spectrum, P (k), which describes the
amplitude of the fluctuation at a fixed time, one must
make use of a transfer function, T (k) [18] which is easily
computed using the CAMB code [10] for various sets of
cosmological parameters (e.g. ⌦, H

0

, ⇤, ⌦B). An ad-
equate approximate expression for the structure power
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FIG. 2: (Color online) Constrains on parameters A and k⇤
from the MCMC analysis of the CMB power spectrum. Con-
tours show 1 and 2� limits. The horizontal axis is in units of
(h Mpc�1).
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where we have used the usual approximation for the pri-
mordial slow roll inflationary spectrum [3, 4]. This means
that regardless of the exact nature of the inflationary
scenario, for any fixed inflationary spectrum �H(k)|�=0

without the back reaction, we have the particle produc-
tion giving us a dip of the form Eq. (10) with the pa-
rameter A expressed in terms of the coupling constant
through Eq. (16). Given that the CMB normalization
requires �H(k)|�=0

⇠ 10�5, we then have

A ⇠ 1.3N�5/2. (17)

Hence, for the maximum likelihood value of A ⇠ 1.5, we
have

N ⇡
(1.1+1.1

�0.9)

�5/2
⇠ 1

�5/2
. (18)

So, �  1 requires N > 1 as expected.
The fermion particle mass m can then be deduced from

m = N��⇤. From Eq. (18) then we have m ⇡ �⇤/�3/2.
For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here we adopt a general monomial potential
whereby:

V (�) = ⇤�m4
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for which there is a simple analytic relation [3] (cf.
Eq. (9)) between the value of �⇤ and the number of e-
folds N (k⇤) between when k⇤ exits the horizon and the
end of inflation, i.e.
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1

mpl2

Z �⇤

�end

V (�)

V 0(�)
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For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =
ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠ 50
although one can have the number of e-folds as low as
N ⇠ 25 in the case of thermal inflation [3]. So, for a
monomial potential with ↵ = 2 we have �⇤ ⇠ 10�14 mpl.
On the other hand, the limits on the tensor to scalar ra-
tion from the Planck analysis [2] are more consistent with
↵ = 1 (�⇤ = 7�10 mpl), or even ↵ = 2/3 (�⇤ = 6�8 mpl).
Hence, we have roughly the constraint,
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well in excess of the Planck mass and independently of
the number of degenerate species.
We note, however, that it is not unnatural [7] to have

such trans-Plankian massive particles. Such particles oc-
cur generally in numerous extensions of the Standard
Model. Examples such as supergravity and superstring
theories, adopt the Planck mass as a fundamental scale.
However, such extra-dimensional theories generally con-
tain a spectrum of particles with masses well in excess
of the Planck mass. The extra-dimensions are compact
and smaller than the three large spatial dimensions. It
is, therefore, possible to dimensionally reduce the sys-
tem to obtain an e↵ective (3+1) dimensional theory that
produces a tower of Kaluza-Klein (KK) states [16, 17].
The mass of states in this tower is of order of the inverse
size of the extra dimension. Since the extra dimensions
are expected to have a size characteristic of the Planck
length, these KK states therefore have masses in excess
of the Planck masses. Furthermore, these KK states can
be nearly degenerate, with the level of degeneracy de-
pending upon the geometrical structure of the compact
space. It is, therefore, natural to deduce that a large
number of nearly degenerate fermions existed during in-
flation with a mass well in excess of mpl, and that these
particles couple to the inflaton field that drives inflation.
For our purposes this degeneracy factor is described by
the parameter N , and in such theories N can easily of
the order of 100. Hence, such a detectable signature in
the CMB power is not unexpected.

III. MATTER POWER SPECTRUM

It is straight forward to determine the matter power
spectrum. To convert the amplitude of the perturbation
as each wave number k enters the horizon, �H(k), to the
present-day power spectrum, P (k), which describes the
amplitude of the fluctuation at a fixed time, one must
make use of a transfer function, T (k) [18] which is easily
computed using the CAMB code [10] for various sets of
cosmological parameters (e.g. ⌦, H
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, ⇤, ⌦B). An ad-
equate approximate expression for the structure power
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where we have used the usual approximation for the pri-
mordial slow roll inflationary spectrum [3, 4]. This means
that regardless of the exact nature of the inflationary
scenario, for any fixed inflationary spectrum �H(k)|�=0

without the back reaction, we have the particle produc-
tion giving a dip of the form Eq. (9) with the parameter
A expressed in terms of the coupling constant through
Eq. (26). Given that the CMB normalization requires
�H(k)|�=0

⇠ 10�5, we then have

A ⇠ 1.3N�5/2. (27)

Hence, for the maximum likelihood value of A ⇠ 1.5, we
have

� ⇡ (1.0± 0.5)

N2/5
. (28)

So, �  1 requires N > 1 as expected.
The fermion particle mass m can then be deduced from

m = N��⇤. From Eq. (28) then we have m ⇡ �⇤/�3/2.
For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here, we adopt a general monomial poten-
tial whereby:

V (�) = ⇤�m4
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for which there is a simple analytic relation [3] between
the value of �⇤ and the number of e-folds N (k⇤) between
when k⇤ exits the horizon and the end of inflation, i.e.

N (k⇤) =
1

m2

pl

Z �⇤

�end

V (�)

V 0(�)
d� , (30)

implies

�⇤ =
p
2↵Nmpl . (31)

For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =

ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠
50� 60. We note, however, that one can have the num-
ber of e-folds as low as N ⇠ 25 in the case of thermal
inflation [3]. For standard inflation a monomial potential
with ↵ = 2 would have �⇤ ⇠ (14 � 15) mpl. However,
the limits on the tensor to scalar ration from the Planck

analysis [2] rule out ↵ = 2 at the 95% confidence level.
Monomial potentials are more consistent with ↵ = 1
(�⇤ = (10�11) mpl), or even ↵ = 2/3 (�⇤ = (8�9) mpl).
Hence, we have roughly the constraint,

m ⇠ (8� 11)
m

pl

�3/2
. (32)

So, one can deduce a family of possible properties of
the resonantly produced particle (i.e. its mass and cou-
pling strength) in terms of a single parameter, the de-
generacy N . This is illustrated in Figure ?? that shows
allowed values and uncertainty in the coupling constant
and particle mass as a function of the number of degen-
erate species for a �2/3 inflaton e↵ective potential expe-
riencing 50 e-folds of inflation.

A. degeneracy of open superstrings

What di↵ers in the present application from that in
the previous work is that since we know the number of
oscillations of the string we can explicitly count the de-
generacy N of the superstring. That is, the R states in
superstring theory can be expressed as,

R sector =
9Y

l=2

1Y

n=1

(↵l
�n)

�n,l

9Y

J=2

1Y

m=1

(dJ�m)⇢m,J |RAi

⌦|p+, ~pT i . (33)

Here, |RAi with A = 1, 16 are the degenerate R sec-
tor ground states, and |p+, ~pT i are string states. The
dJ�1

, dJ�2

, dJ�3

... are anticommuting creation operators
acting on |RAi and hence can only appear once in any
given state. The ↵l

�n) are creation operators acting on
|p+, ~pT i, and the quantities ⇢m,J are either zero or 1.

Now in the GSO truncation there are 16 degenerate
ground states times a degeneracy of 2 for each of the n
oscillations from the ↵l

�n. operations. So, for our state
with n = 20 the total degeneracy is N = 320. This
means that from Eq. (28) we deduce a coupling constant
of � = 0.10 ± 0.05. Inserting this into Eq. (32) then
implies a mass of the superstring of 250� 350 mpl.

B. degeneracy of closed superstrings

???? Mayukh ???

↵ = 2/3 => 
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2↵N⇤mpl

m = N�
p
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p
N � ln (k⇤/kH)



Suppose this particle is a 
Superstring:  How could you know? 

•  There should be similar resonant couplings 
corresponding to different excitations of the 
same string. 

 
•  Could this be the l =2 suppression or more? 
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We explore the possibility that both the suppression of the ` = 2 multipole moment of the power
spectrum of the cosmic microwave background temperature fluctuations and the possible dip in the
power spectrum for ` = 10� 30 can be explained as the result of the resonant creation of sequential
excitations of a fermionic (or bosonic) open (or closed) superstring that couples to the inflaton field.
We show that a superstring with ⇡ 43 or 42 oscillations can fit the dips in the CMB TT and EE power
spectra at ` = 2, and ` = 20, respectively. We deduce degeneracy of N ⇡ 1340 from which we infer
a coupling constant between the string and the inflaton field of � = 0.06±0.05. This implies masses
of m ⇡ 540�750 mpl for these states. We also show marginal evidence for the next lower excitation
with n = 41 oscillations on the string at ` ⇡ 60. Although the evidence of the dips at ` ⇡ 20 and
` ⇡ 60 are of marginal statistical significance, and there are other possible interpretations of these
features, this could constitute the first observational evidence of the existence of a superstring in
Nature.

PACS numbers: 98.80.Cq, 98.80.Es, 98.70.Vc

I. INTRODUCTION

It is generally accepted that the energy scale of super-
strings is so high that it is impossible to ever observe
a superstring in the laboratory. There is, however, one
epoch in which the energy scale of superstrings was ob-
tainable in Nature. That is in the realm of the early mo-
ments of trans-Plankian [1] chaotic inflation out of the
string theory landscape.
This paper explores the possibility that a specific se-

quence of super-string excitations may have made itself
known via its coupling to the inflaton field of inflation.
This may have left an imprint of ”dips” [2] in the TT
power spectrum of the cosmic microwave background.
The identification of this particle as a superstring is pos-
sible because there may be evidence for sequential oscilla-
tor states of the same superstring that appear on di↵erent
scales of the sky.
The primordial power spectrum is believed to derive

from quantum fluctuations generated during the infla-
tionary epoch [3, 4]. The various observed power spec-
tra of the cosmic microwave background (CMB) are then
modified by the dynamics of the cosmic radiation and
matter fluids as various scales re-enter the horizon along
with e↵ects from the transport of photons from the epoch
of last scattering to the present time. Indeed, the Planck
data [5, 6] have provided the highest resolution yet avail-
able in the determination CMB power spectra. Although
the TT primordial power spectrum is well fit with a sim-
ple tilted power law [6], there remain at least two in-
teresting features that may suggest deviations from the
simplest inflation paradigm.

One such feature is the well known suppression of the
` = 2 moment of the CMB power spectrum observed
both by Planck [5] and by the Wilkinson Microwave
Anisotropy Probe (WMAP) [7]. There is also a feature of
marginal statistical significance [6] in the observed power
spectrum of both Planck and WMAP near multipoles
` = 10 � 30. Both of these deviations occur in an inter-
esting region in the CMB power spectrum because they
correspond to angular scales that are not yet in causal
contact when the CMB photons were emitted. Hence,
the observed power spectrum is close to the true primor-
dial power spectrum for these features.

In the Planck inflation parameters paper [6], how-
ever, the deviation from a simple power law in the range
` = 10� 30 was deduced to be of weak statistical signifi-
cance due to the large cosmic variance at low `. In par-
ticular, a range of models was considered from the mini-
mal case of a kinetic energy dominated phase preceding a
short inflationary stage (with just one extra parameter),
to a model with a step-like feature in the inflation gen-
erating potential and in the sound speed (with five extra
parameters). These modifications led to improved fits of
up to ��2 = 12. However, neither the Bayesian evidence
nor a frequentist simulation-based analysis showed any
statistically significant preference over a simple power
law.

Nevertheless, a number of mechanisms have been pro-
posed [8] to deal with the suppression of the power spec-
trum on large scales and low multipoles. In addition
to being an artifact of cosmic variance [6, 9], large-scale
power suppression could arise from changes in the ef-
fective inflation-generating potential [10], di↵ering initial
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FIG. 1: (Color online) The fit (res line) to ` ⇡ 2, ` ⇡ 20 and
` ⇡ 60 suppression of the TT CMB power spectrum as de-
scribed in the text. Points with error bars are from the Planck
Data Release [5]. The green line shows the best standard
⇤CDM power-law fit to the Planck CMB power spectrum

Once the number of oscillations is deduced, one can pre-
dict k⇤ for the next state via:

ln (k⇤/kH) = N �
✓
n� 1

n

◆
[N � ln (k⇤(20)/kH)] (33)

We have made a straightforward �2 minimization to
fit the CMB Planck power spectrum [5] for the `⇤ ⇡ 2
and `⇤ = 20 resonances. We also searched via Eq. (33)
for a possible third resonant string excitation correspond-
ing n � 1 oscillations on the string. For simplicity and
speed we fixed all cosmological parameters at the values
deduced by Planck [5] and only searched over a single
amplitude and two k⇤ values, with the third k⇤ value
predicted from Eq. (33).

We deduce the following resonance parameters:

` ⇡ 2, A = 1.7±1.5, k⇤(2) = 0.00048±0.00025 h Mpc�1

` ⇡ 20, A = 1.7±1.5, k⇤(20) = 0.00149±0.00045 hMpc�1

` ⇡ 60, A = 1.7± 1.5, k⇤ = 0.00462± 0.00035 h Mpc�1

Adopting this as the best fit string parameters gives via
Eq. (32), n = 42.5 for the e↵ective number of oscillation
on the string.

Figure 1 illustrates the best fit to the TT CMB power
spectrum that includes both the ` ⇡ 2, ` ⇡ 20 and ` ⇡ 60
suppression of the CMB. It is obvious from Figure 1 that
that the evidence for this fit is statistically weak due to
the large errors in the data. Indeed, the total reduction
in �2 is ��2 = �9 for a fit with an addition of 3 degrees
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FIG. 2: Same as Figure 1 but in this case the lines are the
derived EE CMB power spectrum based upon the fits to the
TT power spectrum shown in Figure 1.

of freedom, i.e. the amplitude A and two independent
values for k⇤.

Figure 2 similarly illustrates the derived EE CMB
power spectrum based upon the fits to the TT power
spectrum shown in Figure 1. Although this fit is not op-
timized, and the uncertainty in the data is large, there is
a reduction in total �2 by ��2 = �5 for the line with res-
onant superstring creation. Hence, the EE spectrum is
at least consistent with this paradigm and in fact slightly
favors it.

Under the assumption that the model errors are in-
dependent and obey a normal distribution, then the
Bayesian information criterion (BIC) can be written [2]
in terms of ��2 as �BIC⇡ ��2 + (p · lnn), where p is
the number of parameters in the test and n is the num-
ber of points in the observed data. When selecting the
best model, the lowest BIC is preferred since the BIC
is an increasing function of both the error variance and
the number of new degrees of freedom p. In other words,
the unexplained variation in the dependent variable and
the number of explanatory variables increase the value
of BIC. Hence, a negative �BIC implies either fewer ex-
planatory variables, a better fit, or both. For the ⇡ 140
data points in the range of the fits of Figure 1 plus 2,
the inferred total improvement is ��2 = �14 with the
introduction of 3 new parameters. This corresponds to
a �BIC= +0.8. Generally, �BIC> 2 is required to be
considered evidence against a particular model. Hence,
one must conclude that although the fit including the
superstring resonances produces an improvement in �2,
it is statistically equivalent to the simple power-law fit.
Nevertheless, it is worthwhile to examine the possible
physical meaning of the deduced parameters.

TT EE 

MCMC fit to multiple dips in the CMB power spectrum 
Gangopadhyay, Mathews, Ichiki, Kajino arXiv:1701.00577  

there is an analytic solution for �⇤ for a given scale in terms of the number of e-folds of
inflation N⇤

�⇤ =
p
2↵N⇤mpl , (3.11)

where N⇤ is the number of e-folds before the end of inflation that the scale k⇤ left the horizon,

N⇤ =
1

m2

pl

Z �⇤

�end

V (�)

V 0
(�)

d� = N � ln (k⇤/kH) , (3.12)

where �end is the value of the scalar field at the end of inflation, N is the total number of
e-folds before the end of inflation that the current Hubble scale left the horizon, where the
Hubble scale is kH = h/2997.3 = 0.000227 Mpc�1 (for h = 0.68) [5].

So, for the compactified superstrings we can write

M = N��⇤ = N�
p
2↵

p
N � ln (k⇤/kH) mpl , (3.13)

and we can write the mass corresponding to a given multipole on the sky

M(`⇤)
2 / (N � ln (k⇤/kH)) . (3.14)

Next, we make the simplifying assumption that the resonant states in the spectrum differ
only in the number of excitations on the string. Then the coupling to the inflaton field � is
the same, along with the number of degenerate fermion states N at a given mass. We also
keep the same normalization of the mass scale ↵0.

Since the most massive scales exit the horizon first, they correspond to the larges angular
scales and lowest multipoles. Hence we identify the next (n + 1) excitation with the `⇤ = 2

dip. Then if we take N = 50, we can write for the ratio of the quadrupole (`⇤ = 2) resonant
suppression to the `⇤ ⇡ 20 dip:

M2

(`⇤ = 2)

M2

(`⇤ = 20)

⌘ R
+1

⇡ N � ln (k⇤(n+ 1)/kH)

N � ln (k⇤(n)/kH)

. (3.15)

Similarly for the higher multipoles we can define:

M2

(`⇤ = 20)

M2

(`⇤ = 60)

⌘ R�1

⇡ N � ln (k⇤(n)/kH)

N � ln (k⇤(n� 1)/kH)

. (3.16)

Hence, from fits to the CMB, one can deduce the ratio of excited states on the superstring in
this simple model.

3.2 Fit to CMB

We have made a straightforward �2 minimization to fit the CMB Planck power spectrum
[5] for the `⇤ = 2 and `⇤ ⇡ 20 resonances. We also searched for a possible third dip in
the spectrum. For simplicity and speed we fixed all cosmological parameters at the values
deduced by Planck [5] and only searched over a single amplitude.

We deduce the following resonance parameters:

` ⇡ 2, A = 1.7± 1.5, k⇤(n+ 1) = 0.0004± 0.0003 h Mpc

�1

` ⇡ 20, A = 1.7± 1.5, k⇤(n) = 0.0015± 0.0005 h Mpc

�1
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Figure 1: (Color online) Best fit (red line) to ` ⇡ 2, ` ⇡ 20 and ` ⇡ 60 suppression of the TT

CMB power spectrum as described in the text. Points with error bars are from the Planck

Data Release [5]. The green line shows the best standard ⇤CDM power-law fit to the Planck

CMB power spectrum.

` ⇡ 60, A = 1.7± 1.5, k⇤(n� 1) = 0.005± 0.004 h Mpc

�1

Figure 1 illustrates the best fit to the TT CMB power spectrum that includes both the
` ⇡ 2, ` ⇡ 20 and ` ⇡ 60 suppression of the CMB. It is obvious from Figure 1 that that the
evidence for this fit is statistically weak due to the large errors in the data. Indeed, the total
reduction in �2 is ��2

= �9 for this TT fit with an addition of 3 degrees of freedom, i.e. the
amplitude A and two independent values for k⇤.

Figure 2 similarly illustrates the derived EE CMB power spectrum based upon the
parameters from the fit to the TT power spectrum shown in Figure 1. Although this fit is
not optimized, and the uncertainty in the data is large, there is a reduction in total �2 by
��2

= �5 for the line with resonant superstring creation. Hence, the EE spectrum is at least
consistent with this paradigm and in fact slightly favors it.

Under the assumption that the model errors are independent and obey a normal distri-
bution, then the Bayesian information criterion (BIC) can be written [2] in terms of ��2 as
�BIC⇡ ��2

+(p · lnn), where p is the number of parameters in the test and n is the number
of points in the observed data. When selecting the best model, the lowest BIC is preferred
since the BIC is an increasing function of both the error variance and the number of new
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1.  Momentum states in the compact dimension 
2.  Oscillations 
3.  Winding around the compact dimensions 



A simple example:  
D=26 Bosonic closed string with 1 dimension 

compacted in a circle of radius R 

M2 =
n2

R2
+

w2R2

↵02 +
2

↵0 (N + Ñ + 2)

Momentum 
States 

Winding 
Potential 
Energy 

Oscillations 

N =
X

(↵µ
�n↵nµ + ↵�n↵n)

Ñ =
X

(�↵̃µ
�n↵̃nµ + ↵̃�n↵̃n)

N � Ñ + nw = 0



Special Cases: 
  only oscillations 

 Only momentum 
or winding states 
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the R ! 0 and R ! 1 states are physically invariant in the mass spectrum, Eq. (3.1).
That is, these states are invariant under the coordinate transformation R ! R0

= ↵0/R and
n $ w. Hence, in what follows states with different n could either refer to momentum states
or different winding numbers on the superstring.

Although Eq. (3.1) is for a bosonic string, we note that fermions are constructed from a
combination of right going and left going modes on the string while imposing the appropri-
ate (NS-R, R-NS) boundary conditions [13–15] on a bosonic string. Then, to obtain closed
fermionic strings, the theory needs to be realized in the SU(n) or SO(2n) group. We take
n = 5 M-theory. However, the same mass formula, Eq. (3.1) is valid for an arbitrary com-
pactification of fermionic strings as well as bosonic strings. Although this is a simple version
of string theory, we identify two cases of cosmological interest.

In the limit of a fixed winding number and momentum states the string excitations can
be identified with oscillations on the string. Then one can approximately write:

M2 ⇡
✓
Nosc + ⇠

↵0

◆
, Case I. (3.5)

with

⇠ ⌘ ↵0
✓
n

R

◆
2

. (3.6)

The second case is that in which number of oscillations is fixed and N � ˜N = 0. Then
the spectrum of momentum states and/or winding states on the string will be approximately

M2 ⇡
✓
n2

+ ⇠

R2

◆
, Case II. (3.7)

with
⇠ =

2R2

↵0 (N +

˜N � 2) (3.8)

For special circumstance of the ground state one has N = � ˜N = 1.
One could in principle distinguish between these two cases if one could accurately de-

termine the mass spectrum. That is, in the case of small R and small ⇠, the mass spectrum
of momentum states should be regularly spaced, M ⇠ n. On the other hand, in the case
of large R, the spacing of string mass states should be proportional to the square root of
the number of oscillations M ⇠

p
Nosc. Unfortunately, as noted below, the uncertainty in

the mass spectrum is too large to distinguish which of these spectra best characterizes the
deviations in the primordial power spectrum.

3.1 String excitations and the CMB

In our previous paper [2] we related the mass of the resonant particle to the scale k⇤ and
the number of e-folds N⇤ of inflation after the present associated scale left the horizon [3].
This follows for any general monomial inflation effective potential. That is, the resonance
condition relates the mass m to �⇤ via,

m = N��⇤ , (3.9)

However, for a general monomial potential,

V (�) = ⇤�m
4

pl

✓
�

mpl

◆↵

, (3.10)
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Can fix the ratio of mass states 

there is an analytic solution for �⇤ for a given scale in terms of the number of e-folds of
inflation N⇤

�⇤ =
p
2↵N⇤mpl , (3.11)

where N⇤ is the number of e-folds before the end of inflation that the scale k⇤ left the horizon,

N⇤ =
1

m2

pl

Z �⇤

�end

V (�)

V 0
(�)

d� = N � ln (k⇤/kH) , (3.12)

where �end is the value of the scalar field at the end of inflation, N is the total number of
e-folds before the end of inflation that the current Hubble scale left the horizon, where the
Hubble scale is kH = h/2997.3 = 0.000227 Mpc�1 (for h = 0.68) [5].

So, for the compactified superstrings we can write

M = N��⇤ = N�
p
2↵

p
N � ln (k⇤/kH) mpl , (3.13)

and we can write the mass corresponding to a given multipole on the sky

M(`⇤)
2 / (N � ln (k⇤/kH)) . (3.14)

Next, we make the simplifying assumption that the resonant states in the spectrum differ
only in the number of excitations on the string. Then the coupling to the inflaton field � is
the same, along with the number of degenerate fermion states N at a given mass. We also
keep the same normalization of the mass scale ↵0.

Since the most massive scales exit the horizon first, they correspond to the larges angular
scales and lowest multipoles. Hence we identify the next (n + 1) excitation with the `⇤ = 2

dip. Then if we take N = 50, we can write for the ratio of the quadrupole (`⇤ = 2) resonant
suppression to the `⇤ ⇡ 20 dip:

M2

(`⇤ = 2)

M2

(`⇤ = 20)

⌘ R
+1

⇡ N � ln (k⇤(n+ 1)/kH)

N � ln (k⇤(n)/kH)

. (3.15)

Similarly for the higher multipoles we can define:

M2

(`⇤ = 20)

M2

(`⇤ = 60)

⌘ R�1

⇡ N � ln (k⇤(n)/kH)

N � ln (k⇤(n� 1)/kH)

. (3.16)

Hence, from fits to the CMB, one can deduce the ratio of excited states on the superstring in
this simple model.

3.2 Fit to CMB

We have made a straightforward �2 minimization to fit the CMB Planck power spectrum
[5] for the `⇤ = 2 and `⇤ ⇡ 20 resonances. We also searched for a possible third dip in
the spectrum. For simplicity and speed we fixed all cosmological parameters at the values
deduced by Planck [5] and only searched over a single amplitude.

We deduce the following resonance parameters:

` ⇡ 2, A = 1.7± 1.5, k⇤(n+ 1) = 0.0004± 0.0003 h Mpc

�1

` ⇡ 20, A = 1.7± 1.5, k⇤(n) = 0.0015± 0.0005 h Mpc

�1
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Figure 2: Same as Figure 1 but in this case the lines are the derived EE CMB power
spectrum based upon the fits to the TT power spectrum shown in Figure 1.

degrees of freedom p. In other words, the unexplained variation in the dependent variable
and the number of explanatory variables increase the value of BIC. Hence, a negative �BIC
implies either fewer explanatory variables, a better fit, or both. For the ⇡ 140 data points
in the range of the fits of Figure 1 plus 2, the inferred total improvement is ��2

= �14

with the introduction of 3 new parameters. This corresponds to a �BIC= +0.8. Generally,
�BIC> 2 is required to be considered evidence against a particular model. Hence, one must
conclude that although the fit including the superstring resonances produces an improvement
in �2, it is statistically equivalent to the simple power-law fit. Nevertheless, it is worthwhile
to examine the possible physical meaning of the deduced parameters.

4 Physical Parameters

The first physical property we can deduce is that there is a regular spacing in the mass
spectrum associated with these three dips in the CMB power spectrum. That is, we infer from
Eqs. (3.15) and (3.16) the following ratio of excited states: M2

(`⇤=2)

M2
(`=20)

⌘ R
+1

= 1.024± 0.050.

Surprisingly, we also obtain M2
(`⇤=20)

M2
(`=60)

⌘ R�1

= 1.024± 0.030.
As an illustration of how this might relate to string parameters let us consider the

simplest possible example. For Case I simple oscillations on a string in the limit of large R
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Figure 2: Same as Figure 1 but in this case the lines are the derived EE CMB power
spectrum based upon the fits to the TT power spectrum shown in Figure 1.
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�BIC> 2 is required to be considered evidence against a particular model. Hence, one must
conclude that although the fit including the superstring resonances produces an improvement
in �2, it is statistically equivalent to the simple power-law fit. Nevertheless, it is worthwhile
to examine the possible physical meaning of the deduced parameters.

4 Physical Parameters

The first physical property we can deduce is that there is a regular spacing in the mass
spectrum associated with these three dips in the CMB power spectrum. That is, we infer from
Eqs. (3.15) and (3.16) the following ratio of excited states: M2

(`⇤=2)

M2
(`=20)

⌘ R
+1

= 1.024± 0.050.

Surprisingly, we also obtain M2
(`⇤=20)

M2
(`=60)

⌘ R�1

= 1.024± 0.030.
As an illustration of how this might relate to string parameters let us consider the

simplest possible example. For Case I simple oscillations on a string in the limit of large R
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then one simply has

R
+1

=

(Nosc + 1)

Nosc
. (4.1)

From which one could deduce
Nosc =

1

R
+1

� 1

. (4.2)

For R
+1

= 1.024± 0.050 one could then deduce Nosc = 42

+1
�28

for the number of oscillations
on the compactified fermionic string. Obviously, the uncertainty is quite large. Nevertheless,
this illustrates the possibility to identify the string excitation.

One can also place some constraint on the mass and coupling constant. The amplitude
A can be related directly to the coupling constant � using the following approximation for
the particle production Bogoliubov coefficient [39, 58–60]

|�k|2 ⇡ exp

✓
�⇡k2

a2⇤�| ˙�⇤|

◆
. (4.3)

Then,

n⇤ =
2

⇡2

Z 1

0

dkp k
2

p |�k|2 =
N�3/2

2⇡3

| ˙�⇤|3/2 . (4.4)

This gives,

A =

N�5/2

2⇡3

q
| ˙�⇤|
H⇤

(4.5)

⇡ N�5/2

2

p
5⇡7/2

1p
�H(k⇤)|�=0

. (4.6)

where we have used the usual approximation for the primordial slow roll inflationary spectrum
[3, 4].

Now, given that the CMB normalization requires �H(k)|�=0

⇠ 10

�5, we have

A ⇠ 1.3N�5/2. (4.7)

Hence, for the maximum likelihood value of A ⇠ 1.7± 1.5, we have

� ⇡ (1.1± 1.0)

N2/5
. (4.8)

The fermion particle mass m can then be deduced from the resonance condition, m = N��⇤.
From Eq. (4.8) then we have m ⇡ �⇤/�

3/2. For the ` ⇡ 20 (k⇤ = 0.0015±0.0005 hMpc

�1)
resonance, and kH = a

0

H
0

= (h/2997.9) Mpc�1 ⇠ 0.0002, we have N �N⇤ = ln(kH/k⇤) < 1.
Typically one expects N (k⇤) ⇠ N ⇠ 50� 60.

We can then apply the resonance condition [Eq. (3.9)] to deduce the approximate range
of masses for the string excitations. Monomial potentials [Eq. (3.10)] with ↵ = 2/3 or ↵ = 1

correspond to the lowest order approximation to the string theory axion monodromy inflation
potential [66, 67]. Moreover, the limits on the tensor to scalar ratio from the Planck analysis
[6] are more consistent with ↵ = 2/3 or 1. If we fix the value of A = 1.7, then from the range
of 50-60 e-folds we would have �⇤ = (8� 9) mpl for ↵ = 2/3 or �⇤ = (10� 11) mpl for ↵ = 1.
Hence, we have roughly the constraint,

m ⇠ (8� 11)

m
pl

�3/2
. (4.9)
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there is an analytic solution for �⇤ for a given scale in terms of the number of e-folds of
inflation N⇤

�⇤ =
p
2↵N⇤mpl , (3.11)

where N⇤ is the number of e-folds before the end of inflation that the scale k⇤ left the horizon,

N⇤ =
1

m2

pl

Z �⇤

�end

V (�)

V 0
(�)

d� = N � ln (k⇤/kH) , (3.12)

where �end is the value of the scalar field at the end of inflation, N is the total number of
e-folds before the end of inflation that the current Hubble scale left the horizon, where the
Hubble scale is kH = h/2997.3 = 0.000227 Mpc�1 (for h = 0.68) [5].

So, for the compactified superstrings we can write

M = N��⇤ = N�
p
2↵

p
N � ln (k⇤/kH) mpl , (3.13)

and we can write the mass corresponding to a given multipole on the sky

M(`⇤)
2 / (N � ln (k⇤/kH)) . (3.14)

Next, we make the simplifying assumption that the resonant states in the spectrum differ
only in the number of excitations on the string. Then the coupling to the inflaton field � is
the same, along with the number of degenerate fermion states N at a given mass. We also
keep the same normalization of the mass scale ↵0.

Since the most massive scales exit the horizon first, they correspond to the larges angular
scales and lowest multipoles. Hence we identify the next (n + 1) excitation with the `⇤ = 2

dip. Then if we take N = 50, we can write for the ratio of the quadrupole (`⇤ = 2) resonant
suppression to the `⇤ ⇡ 20 dip:

M2

(`⇤ = 2)

M2

(`⇤ = 20)

⌘ R
+1

⇡ N � ln (k⇤(n+ 1)/kH)

N � ln (k⇤(n)/kH)

. (3.15)

Similarly for the higher multipoles we can define:

M2

(`⇤ = 20)

M2

(`⇤ = 60)

⌘ R�1

⇡ N � ln (k⇤(n)/kH)

N � ln (k⇤(n� 1)/kH)

. (3.16)

Hence, from fits to the CMB, one can deduce the ratio of excited states on the superstring in
this simple model.

3.2 Fit to CMB

We have made a straightforward �2 minimization to fit the CMB Planck power spectrum
[5] for the `⇤ = 2 and `⇤ ⇡ 20 resonances. We also searched for a possible third dip in
the spectrum. For simplicity and speed we fixed all cosmological parameters at the values
deduced by Planck [5] and only searched over a single amplitude.

We deduce the following resonance parameters:

` ⇡ 2, A = 1.7± 1.5, k⇤(n+ 1) = 0.0004± 0.0003 h Mpc

�1

` ⇡ 20, A = 1.7± 1.5, k⇤(n) = 0.0015± 0.0005 h Mpc

�1
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6

particle production Bogoliubov coe�cient

|�k|2 = exp

✓
�⇡k2

a2

⇤�|�̇⇤|

◆
. (23)

Then,

n⇤ =
2

⇡2

Z 1

0

dkp k2

p |�k|2 =
N�3/2

2⇡3

|�̇⇤|3/2 . (24)

This gives,

A =
N�5/2

2⇡3

q
|�̇⇤|

H⇤
(25)

⇡ N�5/2

2
p
5⇡7/2

1p
�H(k⇤)|�=0

. (26)

where we have used the usual approximation for the pri-
mordial slow roll inflationary spectrum [3, 4]. This means
that regardless of the exact nature of the inflationary
scenario, for any fixed inflationary spectrum �H(k)|�=0

without the back reaction, we have the particle produc-
tion giving a dip of the form Eq. (9) with the parameter
A expressed in terms of the coupling constant through
Eq. (26). Given that the CMB normalization requires
�H(k)|�=0

⇠ 10�5, we then have

A ⇠ 1.3N�5/2. (27)

Hence, for the maximum likelihood value of A ⇠ 1.5, we
have

� ⇡ (1.0± 0.5)

N2/5
. (28)

So, �  1 requires N > 1 as expected.
The fermion particle mass m can then be deduced from

m = N��⇤. From Eq. (28) then we have m ⇡ �⇤/�3/2.
For this purpose, however, one must adopt a specific form
for the inflaton potential to determine �⇤ appropriate to
the scale k⇤. Here, we adopt a general monomial poten-
tial whereby:

V (�) = ⇤�m4

pl

✓
�

mpl

◆↵

, (29)

for which there is a simple analytic relation [3] between
the value of �⇤ and the number of e-folds N (k⇤) between
when k⇤ exits the horizon and the end of inflation, i.e.

N (k⇤) =
1

m2

pl

Z �⇤

�end

V (�)

V 0(�)
d� , (30)

implies

�⇤ =
p
2↵Nmpl . (31)

For k⇤ = 0.0011 ± 0.0004 h Mpc�1, and kH =
a
0

H
0

= (h/3000) Mpc�1 ⇠ 0.0002, we have N � N⇤ =

ln(kH/k⇤) < 1. Typically one expects N (k⇤) ⇠ N ⇠
50� 60. We note, however, that one can have the num-
ber of e-folds as low as N ⇠ 25 in the case of thermal
inflation [3]. For standard inflation a monomial potential
with ↵ = 2 would have �⇤ ⇠ (14 � 15) mpl. However,
the limits on the tensor to scalar ration from the Planck

analysis [2] rule out ↵ = 2 at the 95% confidence level.
Monomial potentials are more consistent with ↵ = 1
(�⇤ = (10�11) mpl), or even ↵ = 2/3 (�⇤ = (8�9) mpl).
Hence, we have roughly the constraint,

m ⇠ (8� 11)
m

pl

�3/2
. (32)

So, one can deduce a family of possible properties of
the resonantly produced particle (i.e. its mass and cou-
pling strength) in terms of a single parameter, the de-
generacy N . This is illustrated in Figure ?? that shows
allowed values and uncertainty in the coupling constant
and particle mass as a function of the number of degen-
erate species for a �2/3 inflaton e↵ective potential expe-
riencing 50 e-folds of inflation.

A. degeneracy of open superstrings

What di↵ers in the present application from that in
the previous work is that since we know the number of
oscillations of the string we can explicitly count the de-
generacy N of the superstring. That is, the R states in
superstring theory can be expressed as,

R sector =
9Y

l=2

1Y

n=1

(↵l
�n)

�n,l

9Y

J=2

1Y

m=1

(dJ�m)⇢m,J |RAi

⌦|p+, ~pT i . (33)

Here, |RAi with A = 1, 16 are the degenerate R sec-
tor ground states, and |p+, ~pT i are string states. The
dJ�1

, dJ�2

, dJ�3

... are anticommuting creation operators
acting on |RAi and hence can only appear once in any
given state. The ↵l

�n) are creation operators acting on
|p+, ~pT i, and the quantities ⇢m,J are either zero or 1.

Now in the GSO truncation there are 16 degenerate
ground states times a degeneracy of 2 for each of the n
oscillations from the ↵l

�n. operations. So, for our state
with n = 20 the total degeneracy is N = 320. This
means that from Eq. (28) we deduce a coupling constant
of � = 0.10 ± 0.05. Inserting this into Eq. (32) then
implies a mass of the superstring of 250� 350 mpl.

B. degeneracy of closed superstrings
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We can then apply the resonance condition [Eq. (3.9)] to deduce the approximate range
of masses for the string excitations. Monomial potentials [Eq. (3.10)] with ↵ = 2/3 or ↵ = 1

correspond to the lowest order approximation to the string theory axion monodromy inflation
potential [66, 67]. Moreover, the limits on the tensor to scalar ratio from the Planck analysis
[6] are more consistent with ↵ = 2/3 or 1. If we fix the value of A = 1.7, then from the range
of 50-60 e-folds we would have �⇤ = (8� 9) mpl for ↵ = 2/3 or �⇤ = (10� 11) mpl for ↵ = 1.
Hence, we have roughly the constraint,
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Conclusions 
•  Marginal  evidence of sequential dips in the CMB 

power spectrum 
•  These could be caused by resonant coupling to 

successive  excitations of a superstring  during 
inflation. 

•  The regular spacing and constant amplitude of the 
dips is consistent with mass eigenstates corresponding 
to successive oscillations or momentum states of a 
single closed superstring. 

•  Uncertainties are too large to make definitive 
conclusion 


