Massive and Partially Massless (PM) graviton on curved space-times Gravity and Cosmology 2018 Kyoto, 2018 march 1st.

> Cédric Deffayet (IAP and IHÉS, CNRS Paris)

1. DOF counting for a Massive graviton (*à la* Fierz-Pauli) on an Einstein spacetime

FP7/2007-2013 « NIRG » project no. 307934

2. Consistent massive graviton on arbitrary spacetime. L. Bernard, C.D., M. von Strauss + A. Schmidt-May (2015-2016, PRD, JCAP)

3. PM graviton on non Einstein spacetimes.

L. Bernard, C.D., K. Hinterbichler and M. von Strauss arXiv:1703.02538 (PRD)

Consider an Einstein space-time obeying $R_{\mu\nu} = \Lambda g_{\mu\nu}$

Consider an Einstein space-time obeying $R_{\mu\nu} = \Lambda g_{\mu\nu}$

Fierz-Pauli theory can be defined by

Fierz-Pauli (1939), Deser Nepomechie (1984), Higuchi (1987), Bengtsson (1995), Porrati (2001)

Consider an Einstein space-time obeying $R_{\mu\nu} = \Lambda g_{\mu\nu}$

Fierz-Pauli theory can be defined by

Fierz-Pauli (1939), Deser Nepomechie (1984), Higuchi (1987), Bengtsson (1995), Porrati (2001)

Field equations $E_{\mu\nu} \simeq 0$ \bigcirc on shell

Consider an Einstein space-time obeying $R_{\mu\nu} = \Lambda g_{\mu\nu}$

Fierz-Pauli theory can be defined by

Fierz-Pauli (1939), Deser Nepomechie (1984), Higuchi (1987), Bengtsson (1995), Porrati (2001)

Field equations $E_{\mu\nu} \simeq 0$ with on shell

$$E_{\mu\nu} \equiv \mathcal{D}_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma} - \Lambda \left(h_{\mu\nu} - \frac{1}{2}g_{\mu\nu}h\right) + \frac{m^2}{2}\left(h_{\mu\nu} - g_{\mu\nu}h\right)$$

Kinetic operator Cosmological operator Mass term

Comes from expanding the

Einstein-Hilbert action $\int d^4x \sqrt{-g} \left(R - 2\Lambda\right)$

The fierz Pauli theory for a massive graviton of mass *m* propagates Massless graviton

• 2 DOF if *m* = 0

DOF counting

The fierz Pauli theory for a massive graviton of mass *m* propagates • 2 DOF if m = 0Generic massive graviton

• 5 DOF if $m \neq 0$ and $m^2 \neq 2 \Lambda / 3$

DOF counting

The fierz Pauli theory for a massive graviton of mass *m* propagates • 2 DOF if m = 0Generic massive graviton

• 5 DOF if $m \neq 0$ and $m^2 \neq 2 \Lambda / 3$

• 4 DOF if $m^2 = 2 \Lambda / 3$

Partially Massless graviton

How to count DOF ?

Einstein-Hilbert action $\int d^4x \sqrt{-g} \left(R - 2\Lambda\right)$

This implies the (Bianchi) offshell identities $\nabla^{\mu} \left[\mathcal{D}_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma} - \Lambda \left(h_{\mu\nu} - \frac{1}{2}g_{\mu\nu}h \right) \right] = 0$ Results in the off-shell identity

$$\nabla^{\mu} E_{\mu\nu} = \frac{m^2}{2} \left(\nabla^{\mu} h_{\mu\nu} - g^{\rho\sigma} \nabla_{\nu} h_{\rho\sigma} \right)$$

Results in the off-shell identity

$$\nabla^{\mu} E_{\mu\nu} = \frac{m^2}{2} \left(\nabla^{\mu} h_{\mu\nu} - g^{\rho\sigma} \nabla_{\nu} h_{\rho\sigma} \right)$$

(i.e. $\nabla^{\mu} E_{\mu\nu} \sim 0$)

Results in an the off-shell identity

$$\nabla^{\mu} E_{\mu\nu} = \frac{m^2}{2} \left(\nabla^{\mu} h_{\mu\nu} - g^{\rho\sigma} \nabla_{\nu} h_{\rho\sigma} \right)$$

(i.e. $\nabla^{\mu} E_{\mu\nu} \sim 0$)

And the on-shell relation

Taking an extra derivative of the field equation operator yields (off shell)

$$\nabla^{\mu}\nabla^{\nu}E_{\mu\nu} = \frac{m^2}{2} \left(\nabla^{\mu}\nabla^{\nu}h_{\mu\nu} - \nabla^2h\right)$$

Taking an extra derivative of the field equation operator yields (off shell)

$$\nabla^{\mu}\nabla^{\nu}E_{\mu\nu} = \frac{m^2}{2} \left(\nabla^{\mu}\nabla^{\nu}h_{\mu\nu} - \nabla^2h\right)$$

While tracing it with the metric gives

$$g^{\mu\nu}E_{\mu\nu} = \nabla^2 h - \nabla^\mu \nabla^\nu h_{\mu\nu} + \left(\Lambda - \frac{3m^2}{2}\right)h$$

 \mathbf{O}

Taking an extra derivative of the field equation operator yields (off shell)

$$\nabla^{\mu}\nabla^{\nu}E_{\mu\nu} = \frac{m^2}{2} \left(\nabla^{\mu}\nabla^{\nu}h_{\mu\nu} - \nabla^2h\right)$$

While tracing it with the metric gives

$$g^{\mu\nu}E_{\mu\nu} = \nabla^2 h - \nabla^\mu \nabla^\nu h_{\mu\nu} + \left(\Lambda - \frac{3m^2}{2}\right)h$$

Hence we have the identity

$$2\nabla^{\mu}\nabla^{\nu}E_{\mu\nu} + m^{2}g^{\mu\nu}E_{\mu\nu} = \frac{m^{2}}{2}\left(2\Lambda - 3m^{2}\right)h$$

Yielding on shell

$$\left(2\Lambda - 3m^2\right)h \simeq 0$$

$$(2\Lambda - 3m^2) h \simeq 0$$

Generically: yields $h \simeq 0$

i.e. a "scalar constraint" ${\cal C}\equiv h\simeq 0$

reducing from 6 to 5 the

number of propagating DOF

$$\left(2\Lambda-3m^2
ight)h\simeq 0$$

However, if $2\Lambda=3m^2$

Then this vanishes identically

$$(2\Lambda - 3m^2) h \simeq 0$$

However, if $2\Lambda = 3m^2$
Then this vanishes identically
As is $2\nabla^{\mu}\nabla^{\nu}E_{\mu\nu} + m^2g^{\mu\nu}E_{\mu\nu}$

$$(2\Lambda - 3m^2) h \simeq 0$$
However, if $2\Lambda = 3m^2$
Then this vanishes identically
As is $2\nabla^{\mu}\nabla^{\nu}E_{\mu\nu} + m^2g^{\mu\nu}E_{\mu\nu}$
Shows the existence of a gauge symmetry
$$\Delta h_{\mu\nu} = \left(\nabla_{\mu}\nabla_{\nu} + \frac{m^2}{2}g_{\mu\nu}\right)\xi(x) = \left(\nabla_{\mu}\nabla_{\nu} + \frac{\Lambda}{3}g_{\mu\nu}\right)\xi(x)$$

Hence, if $2\Lambda = 3m^2$

one has 6 - 2 = 4 DOF (and a gauge symmetry)

The massive graviton is said to be "Partially massless" (PM) Two questions:

Can a fully non linear PM theory exist ?

Can a PM graviton exist on non Einstein space-times ?

Two questions:

Can a fully non linear PM theory exist ?

Can a PM graviton exist on non Einstein space-times ?

Here we address the second one...

First, we need to introduce the theory of a massive graviton on arbitrary backgrounds

2. Consistent massive graviton $h_{\mu\nu}$ on an arbitrary background specified by some given (non dynamical) metric $g_{\mu\nu}$

First, we need to introduce the theory of a massive graviton on arbitrary backgrounds

2. Consistent massive graviton $h_{\mu\nu}$ on an arbitrary background specified by some given (non dynamical) metric $g_{\mu\nu}$

$$S^{(2)} = -\frac{1}{2}M_g^2 \int d^4x \sqrt{|g|} h_{\mu\nu} \left(\mathcal{E}^{\mu\nu\rho\sigma} + m^2 \mathcal{M}^{\mu\nu\rho\sigma}\right) h_{\rho\sigma}$$

Einstein-Hilbert
kinetic operator
Mass term

The theory has been obtained in

L.Bernard, CD, M. von Strauss 1410.8302 + 1504.04382 + 1512.03620 (with A. Schmidt-May)

out of the dRGT theory

de Rahm, Gabadadze; de Rham, Gababadze, Tolley, 2010, 2011

Our massive graviton theory is defined by

Our massive graviton theory is defined by

1. A symmetric tensor $S_{\mu\nu}$ obtained from the background curvature solving

$$R^{\mu}_{\ \nu} = m^2 \left[\left(\beta_0 + \frac{1}{2} e_1 \beta_1 \right) \delta^{\mu}_{\nu} + \left(\beta_1 + \beta_2 e_1 \right) S^{\mu}_{\ \nu} - \beta_2 (S^2)^{\mu}_{\ \nu} \right]$$

with β_0 , β_1 and β_2 dimensionless parameters and *m* the graviton mass, e_n the symmetric polynomials

$$\begin{cases}
e_0 = 1, \\
e_1 = S^{\rho}_{\rho}, \\
e_2 = \frac{1}{2} \left(S^{\rho}_{\rho} S^{\nu}_{\nu} - S^{\rho}_{\nu} S^{\nu}_{\rho} \right), \\
e_3 = \frac{1}{6} \left(S^{\rho}_{\rho} S^{\nu}_{\nu} S^{\mu}_{\mu} - 3S^{\mu}_{\mu} S^{\rho}_{\nu} S^{\nu}_{\rho} + 2S^{\rho}_{\nu} S^{\nu}_{\mu} S^{\mu}_{\rho} \right), \\
e_4 = \det(S).
\end{cases}$$

2. The following (linear) field equations

$$\begin{split} E_{\mu\nu} &\equiv \mathcal{E}_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma} + \frac{m^2}{2} \bigg[2\left(\beta_0 + \beta_1 e_1 + \beta_2 e_2\right)h_{\mu\nu} - \left(\beta_1 + \beta_2 e_1\right)\left(h_{\mu\rho}S^{\rho}{}_{\nu} + h_{\nu\rho}S^{\rho}{}_{\mu}\right) \\ &- \left(\beta_1 g_{\mu\nu} + \beta_2 e_1 g_{\mu\nu} - \beta_2 S_{\mu\nu}\right)h_{\rho\sigma}S^{\rho\sigma} + \beta_2 g_{\mu\nu}h_{\rho\sigma}(S^2)^{\rho\sigma} \\ &- \left(\beta_1 + \beta_2 e_1\right)\left(g_{\mu\rho}\delta S^{\rho}{}_{\nu} + g_{\nu\rho}\delta S^{\rho}{}_{\mu}\right) \bigg] \simeq 0\,, \end{split}$$

2. The following (linear) field equations

$$E_{\mu\nu} \equiv \left[\mathcal{E}_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma} + \frac{m^2}{2} \left[2\left(\beta_0 + \beta_1 e_1 + \beta_2 e_2\right)h_{\mu\nu} - \left(\beta_1 + \beta_2 e_1\right)\left(h_{\mu\rho}S^{\rho}{}_{\nu} + h_{\nu\rho}S^{\rho}{}_{\mu}\right) - \left(\beta_1 g_{\mu\nu} + \beta_2 e_1 g_{\mu\nu} - \beta_2 S_{\mu\nu}\right)h_{\rho\sigma}S^{\rho\sigma} + \beta_2 g_{\mu\nu}h_{\rho\sigma}(S^2)^{\rho\sigma} - \left(\beta_1 + \beta_2 e_1\right)\left(g_{\mu\rho}\delta S^{\rho}{}_{\nu} + g_{\nu\rho}\delta S^{\rho}{}_{\mu}\right) \right] \simeq 0,$$

Linearized Einstein operator $\mathcal{E}_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma} \equiv -\frac{1}{2} \left[\delta^{\rho}_{\mu}\delta^{\sigma}_{\nu}\nabla^{2} + g^{\rho\sigma}\nabla_{\mu}\nabla_{\nu} - \delta^{\rho}_{\mu}\nabla^{\sigma}\nabla_{\nu} - \delta^{\rho}_{\nu}\nabla^{\sigma}\nabla_{\mu} - g_{\mu\nu}g^{\rho\sigma}\nabla^{2} + g_{\mu\nu}\nabla^{\rho}\nabla^{\sigma} + \delta^{\rho}_{\mu}\delta^{\sigma}_{\nu}R - g_{\mu\nu}R^{\rho\sigma} \right] h_{\rho\sigma} ,$

2. The following (linear) field equations

$$\begin{split} E_{\mu\nu} &\equiv \mathcal{E}_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma} + \frac{m^2}{2} \bigg[2\left(\beta_0 + \beta_1 e_1 + \beta_2 e_2\right)h_{\mu\nu} - \left(\beta_1 + \beta_2 e_1\right)\left(h_{\mu\rho}S^{\rho}_{\ \nu} + h_{\nu\rho}S^{\rho}_{\ \mu}\right) \\ &- \left(\beta_1 g_{\mu\nu} + \beta_2 e_1 g_{\mu\nu} - \beta_2 S_{\mu\nu}\right)h_{\rho\sigma}S^{\rho\sigma} + \beta_2 g_{\mu\nu}h_{\rho\sigma}(S^2)^{\rho\sigma} \\ &- \left(\beta_1 + \beta_2 e_1\right)\left(g_{\mu\rho}\delta S^{\rho}_{\ \nu} + g_{\nu\rho}\delta S^{\rho}_{\ \mu}\right)\bigg] \simeq 0\,, \\ \delta S^{\lambda}_{\ \mu} &= \frac{1}{2}\,g^{\nu\lambda} \bigg[e_4\,c_1\left(\delta^{\rho}_{\nu}\delta^{\sigma}_{\mu} + \delta^{\sigma}_{\nu}\delta^{\rho}_{\mu} - g_{\mu\nu}g^{\rho\sigma}\right) + e_4\,c_2\left(S^{\rho}_{\nu}\delta^{\sigma}_{\mu} + S^{\sigma}_{\nu}\delta^{\rho}_{\mu} - S_{\mu\nu}g^{\rho\sigma} - g_{\mu\nu}S^{\rho\sigma}\right) \\ &- e_3\,c_1\left(\delta^{\rho}_{\nu}S^{\sigma}_{\mu} + \delta^{\sigma}_{\nu}S^{\rho}_{\ \mu}\right) + (e_2\,c_1 - e_4\,c_3 + e_3\,c_2)\,S_{\mu\nu}S^{\rho\sigma} \\ &+ e_4\,c_3\left[\delta^{\sigma}_{\mu}[S^2]^{\rho}_{\ \nu} + \delta^{\rho}_{\mu}[S^2]^{\sigma}_{\ \nu} - g^{\rho\sigma}[S^2]_{\mu\nu} + \delta^{\rho}_{\nu}[S^2]^{\sigma}_{\ \mu} + \delta^{\sigma}_{\nu}[S^2]^{\rho}_{\ \mu} - g_{\mu\nu}[S^2]^{\rho\sigma}_{\ \mu}\right] \\ &- e_3\,c_2\left(S^{\rho}_{\nu}S^{\sigma}_{\ \mu} + S^{\sigma}_{\nu}S^{\rho}_{\ \mu}\right) - e_3\,c_3\left(S^{\sigma}_{\mu}[S^2]^{\rho\sigma}_{\ \nu} + S^{\rho}_{\mu}[S^2]^{\sigma}_{\ \nu} + S^{\rho}_{\nu}[S^2]^{\sigma}_{\ \mu} + [S^2]^{\sigma}_{\ \mu}]^{\rho\sigma} + (e_3\,c_3 - e_1\,c_1)\left(S^{\rho\sigma}[S^2]_{\mu\nu} + S_{\mu\nu}[S^2]^{\rho\sigma}\right) - (c_1 - e_2\,c_3)\left([S^2]^{\rho}_{\ \nu}[S^2]^{\sigma}_{\ \mu} + [S^2]^{\sigma}_{\ \nu}[S^3]^{\rho\sigma}\right) \\ &+ c_4\,[S^2]_{\mu\nu}[S^3]^{\rho\sigma}\right]h_{\rho\sigma}\,, \end{split}$$

$$\begin{split} \delta S^{\lambda}{}_{\mu} &= \frac{1}{2} g^{\nu\lambda} \Big[e_4 c_1 \left(\delta^{\rho}_{\nu} \delta^{\sigma}_{\mu} + \delta^{\sigma}_{\nu} \delta^{\rho}_{\mu} - g_{\mu\nu} g^{\rho\sigma} \right) + e_4 c_2 \left(S^{\rho}_{\nu} \delta^{\sigma}_{\mu} + S^{\sigma}_{\nu} \delta^{\rho}_{\mu} - S_{\mu\nu} g^{\rho\sigma} - g_{\mu\nu} S^{\rho\sigma} \right) \\ &\quad - e_3 c_1 \left(\delta^{\rho}_{\nu} S^{\sigma}_{\mu} + \delta^{\sigma}_{\nu} S^{\rho}_{\mu} \right) + (e_2 c_1 - e_4 c_3 + e_3 c_2) S_{\mu\nu} S^{\rho\sigma} \\ &\quad + e_4 c_3 \left[\delta^{\sigma}_{\mu} [S^2]^{\rho}_{\nu} + \delta^{\rho}_{\mu} [S^2]^{\sigma}_{\nu} - g^{\rho\sigma} [S^2]_{\mu\nu} + \delta^{\rho}_{\nu} [S^2]^{\sigma}_{\mu} + \delta^{\sigma}_{\nu} [S^2]^{\rho}_{\mu} - g_{\mu\nu} [S^2]^{\rho\sigma} \right] \\ &\quad - e_3 c_2 \left(S^{\rho}_{\nu} S^{\sigma}_{\mu} + S^{\sigma}_{\nu} S^{\rho}_{\mu} \right) - e_3 c_3 \left(S^{\sigma}_{\mu} [S^2]^{\rho}_{\nu} + S^{\rho}_{\mu} [S^2]^{\sigma}_{\nu} + S^{\rho}_{\nu} [S^2]^{\sigma}_{\mu} + S^{\sigma}_{\nu} [S^2]^{\rho}_{\mu} \right) \\ &\quad + (e_3 c_3 - e_1 c_1) \left(S^{\rho\sigma} [S^2]_{\mu\nu} + S_{\mu\nu} [S^2]^{\rho\sigma} \right) - (c_1 - e_2 c_3) \left([S^2]^{\rho}_{\nu} [S^2]^{\sigma}_{\mu} + [S^2]^{\sigma}_{\nu} [S^2]^{\rho}_{\mu} \right) \\ &\quad + c_4 [S^2]_{\mu\nu} [S^2]^{\rho\sigma} + c_1 \left([S^3]_{\mu\nu} S^{\rho\sigma} + S_{\mu\nu} [S^3]^{\rho\sigma} \right) + c_2 \left([S^3]_{\mu\nu} [S^2]^{\rho\sigma} + [S^2]_{\mu\nu} [S^3]^{\rho\sigma} \right) \\ &\quad + c_3 [S^3]_{\mu\nu} [S^3]^{\rho\sigma} \right] h_{\rho\sigma} \,, \end{split}$$

With
$$-\begin{cases} c_1 = \frac{e_3 - e_1 e_2}{-e_1 e_2 e_3 + e_3^2 + e_1^2 e_4}, c_2 = \frac{e_1^2}{-e_1 e_2 e_3 + e_3^2 + e_1^2 e_4}, \\ c_3 = \frac{-e_1}{-e_1 e_2 e_3 + e_3^2 + e_1^2 e_4}, c_4 = \frac{e_3 - e_1^3}{-e_1 e_2 e_3 + e_3^2 + e_1^2 e_4}. \end{cases}$$

How we got it out of dRGT theory ?

Has been shown to propagate 5 DOF in a fully non linear way (dRGT, Hassan, Rosen)...

... evading Boulware-Deser no-go « theorem »

Idea: expand dRGT theory around

arbitrary backgrounds

However

$$S^{\mu}_{\ \sigma}S^{\sigma}_{\ \nu} = g^{\mu\sigma}f_{\sigma\nu} = \mathfrak{F}^{\mu}_{\ \nu}$$

- The « square root » tensor S ^μ_ν makes things unpleasant !
- Two metrics in the game !

Linearize around some background geometry (e.g. here for the « β_1 » models)

Sylvester (Matrix) equation (A X + X B = C)

Solving the Sylvester equation

(which is possible iff the spectra of S and -S do not intersect)

One thus obtains the linearized field equations

I.e. the field equations shown previously (where previous $E_{\mu\nu}$ is denoted above as $\delta E_{\mu\nu}$): $E_{\mu\nu} \equiv \mathcal{E}_{\mu\nu}^{\ \rho\sigma}h_{\rho\sigma} + \frac{m^2}{2} \Big[2\left(\beta_0 + \beta_1 e_1 + \beta_2 e_2\right)h_{\mu\nu} - \left(\beta_1 + \beta_2 e_1\right)\left(h_{\mu\rho}S^{\rho}_{\ \nu} + h_{\nu\rho}S^{\rho}_{\ \mu}\right) - \left(\beta_1 g_{\mu\nu} + \beta_2 e_1 g_{\mu\nu} - \beta_2 S_{\mu\nu}\right)h_{\rho\sigma}S^{\rho\sigma} + \beta_2 g_{\mu\nu}h_{\rho\sigma}(S^2)^{\rho\sigma} - \left(\beta_1 + \beta_2 e_1\right)\left(g_{\mu\rho}\delta S^{\rho}_{\ \nu} + g_{\nu\rho}\delta S^{\rho}_{\ \mu}\right) \Big] \simeq 0,$ In these field equations ...

• Using the background equations of motion:

$$R^{\mu}_{\ \nu} = m^2 \left[\left(\beta_0 + \frac{1}{2} e_1 \beta_1 \right) \delta^{\mu}_{\nu} + \left(\beta_1 + \beta_2 e_1 \right) S^{\mu}_{\ \nu} - \beta_2 (S^2)^{\mu}_{\ \nu} \right]$$

We **got rid** of the second metric $f_{\mu \nu}$ and ...

... expressed everything in terms of $g_{\mu\,\nu}$ and its curvature

In these field equations ...

• Expressions have been simplified using Cayley-Hamilton theorem stating that $S^{\mu}{}_{\nu}$ obeys

$$S^4 - e_1 S^3 + e_2 S^2 - e_3 S + e_4 \mathbb{1} = 0$$

4th power of S in the matricial sense

Allowing to replace any power of S $\begin{bmatrix}S^i\end{bmatrix}^{\mu}_{\ \nu} = S^{\mu}_{\ \sigma_1}S^{\sigma_1}_{\ \sigma_2}\cdots S^{\sigma_{i-1}}_{\ \nu}$ with *i* ≥ 4 by linear combinations of lower powers of S

This provides consistent (as we now show) field equations (and action) for

a massive graviton on a background simply defined by just one arbitrary metric $g_{\mu\nu}$

NB: We checked that (in the special cases of diagonal metrics g and f) Our equations (before getting rid of the non dynamical metric f) match those obtained by Guarato & Durrer 2014 (which are not fully general and not explicitly covariant)

Start from the (linear) field equations

 $E_{\mu\nu} = \delta \mathcal{G}_{\mu\nu} + m^2 \,\mathcal{M}_{\mu\nu}{}^{\rho\sigma} h_{\rho\sigma}$

Start from the (linear) field equations

$$E_{\mu\nu} = \delta \mathcal{G}_{\mu\nu} + m^2 \,\mathcal{M}_{\mu\nu}{}^{\rho\sigma} h_{\rho\sigma}$$

The linearized Bianchi identities $\delta \left(\nabla^{\mu} \mathcal{G}_{\mu\nu} \right) = 0$

$$\begin{array}{ll} \left(\begin{array}{ll} \mathsf{Reading} & \nabla^{\mu} \delta \mathcal{G}_{\mu\nu} \sim 0 & \text{i.e.} \\ \nabla^{\mu} \delta \mathcal{G}_{\mu\nu} - h^{\mu\rho} \nabla_{\rho} \mathcal{G}_{\mu\nu} - \mathcal{G}_{\sigma\nu} \nabla_{\rho} h^{\sigma\rho} + \frac{1}{2} \mathcal{G}_{\sigma\nu} \nabla^{\sigma} h - \frac{1}{2} \mathcal{G}_{\mu\sigma} \nabla_{\nu} h^{\mu\sigma} = 0 \end{array} \right) \end{array}$$

Start from the (linear) field equations

$$E_{\mu\nu} = \delta \mathcal{G}_{\mu\nu} + m^2 \,\mathcal{M}_{\mu\nu}{}^{\rho\sigma} h_{\rho\sigma}$$

The linearized Bianchi identities $\delta \left(\nabla^{\mu} \mathcal{G}_{\mu\nu} \right) = 0$

$$\begin{array}{ll} \left(\begin{array}{ll} \mathsf{Reading} & \nabla^{\mu} \delta \mathcal{G}_{\mu\nu} \sim 0 & \text{i.e.} \\ \nabla^{\mu} \delta \mathcal{G}_{\mu\nu} - h^{\mu\rho} \nabla_{\rho} \mathcal{G}_{\mu\nu} - \mathcal{G}_{\sigma\nu} \nabla_{\rho} h^{\sigma\rho} + \frac{1}{2} \mathcal{G}_{\sigma\nu} \nabla^{\sigma} h - \frac{1}{2} \mathcal{G}_{\mu\sigma} \nabla_{\nu} h^{\mu\sigma} = 0 \end{array} \right) \end{array}$$

Yield the (off-shell) identities $\,
abla^{\mu} E_{\mu
u} \sim 0 \,$

Start from the (linear) field equations

$$E_{\mu\nu} = \delta \mathcal{G}_{\mu\nu} + m^2 \,\mathcal{M}_{\mu\nu}{}^{\rho\sigma} h_{\rho\sigma}$$

The linearized Bianchi identities $\delta \left(\nabla^{\mu} \mathcal{G}_{\mu\nu} \right) = 0$

$$\begin{array}{ll} \left(\begin{array}{ll} \mathsf{Reading} & \nabla^{\mu} \delta \mathcal{G}_{\mu\nu} \sim 0 & \text{i.e.} \\ \nabla^{\mu} \delta \mathcal{G}_{\mu\nu} - h^{\mu\rho} \nabla_{\rho} \mathcal{G}_{\mu\nu} - \mathcal{G}_{\sigma\nu} \nabla_{\rho} h^{\sigma\rho} + \frac{1}{2} \mathcal{G}_{\sigma\nu} \nabla^{\sigma} h - \frac{1}{2} \mathcal{G}_{\mu\sigma} \nabla_{\nu} h^{\mu\sigma} = 0 \end{array} \right) \end{array}$$

Yield the (off-shell) identities $\,
abla^{\mu} E_{\mu
u} \sim 0 \,$

Yielding the four on shell vector constraints

$$\nabla^{\mu} E_{\mu\nu} \simeq 0$$

Can one get an **extra scalar constraint** in a way analogous to Fierz-Pauli on Einstein space-time ?

Can one get an **extra scalar constraint** in a way analogous to Fierz-Pauli on Einstein space-time ?

Need to trace over the field equations $~E_{oldsymbol{\lambda} oldsymbol{\mu}}$

and their second derivatives $\nabla_{\nu} \nabla^{\lambda} E_{\lambda \mu}$

and look for a linear combination of these traces yielding a constraints

Can one get an **extra scalar constraint** in a way analogous to Fierz-Pauli on Einstein space-time ?

Need to trace over the field equations $~~E_{oldsymbol{\lambda}oldsymbol{\mu}}$

and their second derivatives $\nabla_{\nu} \nabla^{\lambda} E_{\lambda \mu}$

and look for a linear combination of these traces yielding a constraints

However, we can trace both with the metric $g^{\mu \nu}$ and with its Ricci curvature $R^{\mu \nu}$ (or equivalently $S^{\mu \nu}$) So we look for linear combinations of the scalars

$$\begin{cases} \Phi_i \equiv \left[S^i\right]^{\mu\nu} E_{\mu\nu} \\ \Psi_i \equiv \frac{1}{2} \left[S^i\right]^{\mu\nu} \nabla_{\nu} \nabla^{\lambda} E_{\lambda\mu} \end{cases}$$

So we look for linear combinations of the scalars

$$\begin{bmatrix}
\Phi_i \equiv \left[S^i\right]^{\mu\nu} E_{\mu\nu} \\
\Psi_i \equiv \frac{1}{2} \left[S^i\right]^{\mu\nu} \nabla_{\nu} \nabla^{\lambda} E_{\lambda\mu}
\end{bmatrix}$$

Thanks again to Cayley Hamilton theorem, only 8 of them are independent ...

... I.e. we look for 4 u_i and 4 v_i such that $\sum_{i=0}^{3} (u_i \Phi_i + v_i \Psi_i) \sim 0$

$$\sum_{i=0}^{3} \left(u_i \, \Phi_i + v_i \, \Psi_i \right) \sim \sum_{i=0}^{26} \alpha_i \aleph_i$$

 \aleph_i : 26 « irreducible » scalars made by contracting $\nabla_{\mu}\nabla_{\nu}h_{\rho\sigma}$ with powers of *S*, e.g.

$$\begin{aligned} \Box h , \\ S^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} h , \\ [S^2]^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} h , \\ S^{\rho\sigma} S^{\mu\nu} \nabla_{\rho} \nabla_{\sigma} h_{\mu\nu} , \\ [S^3]^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} h , \end{aligned}$$

$$\nabla_{\rho} \nabla_{\sigma} h^{\rho\sigma} ,$$

$$S^{\rho\sigma} \nabla_{\rho} \nabla_{\lambda} h^{\lambda}{}_{\sigma} ,$$

$$[S^{2}]^{\rho\sigma} \nabla_{\rho} \nabla_{\lambda} h^{\lambda}{}_{\sigma} ,$$

$$S^{\rho\sigma} S^{\mu\nu} \nabla_{\rho} \nabla_{\mu} h_{\sigma\nu} ,$$

$$[S^{3}]^{\rho\sigma} \nabla_{\rho} \nabla_{\lambda} h^{\lambda}{}_{\sigma} ,$$

$$\begin{split} &\sum_{i=0}^{3} \left(u_i \, \Phi_i + v_i \, \Psi_i \right) \sim \sum_{i=0}^{26} \alpha_i \aleph_i \\ &\alpha_i & & \\ &\alpha_i & & \\ & & \\ & \text{Are scalar functions of } u_i, v_i, S_{\mu\nu}, g_{\mu\nu} \end{split}$$

That should all vanish ...

....i.e. 26 equations for the 8 unknown u_i, v_i

That should all vanish ...

....i.e. 26 equations for the 8 unknown u_i, v_i

That should all vanish ...

....i.e. 26 equations for the 8 unknown u_i, v_i

However !

The \aleph_i scalars are not all independent from each other thanks to identities (Syzygies) ...

... that we derived using again the Cayley-Hamilton Theorem (or the « second fundamental theorem » of the theory of invariants) i.e. we define a matrix *M* by

$$M = x_0 A + x_1 B + x_2 C + x_3 D$$

With
$$\begin{cases} A^{\mu}_{\ \nu} = h^{\mu}_{\ \nu} & C^{\mu}_{\ \nu} = \left[S^2\right]^{\mu}_{\ \nu} \\ B^{\mu}_{\ \nu} = S^{\mu}_{\ \nu} & D^{\mu}_{\ \nu} = \left[S^3\right]^{\mu}_{\ \nu} \end{cases}$$

i.e. we define a matrix *M* by

$$M = x_0 A + x_1 B + x_2 C + x_3 D$$

With
$$\begin{cases} A^{\mu}_{\ \nu} = h^{\mu}_{\ \nu} & C^{\mu}_{\ \nu} = \left[S^2\right]^{\mu}_{\ \nu} \\ B^{\mu}_{\ \nu} = S^{\mu}_{\ \nu} & D^{\mu}_{\ \nu} = \left[S^3\right]^{\mu}_{\ \nu} \end{cases}$$

Then each term with a given homogeneity in the $\{x_i\}$

In the Cayley Hamilton identity:

$$M^4 = e_1(M)M^3 - e_2(M)M^2 + e_3(M)M - e_4(M)\mathbb{1}$$

Yields some identity betwen the matrices A,B,C,D

Picking out the identities linear in $h_{\mu\nu}$ and acting on it with two derivatives we get non trivial identities between the \aleph_i

e.g.

$$A_1 - A_2 - e_2 (D_1 - D_2) - e_3 (2F_1 - F_2 - F_3) - (e_4 - e_1e_3) (G_1 - G_2) - (e_4 - e_1e_3) (2H_1 - H_2 - H_3) - e_2e_3 (2I_1 - I_2 - I_3) + e_3^2 (J_1 - J_2) \sim 0$$

with
$$A_{1} = [S^{3}]^{\rho\sigma} [S^{3}]^{\mu\nu} \nabla_{\rho} \nabla_{\mu} h_{\sigma\nu}$$
$$A_{2} = [S^{3}]^{\rho\sigma} [S^{3}]^{\mu\nu} \nabla_{\rho} \nabla_{\sigma} h_{\mu\nu}$$
$$D_{1} = [S^{2}]^{\rho\sigma} [S^{2}]^{\mu\nu} \nabla_{\rho} \nabla_{\mu} h_{\sigma\nu}$$

At the end of the day, demanding that $\sum_{i=0}^{3} (u_i \Phi_i + v_i \Psi_i) \sim 0$

At the end of the day, demanding that $\sum_{i=0}^{3} (u_i \Phi_i + v_i \Psi_i) \sim 0$

We get a unique solution for u_i and v_i yielding the off-shell identity

$$\frac{m^2\beta_1}{4}e_4\Phi_0 + e_3\Psi_0 - e_2\Psi_1 + e_1\Psi_2 - \Psi_3 \sim 0$$

At the end of the day, demanding that $\sum_{i=0}^{3} (u_i \Phi_i + v_i \Psi_i) \sim 0$

We get a unique solution for u_i and v_i yielding the off-shell identity

$$\frac{m^2\beta_1}{4}e_4\Phi_0 + e_3\Psi_0 - e_2\Psi_1 + e_1\Psi_2 - \Psi_3 \sim 0$$

and the (on-shell scalar) constraint

$$\frac{m^2\beta_1}{4}e_4\Phi_0 + e_3\Psi_0 - e_2\Psi_1 + e_1\Psi_2 - \Psi_3 \simeq 0$$

To conclude part 2.

 We have obtained a theory for a massive graviton with 5 (or less) d.o.f. on an arbitrary background

> (agrees at first order in curvature with Buchbinder, Gitman, Krykhtin 1999)

- Can be used independently of dRGT as a well behaved theory of a massive graviton in just one background metric
- Various applications, e.g. : the correct theory of a massive graviton in FLRW space time (does not agree with Guarato-Durrer 2014)
- See also the recent Mazuet-Volkov (2017) for the same game played with vierbeins

3. PM graviton on non Einstein space-times ?

introduced in part 2.

Hence we look for (non Einstein) space-times where the scalar constraint (here written with β_1 and β_2 non vanishing)

 $\mathcal{C} \equiv (S^{-1})^{\nu}_{\ \rho} \nabla^{\rho} \nabla^{\mu} E_{\mu\nu} + \frac{m^2 \beta_1}{2} g^{\mu\nu} E_{\mu\nu} + m^2 \beta_2 S^{\mu\nu} E_{\mu\nu} \simeq 0$ Identically vanishes

Yielding the gauge symmetry $h_{\mu\nu} \to h_{\mu\nu} + \Delta h_{\mu\nu}$ with $\Delta h_{\mu\nu} = \left[(S^{-1})^{\rho}_{\mu} \nabla_{\rho} \nabla_{\nu} + (S^{-1})^{\rho}_{\nu} \nabla_{\rho} \nabla_{\mu} + m^2 \beta_1 g_{\mu\nu} + 2m^2 \beta_2 S_{\mu\nu} \right] \xi(x)$ Hence we look for (non Einstein) space-times where the scalar constraint (here written with β_1 and β_2 non vanishing)

 \circ -

$$\mathcal{C} \equiv (S^{-1})^{\nu}_{\ \rho} \nabla^{\rho} \nabla^{\mu} E_{\mu\nu} + \frac{m^2 \beta_1}{2} g^{\mu\nu} E_{\mu\nu} + m^2 \beta_2 S^{\mu\nu} E_{\mu\nu} \simeq 0$$

Identically vanishes

Yielding the gauge symmetry $h_{\mu\nu} \to h_{\mu\nu} + \Delta h_{\mu\nu}$ with $\Delta h_{\mu\nu} = \left[(S^{-1})^{\rho}_{\mu} \nabla_{\rho} \nabla_{\nu} + (S^{-1})^{\rho}_{\nu} \nabla_{\rho} \nabla_{\mu} + m^2 \beta_1 g_{\mu\nu} + 2m^2 \beta_2 S_{\mu\nu} \right] \xi(x)$

> We need to look in detail at the structure of the constraint

The scalar constraint reads

$$\begin{split} \mathcal{C} &= m^2 \Big[\Big(A^{\beta\lambda} + \tilde{A}^{\beta\lambda} \Big) \, \tilde{h}_{\beta\lambda} + B^{\beta\lambda}_{\rho} \, \nabla^{\rho} \tilde{h}_{\beta\lambda} \Big] \\ \text{With} \ h_{\mu\nu} &= \tilde{h}_{\mu\lambda} S^{\lambda}_{\ \nu} + S^{\ \lambda}_{\mu} \tilde{h}_{\lambda\nu} \end{split}$$

The scalar constraint reads

$$\mathcal{C} = m^2 \left[\left(A^{\beta \lambda} + \tilde{A}^{\beta \lambda} \right) \tilde{h}_{\beta \lambda} + B^{\beta \lambda}_{\rho} \nabla^{\rho} \tilde{h}_{\beta \lambda} \right]$$
With $h_{\mu\nu} = \tilde{h}_{\mu\lambda} S^{\lambda}_{\ \nu} + S^{\ \lambda}_{\mu} \tilde{h}_{\lambda\nu}$

$$\begin{split} A^{\beta\lambda} &\equiv m^2 \, S^{\beta}_{\ \rho} \Big[\left(\beta_0 \beta_1 + \beta_0 \beta_2 e_1 + \frac{1}{2} \beta_1^2 e_1 \right) g^{\rho\lambda} + \left(-2\beta_0 \beta_2 - \frac{1}{2} \beta_1^2 - 2\beta_2^2 e_2 + \beta_2^2 e_1^2 \right) S^{\rho\lambda} \\ &- \beta_2^2 e_1 [S^2]^{\rho\lambda} \Big] \,, \end{split}$$

The scalar constraint reads

 $\mathcal{C} = m^2 \left[\left(A^{\beta\lambda} + \tilde{A}^{\beta\lambda} \right) \tilde{h}_{\beta\lambda} + B^{\beta\lambda}_{\rho} \nabla^{\rho} \tilde{h}_{\beta\lambda} \right]$ $= h_{\mu\lambda} S^{\lambda}_{\ \nu} + S^{\ \lambda}_{\mu} \tilde{h}_{\lambda\nu}$ With $\tilde{A}^{\beta\lambda} \equiv \frac{1}{2} \left(\beta_1 + \beta_2 e_1\right) \left[S^{-1}\right]^{\nu}_{\gamma} \left[-\nabla^{\gamma} S^{\rho\lambda} \nabla_{\nu} S^{\beta}_{\rho} + \nabla^{\gamma} S^{\beta}_{\rho} \nabla^{\lambda} S^{\rho}_{\nu} + \nabla^{\gamma} S^{\rho}_{\nu} \nabla^{\lambda} S^{\beta}_{\rho} - \nabla^{\gamma} S_{\rho\nu} \nabla^{\rho} S^{\beta\lambda}_{\rho} \right]$ $-S^{\rho\lambda}\nabla^{\gamma}\nabla_{\nu}S^{\beta}_{\rho} + S^{\beta}_{\rho}\nabla^{\gamma}\nabla^{\lambda}S^{\rho}_{\nu} + \beta_{2}\left[S^{-1}\right]^{\nu}_{\gamma}\left[S^{\beta}_{\rho}\nabla^{\lambda}S^{\rho}_{\nu}\nabla^{\gamma}e_{1} - S^{\beta}_{\rho}\nabla_{\nu}S^{\rho\lambda}\nabla^{\gamma}e_{1}\right]$ $+S^{\lambda}_{\rho}\nabla^{\gamma}S^{\beta}_{\mu}\nabla_{\nu}S^{\rho\mu}+S^{\beta}_{\mu}\nabla^{\gamma}S^{\lambda}_{\rho}\nabla_{\nu}S^{\rho\mu}+S^{\lambda}_{\mu}\nabla^{\gamma}S^{\mu\rho}\nabla_{\nu}S^{\beta}_{\rho}+S^{\mu\rho}\nabla^{\gamma}S^{\lambda}_{\mu}\nabla_{\nu}S^{\beta}_{\rho}$ $-2S^{\beta}_{\mu}\nabla^{\gamma}S^{\mu\lambda}\nabla_{\nu}e_{1} - S^{\rho}_{\mu}\nabla^{\gamma}S^{\mu}_{\nu}\nabla^{\beta}S^{\lambda}_{\rho} - S^{\beta}_{\mu}\nabla^{\gamma}S^{\mu}_{\rho}\nabla^{\lambda}S^{\rho}_{\nu} - S^{\mu}_{\rho}\nabla^{\gamma}S^{\beta}_{\mu}\nabla^{\lambda}S^{\rho}_{\nu}$ $-S^{\beta}_{\rho}\nabla^{\gamma}S^{\mu}_{\nu}\nabla^{\lambda}S^{\rho}_{\mu}+S^{\beta}_{\mu}\nabla^{\gamma}S^{\mu}_{\nu}\nabla^{\lambda}e_{1}+S^{\mu}_{\rho}\nabla^{\gamma}S_{\mu\nu}\nabla^{\rho}S^{\beta\lambda}-S^{\lambda}_{\mu}\nabla^{\gamma}S^{\mu}_{\nu}\nabla^{\rho}S^{\beta}_{\rho}$ $-S^{\lambda}_{\mu}\nabla^{\gamma}S^{\beta}_{\rho}\nabla^{\mu}S^{\rho}_{\nu} - S^{\beta}_{\rho}\nabla^{\gamma}S^{\lambda}_{\mu}\nabla^{\mu}S^{\rho}_{\nu} - S^{\lambda}_{\mu}\nabla^{\gamma}S^{\rho}_{\nu}\nabla^{\mu}S^{\beta}_{\rho} + 2S^{\beta}_{\mu}\nabla^{\gamma}S^{\mu\lambda}\nabla^{\rho}S_{\rho\nu}$ $+2S^{\beta}_{\rho}\nabla^{\gamma}S_{\mu\nu}\nabla^{\mu}S^{\rho\lambda}+S^{\lambda}_{\rho}S^{\beta}_{\mu}\nabla^{\gamma}\nabla_{\nu}S^{\rho\mu}+[S^{2}]^{\lambda\rho}\nabla^{\gamma}\nabla_{\nu}S^{\beta}_{\rho}-[S^{2}]^{\beta\lambda}\nabla^{\gamma}\nabla_{\nu}e_{1}$ $-\left[S^{2}\right]^{\beta}_{\rho}\nabla^{\gamma}\nabla^{\lambda}S^{\rho}_{\nu} - S^{\lambda}_{\mu}S^{\beta}_{\rho}\nabla^{\gamma}\nabla^{\mu}S^{\rho}_{\nu} + \left[S^{2}\right]^{\beta\lambda}\nabla^{\gamma}\nabla^{\rho}S_{\rho\nu} + \beta_{2}\left[+\nabla^{\beta}S^{\lambda}_{\gamma}\nabla^{\gamma}e_{1}\right]^{\beta\lambda}\nabla^{\gamma}\nabla^{\rho}S_{\rho\nu} + \beta_{2}\left[S^{2}\right]^{\beta\lambda}\nabla^{\gamma}\nabla^{\rho}S_{\rho\nu} + \beta_{2}\left[S^{2}\right]^{\beta\lambda}\nabla^{\gamma}S_{\rho\nu} + \beta_{2}\left[S^{2}\right]^{\beta\lambda}\nabla^{\gamma}\nabla^{\rho}S_{\rho\nu} + \beta_{2}\left[S^{2}\right]^{\beta\lambda}\nabla^{\gamma}S_{\rho\nu} + \beta_{2}\left[S^{2}\right]^{\beta\lambda}S_{\rho\nu} + \beta_{2}\left[S^{2}\right]^{\beta\lambda}S_{\rho\nu$ $-\nabla_{\gamma}S^{\beta\lambda}\nabla^{\gamma}e_{1}-\nabla^{\mu}S^{\rho}_{\mu}\nabla^{\beta}S^{\lambda}_{\rho}-\nabla^{\mu}S^{\beta}_{\rho}\nabla^{\lambda}S^{\rho}_{\mu}+\nabla^{\mu}S^{\beta}_{\mu}\nabla^{\lambda}e_{1}+\nabla_{\mu}S^{\mu}_{\rho}\nabla^{\rho}S^{\beta\lambda}$ $-\nabla^{\mu}S^{\lambda}_{\mu}\nabla^{\rho}S^{\beta}_{\rho} - \nabla^{\rho}S^{\lambda}_{\mu}\nabla^{\mu}S^{\beta}_{\rho} + 2\nabla_{\mu}S^{\beta}_{\rho}\nabla^{\mu}S^{\rho\lambda} - S^{\beta}_{\rho}\nabla^{\lambda}\nabla^{\mu}S^{\rho}_{\mu} + S^{\beta}_{\gamma}\nabla^{\gamma}\nabla^{\lambda}e_{1}$ $-S^{\lambda}_{\gamma}\nabla^{\gamma}\nabla^{\rho}S^{\beta}_{\rho} + S^{\beta}_{\rho}\nabla^{\gamma}\nabla_{\gamma}S^{\rho\lambda} \Big| + (\beta \leftrightarrow \lambda) \,,$
The scalar constraint reads

 $\mathcal{C} = m^2 \left| \left(A^{\beta\lambda} + \tilde{A}^{\beta\lambda} \right) \tilde{h}_{\beta\lambda} - \right| \right|$ ${}^{
ho}h_{eta\lambda}$ With $h_{\mu
u} = {{{{\tilde h}}_{\mu\lambda}}S_{\,\,\nu}^{\lambda}}$ - $B^{\beta\lambda}_{\rho} \equiv \frac{1}{2} \left(\beta_1 + \beta_2 e_1\right) \left[S^{-1}\right]^{\nu}_{\gamma} \left[-S^{\sigma\lambda} \delta^{\gamma}_{\rho} \nabla_{\nu} S^{\beta}_{\sigma} + \delta^{\gamma}_{\rho} S^{\beta}_{\sigma} \nabla^{\lambda} S^{\sigma}_{\nu} + \delta^{\lambda}_{\rho} S^{\beta}_{\sigma} \nabla^{\gamma} S^{\sigma}_{\nu} - S^{\beta\lambda} \nabla^{\gamma} S_{\nu\rho}\right]$ $+ \beta_2 \left[S^{-1}\right]^{\nu}{}_{\gamma} \left[\delta^{\gamma}_{\rho} S^{\lambda}_{\delta} S^{\beta}_{\mu} \nabla_{\nu} S^{\delta\mu} + \delta^{\gamma}_{\rho} \left[S^2\right]^{\lambda\mu} \nabla_{\nu} S^{\beta}_{\mu} - \delta^{\gamma}_{\rho} \left[S^2\right]^{\beta\lambda} \nabla_{\nu} e_1 - \delta^{\gamma}_{\rho} \left[S^2\right]^{\beta}_{\mu} \nabla^{\lambda} S^{\mu}_{\nu}$ $-\delta^{\gamma}_{\rho}S^{\lambda}_{\mu}S^{\beta}_{\delta}\nabla^{\mu}S^{\delta}_{\nu} + \delta^{\gamma}_{\rho}[S^{2}]^{\beta\lambda}\nabla^{\mu}S_{\mu\nu} + S^{\beta\lambda}S^{\mu}_{\rho}\nabla^{\gamma}S_{\mu\nu} + [S^{2}]^{\beta\lambda}\nabla^{\gamma}S_{\rho\nu} - \delta^{\beta}_{\rho}[S^{2}]^{\lambda}_{\mu}\nabla^{\gamma}S^{\mu}_{\nu}$ $-S^{\beta}_{\rho}S^{\lambda}_{\mu}\nabla^{\gamma}S^{\mu}_{\nu} + \beta_{2}\left[-S^{\beta}_{\delta}\nabla^{\lambda}S^{\delta}_{\rho} + S^{\beta}_{\rho}\nabla^{\lambda}e_{1} - S^{\lambda}_{\mu}\nabla^{\mu}S^{\beta}_{\rho} + 2S^{\beta}_{\delta}\nabla_{\rho}S^{\delta\lambda} + \delta^{\beta}_{\rho}S^{\lambda}_{\gamma}\nabla^{\gamma}e_{1}\right]$

 $-S^{\beta\lambda}\nabla_{\rho}e_{1} + S^{\beta\lambda}\nabla_{\mu}S^{\mu}_{\rho} - \delta^{\beta}_{\rho}S^{\lambda}_{\delta}\nabla^{\mu}S^{\delta}_{\mu} - S^{\beta}_{\rho}\nabla^{\mu}S^{\lambda}_{\mu} \Big] + (\beta \leftrightarrow \lambda) \,.$

To get a PM theory we need to look for space-times

where $A^{\beta\lambda} + \tilde{A}^{\beta\lambda}$ and $B^{\beta\lambda}_{\rho}$ vanish identically.

To get a PM theory we need to look for space-times

where $A^{\beta\lambda} + \tilde{A}^{\beta\lambda}$ and $B^{\beta\lambda}_{\rho}$ vanish identically.

To get a PM theory we need to look for space-times

where $A^{\beta\lambda} + \tilde{A}^{\beta\lambda}$ and $B^{\beta\lambda}_{\rho}$ vanish identically.

Most general solution ?

Assume ∇

$$\nabla_{\rho} S_{\mu\nu} = 0$$

(i.e. $S_{\mu\nu}$ covariantly constant)

makes $\tilde{A}^{\beta\lambda}$ and $B^{\beta\lambda}_{\rho}$ vanish.

Space-times possessing a covariantly constant tensor $H_{\mu\nu}$ are severely restricted...

$$\nabla_{\rho}H_{\mu\nu} = 0$$

$$\nabla_{[\mu}\nabla_{\nu]}H_{\rho\lambda} = R_{\mu\nu\rho}{}^{\sigma}H_{\sigma\lambda} + R_{\mu\nu\lambda}{}^{\sigma}H_{\rho\sigma}$$

$$R_{\mu\nu\rho}{}^{\sigma}H_{\sigma\lambda} + R_{\mu\nu\lambda}{}^{\sigma}H_{\rho\sigma} = 0$$
Non trivial integrability conditions

Space-times possessing a covariantly constant tensor are classified as (provided $H_{\mu\nu}$ is not proportional to the metric)

1. Spacetime is $2 \otimes 2$ decomposable $g_{\mu\nu} dx^{\mu} dx^{\nu} = g_{ab}(x^c) dx^a dx^b + g_{ij}(x^k) dx^i dx^j$

and
$$H_{\mu\rho}H^{\rho}_{\ \nu} = H_{\mu\nu}$$

2. The spacetime admits a covariantly constant vector N^{μ} and $H_{\mu\nu}=N_{\mu}N_{\nu}$

Note further that the definition

$$R^{\mu}_{\ \nu} = m^2 \left[\left(\beta_0 + \frac{1}{2} e_1 \beta_1 \right) \delta^{\mu}_{\nu} + \left(\beta_1 + \beta_2 e_1 \right) S^{\mu}_{\ \nu} - \beta_2 (S^2)^{\mu}_{\ \nu} \right]$$

Imposes that
$$\nabla_{\rho}S_{\mu\nu} = 0$$
 $\square \sum \nabla_{\rho}R_{\mu\nu} = 0$

Hence the space-time must be "Ricci Symmetric"

...i.e. the Ricci tensor is covariantly constant ...

 $(R^2)^{\rho}_{\ \nu} = r_1 R^{\rho}_{\ \nu} + r_2 \delta^{\rho}_{\nu}$ with r_1 and r_2 constant

as a consequence of the integrability conditions

And have to solve (in order to get a PM graviton) $\begin{bmatrix} \delta_{\lambda}^{\beta} \left(\beta_{2}\beta_{0}e_{1} + \beta_{0}\beta_{1} + \frac{\beta_{1}^{2}}{2}e_{1}\right) + S_{\lambda}^{\beta} \left(-2\beta_{2}\beta_{0} + \beta_{2}^{2}e_{1}^{2} - 2\beta_{2}^{2}e_{2} - \frac{\beta_{1}^{2}}{2}\right) - (S^{2})_{\lambda}^{\beta} (e_{1}\beta_{2}^{2}) = 0 \\ R_{\nu}^{\mu} = m^{2} \left[\left(\beta_{0} + \frac{1}{2}e_{1}\beta_{1}\right) \delta_{\nu}^{\mu} + (\beta_{1} + \beta_{2}e_{1}) S_{\nu}^{\mu} - \beta_{2}(S^{2})_{\nu}^{\mu} \right]$

$$(R^2)^{
ho}_{\ \nu} = r_1 R^{
ho}_{\ \nu} + r_2 \delta^{
ho}_{\nu}$$
 with r_1 and r_2 constant

as a consequence of the integrability conditions

And have to solve (in order to get a PM graviton)

$$\begin{bmatrix}
\delta_{\lambda}^{\beta} \left(\beta_{2}\beta_{0}e_{1} + \beta_{0}\beta_{1} + \frac{\beta_{1}^{2}}{2}e_{1}\right) + S_{\lambda}^{\beta} \left(-2\beta_{2}\beta_{0} + \beta_{2}^{2}e_{1}^{2} - 2\beta_{2}^{2}e_{2} - \frac{\beta_{1}^{2}}{2}\right) - (S^{2})_{\lambda}^{\beta} \left(e_{1}\beta_{2}^{2}\right) = 0 \\
R_{\nu}^{\mu} = m^{2} \left[\left(\beta_{0} + \frac{1}{2}e_{1}\beta_{1}\right)\delta_{\nu}^{\mu} + (\beta_{1} + \beta_{2}e_{1})S_{\nu}^{\mu} - \beta_{2}(S^{2})_{\nu}^{\mu}\right] \\
= 0 \\
\frac{1}{2}e_{1}\beta_{1} \left(\beta_{0} + \frac{1}{2}e_{1}\beta_{1}\right)\delta_{\nu}^{\mu} + (\beta_{1} + \beta_{2}e_{1})S_{\nu}^{\mu} - \beta_{2}(S^{2})_{\nu}^{\mu}$$

In order to get a vanishing $C = m^2 A^{\beta \lambda} h_{\beta \lambda}$

$$(R^2)^{
ho}_{\ \nu} = r_1 R^{
ho}_{\ \nu} + r_2 \delta^{
ho}_{\nu}$$
 with r_1 and r_2 constant

as a consequence of the integrability conditions

And have to solve (in order to get a PM graviton) $\begin{bmatrix} \delta_{\lambda}^{\beta} \left(\beta_{2}\beta_{0}e_{1}+\beta_{0}\beta_{1}+\frac{\beta_{1}^{2}}{2}e_{1}\right)+S_{\lambda}^{\beta} \left(-2\beta_{2}\beta_{0}+\beta_{2}^{2}e_{1}^{2}-2\beta_{2}^{2}e_{2}-\frac{\beta_{1}^{2}}{2}\right)-(S^{2})_{\lambda}^{\beta} (e_{1}\beta_{2}^{2})=0 \\ R_{\nu}^{\mu}=m^{2} \left[\left(\beta_{0}+\frac{1}{2}e_{1}\beta_{1}\right)\delta_{\nu}^{\mu}+(\beta_{1}+\beta_{2}e_{1})S_{\nu}^{\mu}-\beta_{2}(S^{2})_{\nu}^{\mu} \right]$

From the definition of S^{ρ}_{ν}

 $(R^2)^{
ho}_{\ \nu} = r_1 R^{
ho}_{\ \nu} + r_2 \delta^{
ho}_{\nu}$ with r_1 and r_2 constant

as a consequence of the integrability conditions

And have to solve (in order to get a PM graviton) $\begin{bmatrix} \delta_{\lambda}^{\beta} \left(\beta_{2}\beta_{0}e_{1} + \beta_{0}\beta_{1} + \frac{\beta_{1}^{2}}{2}e_{1}\right) + S_{\lambda}^{\beta} \left(-2\beta_{2}\beta_{0} + \beta_{2}^{2}e_{1}^{2} - 2\beta_{2}^{2}e_{2} - \frac{\beta_{1}^{2}}{2}\right) - (S^{2})_{\lambda}^{\beta} \left(e_{1}\beta_{2}^{2}\right) = 0 \\ R_{\nu}^{\mu} = m^{2} \left[\left(\beta_{0} + \frac{1}{2}e_{1}\beta_{1}\right) \delta_{\nu}^{\mu} + (\beta_{1} + \beta_{2}e_{1}) S_{\nu}^{\mu} - \beta_{2}(S^{2})_{\nu}^{\mu} \right]$

NB: this implies that the Ricci tensor

Explicit solutions (I)

Explicit solutions (II)

One simple example of the last kind is Einstein static Universe !

 $\begin{cases} \mathrm{d}s^2 = g_{\mu\nu} \,\mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = -\mathrm{d}t^2 + a^2 \,\mathrm{d}\Sigma^2 \\ \text{with } \mathrm{d}\Sigma^2 = \gamma_{ij} \,\mathrm{d}x^i \mathrm{d}x^j = \frac{\mathrm{d}r^2}{1 - k \, r^2} + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right) \\ \implies R = \frac{6k}{a^2} \end{cases}$

One simple example of the last kind is Einstein static Universe !

$$\begin{cases} \mathrm{d}s^2 = g_{\mu\nu} \,\mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = -\mathrm{d}t^2 + a^2 \,\mathrm{d}\Sigma^2 \\ \text{with } \mathrm{d}\Sigma^2 = \gamma_{ij} \,\mathrm{d}x^i \mathrm{d}x^j = \frac{\mathrm{d}r^2}{1 - k \, r^2} + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right) \\ \implies R = \frac{6k}{a^2} \end{cases}$$

The gauge symmetry reads

$$\begin{cases} \Delta h_{tt} = \left[-\frac{(4u+3)(v-2R)}{v} \nabla_t \partial_t + \frac{u(6R+8Ru-3v)v}{(-3-24u+16u^2)(-2R+vv)} \right] \xi(x) \,, \\ \Delta h_{ti} = -\frac{(4u+3)(v-2R)\left(\frac{8R}{3}-2v\right)}{2v\left(\frac{8R}{3}-v\right)} \nabla_{(t}\partial_i) \,\xi(x) \,, \\ \Delta h_{ij} = \left[-\frac{(4u+3)(v-2R)}{\frac{8R}{3}-v} \nabla_i \partial_j + \frac{uv(-18R+8Ru+9v)}{3(-3-24u+16u^2)(-2R+v)} \,a^2 \,\gamma_{ij} \right] \xi(x) \,, \end{cases}$$

With e.g. one solution being (u, v) = (-0.2006, 0.6622R)

Conclusions

PM exists on non Einstein spacetimes !

(in contrast with previous no-go claim by Deser, Joung, Waldron In 1208.1307 [hep-th]...

... in particular some of our solution have a vanishing Bach tensor)

Solution for the vanishing Of $A^{\beta\lambda} + \tilde{A}^{\beta\lambda}$ and $B^{\beta\lambda}_{\rho}$ are not known in full generality !

Thank you ! and best wishes to Misao !

