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Part I: Introduction
Non-local Cosmology

Noether Symmetry Approach

Nonlocal Theories

The action of the Nonlocal theory! is
1
_ 4. -1
S= /d X/ g[?/@R (1 + (O R)) + Ematter},

where O71F(x) = [ d*x' F(x")G(x, x').

!Deser, Woodard: Phys.Rev.Lett. 2007
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Part I: Introduction
Non-local Cosmology

Noether Symmetry Approach

Nonlocal Theories

The action of the Nonlocal theory! is
1
_ 4. -1
S= /d X/ g[?/@R (1 + (O R)) + Ematter},

where O71F(x) = [ d*x' F(x")G(x, x').
In EPJC 77 (2017) 628 they study its teleparallel version, i.e.

1 _
S = [dixe[o-T (FO71T) = 1) + Loater].
and its scalar-tensor representation reads

1
S = ﬂ/d4Xe{T(f(¢) —-1- 0) — V,ﬁV“gﬁ + ﬁmatter} .

!Deser, Woodard: Phys.Rev.Lett. 2007
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Part I: Introduction
Non-local Cosmology

Noether Symmetry Approach

Nonlocal Teleparallel Cosmology

In flat FRW cosmology,
ds? = dt? — a(t)?6;dx dx/
it is easy to find the modified FRW egs:
3H?(1+ 6 — f(¢)) = %éé +Kp,
(140 — £(6))(3H? + 2ff) = —%éqs +2H( — F()) — kp.
and the equations for the scalar fields can be written as

—6H?F(¢) +3HO+6 =0, 3Hd+6H>+¢=0.
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Part I: Introduction
Non-local Cosmology

Noether Symmetry Approach

Nonlocal Teleparallel Cosmology

In flat FRW cosmology,
ds? = dt? — a(t)?6;dx dx/
it is easy to find the modified FRW egs:
3H?(1+ 6 — f(¢)) = %éé +Kp,
(140 — £(6))(3H? + 2ff) = —%éqs +2H( — F()) — kp.
and the equations for the scalar fields can be written as
—6H?*f'(¢)+3HO+6 =0, 3Hp+6H>+$=0.

EPJC 77 (2017) 628: SNe la+BAO+CC+Hy and they constrain
the exponential distortion function.
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Part I: Introduction
Non-local Cosmology

Noether Symmetry Approach

Generalized Nonlocal Teleparallel Theory

Since
R=-T+BandO'R=-0O'T+0O!'B.

we construct the following theory
. 1 4 1 4 -1 -1
S——Z/dxeT—l—ﬂ/dxe[(clT—FczB)f(D T,07'8)],

which we call Generalized Nonlocal Teleparallel Theory.
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Generalized Nonlocal Teleparallel Theory

Since
R=-T+BandO'R=-0O'T+0O!'B.

we construct the following theory
. 1 4 1 4 -1 -1
S——ﬂ/dxeT—i—%/dxe[(clT—FczB)f(D T,07'8)],

which we call Generalized Nonlocal Teleparallel Theory.
Localized version: introduce four auxiliary fields ¢, ¥, 6 and (, to
get

S = _1/d4XeT—|—
2K
+2];%/d4xe[(C1T+CgB)f(¢,so)_8u98,u¢_
—97'—8“&’9“90_(3} +/d4xeLm,
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—T+((:1T+c;B)f(o‘g -
=C2=0,¢; =]

Teleparallel non-local gravity

=0
=T+ Bf(p) —f——> GR or TEGR

[ErriCera]

Standard non-local gravity

FIG. 1: This diagram shows how one can recover different theories of gravity from the scalar-field representation to the standard
representation. Note that ¢ = 07 and ¢ = 07! B so that —¢ + ¢ = O"'R.



Part |: Introduction Non-local Cosn

ogy
Noether Symmetry Approach

Noether Symmetry Approach

Let .
t=t+ eﬁ(t,xk), X=X+ fn’(tvxk)a

be infinitesimal one-parameter point transformations and
X = &(t,x)0 + 0/ (t,x")0;,

their generator.
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Noether Symmetry Approach

Noether Symmetry Approach

Let .
t=t+ eﬁ(t,xk), X=X+ fn’(tvxk)a

be infinitesimal one-parameter point transformations and
X = &(t,x)0 + 0/ (t,x")0;,

their generator.
Let L = L(t,xk, x*) be a Lagrangian describing a dynamical system
d 0 0

a9, 9,
EPTT i i

EiL=0
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Noether Symmetry Approach

Noether's Theorem

Iff there exists an f = f(t, x¥, ) such that

d¢  df

XUy ===
+ dt dt’

then the Euler-Lagrange equations remain invariant under X.
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Noether Symmetry Approach

Noether's Theorem
Iff there exists an f = f(t,x*, x¥) such that

d¢  df

My =5 ==
X Jrdt dt’

then the Euler-Lagrange equations remain invariant under X.

Integral of motion

If X is a Noether symmetry of the dynamical system, there
corresponds a function

o(t, x*, x*) = f—f(%’gﬁ. = L) —n'o;L,

which is a conserved quantity.
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Generalized Nonlocal Teleparallel
Part II: Noether Symmetries in GNT cosmology Nonlo rvature: R + Rf(L™"R)
Nonlo leparallel: —T + TA(O~LT)

Noether Symmetries in GNT cosmology

From the action of the theory we want to deduce a point like
Lagrangian. We want to study cosmology so we consider:

ds? = dt? — a(t)?(dx? + dy? + dz?),

and the traces of the torsion tensor and the boundary term take
the form ‘
T =—-6H? B=—18H>—6H.
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Noether Symmetries in GNT cosmology

From the action of the theory we want to deduce a point like
Lagrangian. We want to study cosmology so we consider:

ds? = dt? — a(t)?(dx? + dy? + dz?),

and the traces of the torsion tensor and the boundary term take

the form ‘
T =—-6H? B=—18H>—6H.

The action now becomes

"a2
8~/dta3[—6?(c1f(¢,cp)—9—1)—
2 a2

~o (25 - 2) @rtou -0 - 05—
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Generalized Nonlocal Teleparallel
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Noether Symmetries in GNT cosmology

and the point like Lagrangian is given by
L=6a3’(04+1—c1f(p,9)) +6a%a(cf (¢, 0) — () — a°0p — a*Ce .
The generator of infinitesimal transformations is givan by

X = &(t,x")0¢ + ' (t,x")0;
where x* = (a,0, ¢, ¢, () and the vector 1’ is

n'(t,x") = (0%, 0%, n?,1°).
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nlocal Teleparallel
Part II: Noether Symmetries in GNT cosmology le ¢ R+ RfF(O°"R)
—T+TFA(OIT)

Noether Symmetries in GNT cosmology

The point-like canonical Lagrangian is:

L =6¢2a°a0f4($, 0) + 6c2a° ¢, (0, ) — 6c1a5°F (¢, ) —
— 6a%al + 6a02° + 6aa> — a3y — a%0¢,
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Generalized Nonlocal Teleparallel
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Noether Symmetries in GNT cosmology

The point-like canonical Lagrangian is:

L =6¢2a°a0f4($, 0) + 6c2a° ¢, (0, ) — 6c1a5°F (¢, ) —
— 6a%al + 6a02° + 6aa> — a3y — a%0¢,

The Noether condition

d¢  df

XM 4= ==

TR T ar

gives a system of 43 differential equations, 19 of which are
independent.

This yields 7 different forms for the distortion function, i.e. 7
classes of theories that are invariant under point transformations.
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ized Nonlocal Teleparallel
Part 1I: Noether Symmetries in GNT cosmology Nonlocal Curvature: R+ RF(O7LR)
Nonlocal-Teleparallel: —T + TF(O~1T)

Nonlocal-Curvature: R + Rf(01R)

We set at the general action:

f(¢,g0):f(—¢+g0):f(¢), aq=-c=-1, GZ_Cv

and the Lagrangian reads:

£ =622 (F() + 0+ 1) + 6a%a (£ ()¢ + 0) + a0y
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Teleparallel
Part 1I: Noether Symmetries in GNT cosmology Nonlocal Curvature: R+ Rf(O~ lF\’)
Nonlocal-Teleparallel: —T + TF(O~1T)

Nonlocal-Curvature: R + Rf(01R)

We set at the general action:

fg,0) =f(=0+¢)=Ff(¢), a=—-a=-1,0=-(,
and the Lagrangian reads:

£ =622 (F() + 0+ 1) + 6a%a (£ ()¢ + 0) + a0y

From the Noether condition we get a system of 18 differential
equations which yield:

1
X = (C5 + C4t)8t + ga(C4 — C1)8a + (C3 + C19)89 — 2C281/,,
oL Al
f(T/J): —1+ +C6€ ] C1#07
G + 3¢ L lﬁ, G, =0.



Generalized Nonlocal Teleparallel
Part 1I: Noether Symmetries in GNT cosmology Nonlo rvature: R + RF(O™ R)
Nonlocal-Teleparallel: —T + TF(O~1T)

Cosmological solutions for the exponential coupling

The Lagrangian becomes
L=06a(l+0)a"+3Cae 22" (23" — ?aaw +6aa0 + a0,
2

and from the Euler Lagrange equations we get:

: - _ Hot .
de-Sitter solutions a(t) = e'™ Power-law solutions a(t) = apt?
P(t) = —4Hot + 91,
. , u(e) = PLZ2) gy,
o(t) = 3Cge2 —2Hot _ 37,_11673H0t -1, C:EP :
0 _ Ce 3p—1 —2p

f(y) = Coe¥/?. ot) = p—1 L

(1—3p)y

f(1h) = Coe 30T—20) .
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eleparallel
Part II: Noether Symmetries in GNT cosmology |

Nonlocal-Teleparallel: —T + Tf(O1T)

This action is derived by setting in the general one:

f(qb,g@):f(gb), a=1, =0, CZO,

and the Lagrangian becomes: £ = 6a(—f(¢) + 0 + 12> — a30¢).
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rallel
Part II: Noether Symmetries in GNT cosmology Nonlocal-Curvature: R + RF("LR)
Nonlocal-Teleparallel: —T + TA(O~1T)

Nonlocal-Teleparallel: —T + Tf(O1T)

This action is derived by setting in the general one:

f(qb,g@): f(¢)7 C]_:]., C2:07 Czov
and the Lagrangian becomes: £ = 6a(—f(¢) + 0 + 12> — a30¢).
The Noether condition yields 16 differential equations and they
give:
1
X = (C4 + C5t)8t — g(Cz — C4)a83 + (C3 + C29)89 + C10¢,

G
f(¢) = C7e%1—%+17 G #0,
G+g¢o, G=0.
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parallel

Part II: Noether Symmetries in GNT cosmology 0 RF(O™LR)
+ TAO1T)

Cosmological Solutions for the exponential coupling

The Lagrangian becomes
) G ..
L = —6aa <C7e G —9—1) —a°0¢,
and from the Euler Lagrange equations we get:

Hot

de-Sitter solutions a(t) = e Power-law solutions a(t) = agt”

¢(t) = —2Hot, 6p2 In(t — 3pt
o o0 = L
0(t) = e~ 3Hot (—C7(3H0t+ 1) — 37) -1, P o 1=35
0 t
0(t) = G(1—3p)3~%p2-3%p L 200
f(¢) = Cre~3Hot (t) = G(1=3p) 1o b

(9% —9p+2)¢

f(¢) = Cre o°
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Conclusions

Conclusions

@ We introduced a new theory of gravity, which we call
Generalized Nonlocal Teleparallel theory, and from which we
can derive many interesting and already known theories by
fixing the coupling constants.
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Generalized Nonlocal Teleparallel theory, and from which we
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fixing the coupling constants.

@ By using Noether's theorem we constrained the functional
form of the action and found that in most cases the distortion
function is either exponential or linear.
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Conclusions

Conclusions

@ We introduced a new theory of gravity, which we call
Generalized Nonlocal Teleparallel theory, and from which we
can derive many interesting and already known theories by
fixing the coupling constants.

@ By using Noether's theorem we constrained the functional
form of the action and found that in most cases the distortion
function is either exponential or linear.

@ For these selected models we found cosmological solutions,
such as de-Sitter and power-law.
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