

YITP long-term workshop **Gravity and Cosmology 2018** January 29 - March 9, 2018

Renormalization of Horava Gravity

A.O.Barvinsky

Theory Department, Lebedev Physics Institute, Moscow and Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto

> with D. Blas M. Herrero-Valea S. Sibiryakov and C. Steinwachs

Sweet moments ...

and the fate of the Universe!

Our Universe is in safe hands

Those Russians . . . Professor of cosmology!

Introduction:

towards local, unitary, perturbatively UV renormalizable QG

Horava-Lifshitz gravity

Problems with renormalization:

BPH renormalization and "regularity" of propagators covariance of UV counterterms

"Regular" propagators and gauge fixing conditions

Renormalization of gauge theories in background-field approach BRST structure of renormalization and field reparametrization

Asymptotic freedom of (2+1)-dimensional Horava gravity

Summary and outlook:

with D. Blas M. Herrero-Valea S. Sibiryakov and C. Steinwachs

Phys. Rev. D 93, 064022 (2016), arXiv:1512.02250; arXiv:1705.03480; PRL 119,211301 (2017), arXiv:1706.06809

$$S_{EH} = \frac{M_P^2}{2} \int dt d^d x R$$

$$\swarrow \qquad M_P^2 \int dt d^d x \ (h_{ij} \Box h_{ij} + h^2 \Box h + \dots)$$

$$\int (M_P^2 R + R_{\mu\nu} R^{\mu\nu} + R^2)$$

$$\checkmark \qquad \int (M_P^2 h_{ij} \Box h_{ij} + h_{ij} \Box^2 h_{ij} + \dots)$$

dominates at $k \gg M_P$

The theory is renormalizable and asymptotically free !

Fradkin, Tseytlin (1981) Avramidi, Barvinsky (1985)

But has ghost poles \rightarrow no unitary interpretation

Critical theory in z = d

Ll is necessarily broken. We want to preserve as many symmetries, as possible

 $x^i \mapsto \tilde{x}^i(\mathbf{x}, t)$ \checkmark γ_{ij} N^i , $i = 1, \dots, d$ $t \mapsto \tilde{t}(t)$ \checkmark N

We consider projectable models with *N*=1 in what follows

Foliation preserving diffeomorphisms $x^i \mapsto \tilde{x}^i(\mathbf{x},t) , \quad t \mapsto \tilde{t}(t)$ **ADM metric decomposition** $ds^{2} = N^{2}dt^{2} + \gamma_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt) , \quad i, j = 1, \dots, d$ Scaling transformations and scaling dimensions space dimensionality $x^i \to \lambda^{-1} x^i, \quad t \to \lambda^{-z} t, \quad N^i \to \lambda^{z-1} N^i, \quad \gamma_{ij} \to \gamma_{ij},$ $[x] = -1, \ [t] = -z, \ [N^i] = z - 1, \ [\gamma_{ij}] = 0, \ [K_{ij}] = z.$ $S = \frac{1}{2C} \int dt \, d^d x \sqrt{\gamma} N \left(K_{ij} K^{ij} - \lambda K^2 - \mathcal{V}(\gamma) \right)$ Horava gravity action $K_{ij} = \frac{1}{2N} (\dot{\gamma}_{ij} - \nabla_i N_j - \nabla_j N_i)$ $\mathcal{V}(\gamma) = 2\Lambda - \eta R + \mu_1 R^2 + \mu_2 R_{ij} R^{ij} + \nu_1 R^3 + \nu_2 R R_{ij} R^{ij}$ **Potential** $+\nu_3 R^i_i R^j_k R^k_i + \nu_4 \nabla_i R \nabla^i R + \nu_5 \nabla_i R_{jk} \nabla^i R^{jk} + \dots$ term

Extra structures in non-projectable theory, reduction of structures for detailed balance case

Deg of div
$$\int \frac{d^{d+1}p}{(p^2)^N} = d + 1 - 2N = physical dimensionality$$

$$p = (\omega, \mathbf{k}), \ p^2 \to \omega^2 + \mathbf{k}^{2z}$$

Deg of div
$$\int \frac{d\omega d^d k}{\left(\omega^2 + \mathbf{k}^{2z}\right)^N} = z + d - 2zN =$$
scaling dimensionality

physical dimensionality \neq scaling dimensionality

Counting degree of divergences and dimensionalities

$$\operatorname{Tr} \ln\left(-\partial_t^2 + (-\Delta)^z + ...\right)\Big|_{\operatorname{div}} = \int d\tau \, d^d x \, \gamma^{1/2} \sum \frac{\nabla^{2k} R^n \partial_t^r K^p}{\epsilon^D}$$
$$D = \frac{d+z-2(n+k)-(p+r)z}{2z} \quad \operatorname{degree of}_{\operatorname{divergence}} \left[s\right] = [\epsilon] = -2z$$

$$D \le 0, p \ge 2 \Rightarrow z \ge d$$

$$z = d$$

critical value

Log divergent potential terms

$$r + p = 0, D = 1 - \frac{k + n}{d} = 0 \Rightarrow k + n = d, [\nabla^{2k} R^n] = 2d$$

$$\mathcal{V}^{(d=2)}(\gamma) = 2\Lambda - \eta R + \mu_1 R^2$$
$$\mathcal{V}^{(d=3)}(\gamma) = 2\Lambda - \eta R + \mu_1 R^2 + O(R^3, R\nabla^2 R)$$

Divergences are local and are removed by local counterterms of $dim \leq 2d$ that are already present in the action

this is not guaranteed gauge invariance

$$\int \prod_{l=1}^{L} d^{d+1} k^{(l)} \mathcal{F}_n(k) \prod_{m=1}^{M} \frac{1}{\left(P^{(m)}(k)\right)^2} \implies$$

$$\int \prod_{l=1}^{L} d\omega^{(l)} d^{d} k^{(l)} \mathcal{F}_{n}(\omega, \mathbf{k}) \prod_{m=1}^{M} \frac{1}{A_{m} (\Omega^{(m)}(\omega))^{2} + B_{m} (\mathbf{K}^{(m)}(\mathbf{k}))^{2z}}$$

Generalization of BPHZ renormalization theory (subtraction of subdivergences) works only for $A_m > 0$ and $B_m > 0$ (or $A_m < 0$ and $B_m < 0$)

depends on gauge fixing

Analogy: Coulomb gauge in QED and YM theory

What is the analogue of relativistic gauges?

Regular gauges for HG

 \mathcal{L}_{gf} must be non-local Use guidance from the relativistic case

 $F^{\mu} = \partial_{\nu}h_{\nu\mu} + \dots$ $F^{i} = \dot{N}^{i} + \partial_{j}h_{ji} + \dots$

For HG put additional spatial derivatives on h_{ij} to preserve the homogeneous scaling. For d=2:

 $F^{i} = \dot{N}^{i} + c_{1} \Delta \partial_{j} h_{ji} + c_{2} \Delta \partial_{i} h + c_{3} \partial_{i} \partial_{j} \partial_{k} h_{jk}$

The choice

$$F^{i} = \dot{N}^{i} + \frac{1}{2\sigma} \mathcal{O}_{ij}^{-1} \partial_{k} h_{jk} - \frac{\lambda}{2\sigma} \mathcal{O}_{ij}^{-1} \partial_{j} h$$

decouples N^i from h_{ij} in the quadratic action

regular propagators for all fields (including Faddeev--Popov ghosts)

two free gf. parameters σ, ξ

Straightforward generalization to d>2 , e.g.

$$\mathcal{O}_{ij}^{d=3} = \Delta^{-1} \left(\delta_{ij} \Delta + \xi \partial_i \partial_j \right)^{-1}$$

Diagrammatics in brief

- induction in the number of loops
- subdivergences are cancelled by counterterms introduced at the previous steps
 Anselmi, Halat (2007)
- introduce the degree of divergence \mathcal{D} defined as the scaling of the diagram under stretching the loop momenta and frequencies $k_{loop} \mapsto b k_{loop}$, $\omega_{loop} \mapsto b^d \omega_{loop}$

• diags. with D > 0 require local counterterms of scaling dimension at most 2d

What about gauge invariance ?

this is tricky ... GI is explicitly broken by the gauge-fixing. Instead, we have to rely on the Slavnov-Taylor identities The latter gets deformed at each loop order and requires nonlinear field renormalization to restore ...

Use the background-field method (why it works is in the second part of the talk)

$$\gamma_{ij} = \bar{\gamma}_{ij} + h_{ij}$$
, $N^i = \bar{N}^i + n^i$

covariantize everything with respect to $\bar{\gamma}_{ij}$:

 $\mathcal{O}_{ij} = -\left(\bar{\Delta}\bar{\gamma}^{ij} + \xi\bar{\nabla}^i\bar{\nabla}^j\right)^{-1}$ etc.

NB. Nonlocality can be resolved by introducing an auxiliary field

effective action is manifestly invariant w.r.t. background gauge transformations

- one-loop counterterms are manifestly gauge-invariant
- at higher loops, the renormalization of quantum fields is fixed

Abbott (1981), Barvinsky, Vilkovisky (1988) Grassi (1996), Anselmi (2014) Barvinsky, Blas, Herrero-Valea, Steinwachs, S.S. (to appear)

Non-Projectable model

one more variable $N = 1 + \phi$ + one more equation

still TT + a single scalar **Good:** $\omega_s^2 \propto +k^2$ at $k \to 0$ **Bad:** at $k \to \infty$ $\langle \phi \phi \rangle = \text{regular} + \frac{1}{k^{2d}}$ present even in $\sigma\xi$ - gauges physical: shows up in the interaction of local sources

Blas, Pujolas, S.S. (2011) Blas, S.S. (2011)

Outlook

- Projectable HG is renormalizable in arbitrary number of spacetime dimensions. Remains true with addition of Lifshitz matter
- Key tools: gauges leading to regular propagators
 + background field method
- To do: explicit computation of quantum corrections. Is the theory asymptotically free or runs into a Landau pole ?
- Toy model to study the role of (spatial) diffeomorphisms in quantum gravity. E.g. does absence of local observables imply non-locality ?
- New ideas are needed to address renormalizability of the NP model

Introduction:

towards local, unitary, perturbatively UV renormalizable QG

Horava-Lifshitz gravity

Problems with renormalization:

BPH renormalization and "regularity" of propagators covariance of UV counterterms

"Regular" propagators and gauge fixing conditions

Renormalization of gauge theories in background-field approach BRST structure of renormalization and field reparametrization

Asymptotic freedom of (2+1)-dimensional Horava gravity

Summary and outlook:

Renormalization of gauge theories in backgroundfield approach

Task: to prove that counterterms are covariant local functionals of the original gauge field

Gauge-breaking and ghost terms – counterterms to them?

Background covariant gauge conditions: success of the one-loop approximation – what is beyond?

Preservation of the BRST structure and counterterms covariance by 1) UV renormalization and 2) gauge field reparametrization (DeWitt, Tuytin-Voronov, Batalin-Vilkovisky, Kallosh, Arefieva-Faddeev-Slavnov, Abbot, Henneaux et al)

40+ years old topic! So what is new here?

Background field extension of the BRST operator

Inclusion of generating functional sources into the gauge fermion

BRST structure of renormalization via decoupling of the background field

Quantum corrected gauge fermion is a generating functional of the field reparameterization

No power counting or use of field dimensionalities

Extension to Lorentz symmetry violating theories

Extension to (nonrenormalizable) effective field theories

BRST formalism

Gauge theory:

$$\varphi = \varphi^a, \quad S = S[\varphi], \quad \frac{\delta S}{\delta \varphi^a} R^a_{\alpha} = 0$$

Generators of gauge transformations:

$$\begin{aligned} R^{a}_{\alpha} &= R^{a}_{\alpha}(\varphi), \quad \delta_{\epsilon}\varphi^{a} = R^{a}_{\alpha}\epsilon^{\alpha}, \\ R^{a}_{\alpha}\frac{\delta R^{b}_{\beta}}{\delta\varphi^{a}} - R^{a}_{\beta}\frac{\delta R^{b}_{\alpha}}{\delta\varphi^{a}} = C^{\gamma}_{\alpha\beta}R^{b}_{\gamma} \end{aligned}$$
Structure constants
DeWitt summation rule: $a = (A, x), \quad F^{a}\Psi_{a} \equiv \int dx \ F^{A}(x)\Psi_{A}(x)$

Feynman-DeWitt-Faddeev-Popov functional integral

$$e^{-W[J]} = \int d\varphi \, e^{-S[\varphi] - \frac{1}{2}\chi^{\alpha}O_{\alpha\beta}\chi^{\beta} - J\varphi} \left(\det O_{\alpha\beta}\right)^{1/2} \det\left(\frac{\delta\chi^{\alpha}}{\delta\varphi^{a}}R_{\beta}^{a}\right)$$

$$gauge-breaking measure Faddeev-Popov operator for the form operator operator operator for the form operator operator operator for the form operator operato$$

$$\Sigma[\Phi] = S[\varphi] + s \Psi[\Phi] \qquad \text{BRST action}$$

$$s = (s\Phi) \frac{\delta}{\delta\Phi}, \quad s^2 = 0 \qquad \text{nilpotent BRST operator}$$

$$\text{BRST transformations of } \Phi$$

$$s\Phi: \quad s\varphi^{a} = R^{a}_{\alpha}(\varphi) \,\omega^{\alpha} \,, \ s\omega^{\alpha} = \frac{1}{2} C^{\alpha}_{\beta\gamma} \,\omega^{\beta} \omega^{\gamma}, \\ s\bar{\omega}_{\alpha} = b_{\alpha}, \ sb_{\alpha} = 0 \,.$$

$$\Psi[\Phi] = \bar{\omega}_{\alpha} \left(\chi^{\alpha}(\varphi) - \frac{1}{2} O^{\alpha\beta} b_{\beta} \right)$$

$$\uparrow$$
gauge
gauge
conditions
gauge-fixing
matrix

Assumptions on the class of theories

generators: linear

closed algebra

ireducible

$$\delta_{\varepsilon}\varphi^{a} = R^{a}_{\ \alpha}(\varphi)\,\varepsilon^{\alpha}, \quad R^{a}_{\ \alpha}(\varphi) = P^{a}_{\ \alpha} + R^{a}_{\ b\alpha}\varphi^{b}$$
$$\begin{bmatrix}\delta_{\varepsilon},\delta_{\eta}\end{bmatrix}\varphi^{a} = \delta_{\varsigma}\varphi^{a} \quad \varsigma^{\alpha} = C^{\alpha}_{\ \beta\gamma}\varepsilon^{\beta}\eta^{\gamma}$$
$$R^{a}_{\ \alpha}\varepsilon^{\alpha} = 0 \quad \Rightarrow \quad \varepsilon^{\alpha} = 0$$

Examples:

YM:
$$\delta_{\varepsilon}A^{i}_{\mu} = f^{ijk}A^{j}_{\mu}\varepsilon^{k} + \partial_{\mu}\varepsilon^{i}$$

GR: $\delta_{\varepsilon}g_{\mu\nu} = \varepsilon^{\lambda}\partial_{\lambda}g_{\mu\nu} + g_{\mu\lambda}\partial_{\nu}\varepsilon^{\lambda} + g_{\nu\lambda}\partial_{\mu}\varepsilon^{\lambda}$

Also higher-derivative gravity, also non-relativistic (Lifshitz) theories

Counterexample:

Supergravity (the algebra does not close off-shell)

Background gauge-fixing

• choose g.f. function $\chi^{lpha}(arphi,\phi)=\chi^{lpha}_a(\phi)(arphi-\phi)^a$ to be

invariant under BGT: $\delta_{\varepsilon}\varphi^{a} = R^{a}_{\ \alpha}(\varphi)\varepsilon^{\alpha} \qquad \delta_{\varepsilon}\phi^{a} = R^{a}_{\ \alpha}(\phi)\varepsilon^{\alpha}$

• promote $s \mapsto Q = s + \Omega^a \frac{\partial}{\delta \phi^a}$ the same anticommuting auxiliary field, controls dependence of g.f. on background

g.f. term at tree level:
$$Q\Psi_0$$

auxiliary (anti-)fields coupled to $s\varphi^a$, $s\omega^\alpha$ antighost Lagrange multiplier
 $\Psi_0 = -(\gamma_a - \bar{\omega}_\alpha \chi^\alpha_a(\phi))(\varphi - \phi)^a + \zeta_\alpha \omega^\alpha - \frac{1}{2}\bar{\omega}_\alpha O^{\alpha\beta}(\phi)b_\beta$
 $\hat{\gamma}_a$

More on background gauge transformations – linear representation of the gauge group

$$\delta_{\varepsilon}\varphi^{a} = R^{a}_{\ \alpha}(\varphi)\,\varepsilon^{\alpha} , \quad \delta_{\varepsilon}\phi^{a} = R^{a}_{\ \alpha}(\phi)\,\varepsilon^{\alpha}$$

$$\delta_{\varepsilon}(\varphi^{a} - \phi^{a}) = \frac{\delta R^{a}{}_{\alpha}}{\delta \varphi^{b}}(\varphi^{b} - \phi^{b})\varepsilon^{\alpha}$$

fundamental representation

$$\delta_{\varepsilon}\chi^{\alpha} \equiv \frac{\delta\chi^{\alpha}}{\delta\varphi^{a}}\delta_{\varepsilon}\varphi^{a} + \frac{\delta\chi^{\alpha}}{\delta\phi^{a}}\delta_{\varepsilon}\phi^{a} = -C^{\alpha}_{\ \beta\gamma}\chi^{\beta}\varepsilon^{\gamma}$$

adjoint representation

B.g.t. of sources:

$$\delta_{\varepsilon}\gamma_{a} = -\gamma_{b}R^{b}{}_{a\alpha}\varepsilon^{\alpha} , \quad \delta_{\varepsilon}\omega^{\alpha} = -C^{\alpha}{}_{\beta\gamma}\omega^{\beta}\varepsilon^{\gamma}$$
$$\delta_{\varepsilon}\zeta_{\alpha} = \zeta_{\beta}C^{\beta}{}_{\alpha\gamma}\varepsilon^{\gamma}, \quad \delta_{\varepsilon}\Omega^{\alpha} = R^{a}{}_{b\alpha}\Omega^{b}\varepsilon^{\alpha}$$
$$\int_{\varepsilon}\Psi_{0} = 0, \quad \delta_{\varepsilon}\Sigma_{0} = 0$$

Renormalization at a glance

Apply it to a gauge theory:

Main result

L-th order generating functional:

)

(1)

reparameterized fields

$$\exp\left\{-\frac{1}{\hbar}W_{L}[\mathcal{J}]\right\}$$

$$=\int d\Phi \exp\left\{-\frac{1}{\hbar}\left(\Sigma_{L}+J_{a}(\tilde{\varphi}_{L}^{a}-\phi^{a})+\bar{\xi}_{\alpha}\tilde{\omega}_{L}^{\alpha}+\xi^{\alpha}\bar{\omega}_{\alpha}+y^{\alpha}b_{\alpha}\right)\right\}$$

BRST structure of the renormalized action

$$\Sigma_L[\Phi,\phi,\gamma,\zeta,\Omega] = S_L[\varphi] + Q \Psi_L[\Phi,\phi,\gamma,\zeta,\Omega]$$

Renormalized gauge fermion

only original gauge field

$$\begin{split} \Psi_{L} &= \widehat{\Psi}_{L}[\varphi, \omega, \phi, \widehat{\gamma}, \zeta, \Omega] - \frac{1}{2} \overline{\omega}_{\alpha} O^{\alpha \beta}(\phi) b_{\beta} & \text{L-th loop order} \\ \widehat{\Psi}_{0} &= -\widehat{\gamma}_{a}(\varphi^{a} - \phi^{a}) + \zeta_{\alpha} \omega^{\alpha} & \text{tree level} \end{split}$$

Local reparameterization of quantum fields to composite operators including external sources

 $\tilde{\varphi}_L^a = \tilde{\varphi}_L^a(\varphi, \omega, \phi, \hat{\gamma}, \zeta, \Omega) \qquad \tilde{\omega}_L^\alpha = \tilde{\omega}_L^\alpha(\varphi, \omega, \phi, \hat{\gamma}, \zeta, \Omega)$

Gauge fermion is a generating function of the field redefinition

$$\tilde{\varphi}_L^a - \phi^a = -\frac{\delta \Psi_L}{\delta \gamma_a} \,, \qquad \tilde{\omega}_L^\alpha = \frac{\delta \Psi_L}{\delta \zeta_\alpha}$$

Applies to (non-renormalizable) EFT --nonlinear dependence on sources γ and ζ

For renormalizable theories:

$$\hat{\Psi}_L = -\hat{\gamma}_a U_L^{\ a}(\varphi, \phi) + \zeta_\alpha \omega^\beta V_{L\beta}^{\ \alpha}(\varphi, \phi) \qquad \text{linear in} \boldsymbol{\gamma} \text{ and } \boldsymbol{\zeta}$$

 $\tilde{\varphi}_L^a = \phi^a + U_L^a(\varphi, \phi) , \quad \tilde{\omega}_L^\alpha = V_{L\beta}^\alpha(\varphi, \phi) \, \omega^\beta$

independent of other sources

I think you should be a little more specific, here in Step 2

Slavnov-Taylor and Ward identities

Slavnov-Taylor and Ward identities for Γ

Decoupling of background fields in $\Gamma_{\rm div}$

Applies to nonrenormalizable EFT within gradient expansion

Truncate in number of derivatives + locality + fermionic statistics of $\Omega \implies 0 \le k \le K$

Structure of Λ

ST+W identities: $(q_0 + q_1) \Lambda = 0$

I.

$$(q_0)^2 = (q_1)^2 = q_0 q_1 + q_1 q_0 = 0$$

$$q_0 = \frac{\delta S}{\delta \varphi^a} \frac{\delta}{\delta \hat{\gamma}_a} - \hat{\gamma}_a R^a{}_\alpha(\varphi) \frac{\delta}{\delta \zeta_\alpha}, \quad q_1 = -\frac{1}{2} C^{\gamma}{}_{\alpha\beta} \omega^\alpha \omega^\beta \frac{\delta}{\delta \omega^\gamma}$$

Kozhul-Tate differential has a trivial cohomology under the assumption of local completeness and irreducibility of gauge generators for

$$\begin{split} \Lambda \Big|_{\omega = \widehat{\gamma} = \zeta = 0} &= 0 \\ \Lambda = \sum_{k=1}^{\infty} \omega^{\alpha_1} \dots \omega^{\alpha_k} \Lambda_{[\alpha_1, \dots, \alpha_k]}^{\{k\}} & \blacksquare \\ \Gamma_{L,\infty} &= S_L[\varphi] + Q_+ \Upsilon_L \end{split} \qquad \begin{array}{c} \text{Batalin, Vilkovisky (1985)} \\ \text{Henneaux (1991)} \\ \text{Vandoren, Van Proeyen (1994)} \\ q_0 X = 0, \ X \Big|_{\omega = \widehat{\gamma} = \zeta = 0} = 0 \\ \Rightarrow X = q_0 Y \\ \swarrow & \swarrow \\ \text{local} \end{array}$$

L-th order subtraction and $Q_+ \rightarrow Q$ transition via field redefinition

$$\Sigma_{L}[\Phi,\phi,\gamma,\zeta,\Omega] = \Sigma_{L-1} - \hbar^{L}\Gamma_{L,\infty} + \mathcal{O}(\hbar^{L+1})$$
$$\Psi_{L} = \Psi_{L-1} - \hbar^{L}\Upsilon_{L}$$

gauge fermion renormalization

field redefinition
$$\Phi \to \Phi'$$
:

$$\Sigma_L[\Phi, \phi, \gamma, \zeta, \Omega] = \begin{bmatrix} S_{L-1} - \hbar^L S_L + Q \Psi_L \end{bmatrix}_{\Phi \to \Phi'}$$
Solve (A')

$$\varphi^{a} - \phi^{a} = -\frac{\delta \Psi_{L}(\Phi')}{\delta \gamma_{a}}, \quad \omega^{\alpha} = \frac{\delta \Psi_{L}(\Phi')}{\delta \zeta_{\alpha}}$$

Gauge fermion is a generating function of the field redefinition

The power and beauty of nilpotent BRST charge

$$Q \to Q_{\text{ext}} = s + \Omega \frac{\delta}{\delta \phi} - J \frac{\delta}{\delta \gamma} + \bar{\xi} \frac{\delta}{\delta \zeta} + \xi \frac{\delta}{\delta y}, \qquad Q_{\text{ext}}^2 = 0$$
$$\Psi \to \Psi_{\text{ext}} \equiv \Psi + y\bar{\omega}$$
$$\Sigma \to \Sigma_{\text{ext}} = \Sigma - J \frac{\delta \Psi}{\delta \gamma} + \bar{\xi} \frac{\delta \Psi}{\delta \zeta} + \xi \bar{\omega} + yb = S + Q_{\text{ext}} \Psi_{\text{ext}}$$

$$e^{-W/\hbar} = \int d\Phi \, e^{-(S+Q_{\text{ext}}\Psi_{\text{ext}})/\hbar}$$

Example: 2D O(N) gauge model

$$S[\varphi] = \frac{1}{2g^2} \int d^2 x \left\{ \frac{1}{\varphi^2} \left[\delta_{ij} - \frac{\varphi_i \varphi_j}{\varphi^2} \right] \partial_\mu \varphi^i \partial^\mu \varphi^j \right\}, \quad i = 1, \dots N$$

Abelian gauge invariance

$$\delta_{\varepsilon}\varphi^{i}(x) = \varphi^{i}(x)\,\varepsilon(x)$$

One-loop renormalization

$$S_{1}[\varphi] = \left(\frac{1}{2g^{2}} + \hbar \frac{N-2}{4\pi(d-2)}\right) \int d^{2}x \left\{\frac{1}{\varphi^{2}} \left[\delta_{ij} - \frac{\varphi_{i}\varphi_{j}}{\varphi^{2}}\right] \partial_{\mu}\varphi^{i}\partial^{\mu}\varphi^{j}\right\}$$
$$\varphi^{i} \mapsto \tilde{\varphi}_{1}^{i} = \varphi^{i} - \frac{\hbar}{4\pi(2-d)} \left[\frac{\phi^{2}(\varphi^{2} + \phi^{2})}{(\varphi \cdot \phi)^{2}}\varphi^{i} - \frac{2\varphi^{2}}{(\varphi \cdot \phi)}\phi^{i}\right]$$

essentially nonlinear

Conclusions and Outlook

Background field method is not only a convenient calculational tool, but is also efficient for general analysis of the structure of renormalization

cf. Grassi (1996), Anselmi (2014)

- BRST structure (gauge invariance) is preserved by renormalization for non-anomalous theories whose gauge algebra:
 - i) has linear generators
 - ii) closes off-shell can be relaxed (?)
 - iii) is locally complete
 - iv) is irreducible can be relaxed
- Generalizations: open algebras, supersymmetry, composite operators, anomalies

The power and beauty of the nilpotent BRST operator

Introduction:

towards local, unitary, perturbatively UV renormalizable QG

Horava-Lifshitz gravity

Problems with renormalization:

BPH renormalization and "regularity" of propagators covariance of UV counterterms

"Regular" propagators and gauge fixing conditions

Renormalization of gauge theories in background-field approach BRST structure of renormalization and field reparametrization

Asymptotic freedom of (2+1)-dimensional Horava gravity

Summary and outlook:

the power and beauty of the nilpotent BRST operator

Asymptotic freedom in (2+1)-dimensions

$$S = \frac{1}{2G} \int dt \, d^2x \, N\sqrt{\gamma} \, \left(K_{ij} K^{ij} - \lambda K^2 + \mu R^2 \right)$$

$$\Gamma \to \Gamma + \varepsilon \int dt \, d^2 x \, \sqrt{\gamma} \, \left[K_{ij} K^{ij} - \lambda K^2 - \mu R^2 \right]$$
$$\delta G = -2G^2 \varepsilon, \quad \delta \lambda = 0, \quad \delta \mu = -4G\mu\varepsilon$$

Essential coupling constants: λ . $\mathcal{G} \equiv \frac{G}{\sqrt{\mu}}$

background split

gauge-fixing term σ, ξ – free parameters

$$\gamma_{ij} \to \gamma_{ij} + h_{ij}, \qquad N_i = 0 + n_i$$
$$S_{gf} = \frac{\sigma}{2G} \int dt \, d^2 x \, \sqrt{\gamma} \, F_i \, \mathcal{O}^{ij} F_i$$
$$F_i = \partial_t n_i + \frac{1}{2\sigma} \, \mathcal{O}^{-1}_{ij} (\nabla^k h_k^j - \lambda \nabla^j h)$$
$$\mathcal{O}^{ij} = -[\gamma_{ij} \Delta + \xi \nabla_i \nabla_j]^{-1}$$

localization of the kinetic term by auxilairy field π

$$\frac{\sigma}{2G} \int dt \, dt^2 x \sqrt{\gamma} \, \partial_t n_i \frac{-1}{\gamma_{ij} \Delta + \xi \nabla_i \nabla_j} \partial_t n_j \mapsto \\ \frac{1}{2G} \int dt \, d^2 x \sqrt{\gamma} \, \left(-\frac{1}{2\sigma} \pi^i \, \mathcal{O}_{ij}^{-1} \pi^j - i \pi^i \partial_t n_i \right)$$

$$S_{gh} = -\int dt \, d^2x \sqrt{\gamma} \, \bar{c}^i \Big[\partial_t \left(\gamma_{ij} \partial_t c^j \right) - \frac{1}{2\sigma} \Delta^2 (\gamma_{ij} c^j) - \frac{1}{2\sigma} \Delta \nabla_k \nabla_i c^k$$
action
of ghosts: $+ \frac{\lambda}{\sigma} \Delta \nabla_i \nabla_j c^j - \frac{\xi}{2\sigma} \left(\nabla_i \nabla_j \Delta c^j + \nabla_i \nabla_j \nabla_k \nabla^j c^k - 2\lambda \nabla_i \Delta \nabla_j c^j \right) \Big]$

Diagrammatic technique in terms of $h_{ij},\,n_i,\,\pi_i,\,c^i,\,ar{c}^i$

$$\beta_{\mathcal{G}} = -\frac{(16 - 33\lambda + 18\lambda^2)}{64\pi(1 - \lambda)^2} \sqrt{\frac{1 - \lambda}{1 - 2\lambda}} \mathcal{G}^2$$

Renormalization flows:

DEAR, MISAO!

MANY PRODUCTIVE YEARS, GIFTED STUDENTS AND HAPPINESS TO YOUR FAMILY!

And let your best seminal work be still ahead!