Model Independent Constraints from Eikonal Scattering

Kurt Hinterbichler (Case Western)

Kyoto, Mar. 2, 2018

arxiv: 1708.05716 w/ Austin Joyce and Rachel Rosen

arxiv: arXiv:1712.10020 w/ James Bonifacio, Austin Joyce and Rachel Rosen

arxiv: 1803:xxxxx w/ James Bonifacio

Is it possible to have a theory with a spectrum like this:

Spin 0, 1/2: Yes (pseudo Goldstones)

Spin 1, 3/2: Yes (spontaneously broken weakly coupled gauge theory/SUGRA)

Spin ≥ 2 : ?

Common lore says No: a massive higher spin always comes with more states at parametrically the same mass

Examples:

Kaluza Klein theory:

towers of spin ≤ 2

 $m^2 \sim \lambda_{
m laplacian}$

Confining gauge theory

towers of all spins

$$m^2 \sim \Lambda_{\rm QCD}^2$$

String theory

towers of all spins

$$m^2 \sim \frac{1}{\alpha'}$$

no large gap $\gg m$

Can there be "elementary" particles with spin ≥ 2 ?

Are there Hadrons with Compton wavelength \gg intrinsic size?

Could the graviton have a small Hubble-scale mass?

IR modification scale
$$V(r) \sim \frac{1}{r} e^{-mr} \,, \quad m \sim H$$

If such isolated massive particles are possible, there must exist an effective field theory (EFT) for them with a cutoff parametrically larger than the mass:

$$\Lambda \gg m$$

If such an EFT doesn't exist: problem solved

If it does exist: must figure out if it can be UV completed

approach: look for such EFTs and find obstructions to UV completion.

Best possible EFT

What is the highest possible strong coupling scale in an EFT of a single massive particle?

e.g. Spin-2: Einstein-Hilbert + generic potential
$$\Lambda_5 \sim \left(M_P m^4\right)^{1/5}$$
 dRGT theory $\Lambda_3 \sim \left(M_P m^2\right)^{1/3}$

Equivalently: what is the softest possible UV behavior of the tree amplitude?

Einstein-Hilbert + generic potential
$$\mathcal{A}_4 \sim E^{10}$$

dRGT theory $\mathcal{A}_4 \sim E^6$

Best possible EFT

KH, James Bonifacio (to appear)

Generic EFT:

$$\mathcal{L} \sim (\partial h)^2 + h^2$$

$$+h^3 + \partial^2 h^3 + \partial^4 h^3 + \cdots$$

$$+h^4 + \partial^2 h^4 + \partial^4 h^4 + \cdots$$

$$\vdots$$

Field redefinitions \rightarrow put fields on shell: transverse, traceless, $\square \rightarrow -m^2$

Classify all on-shell cubic and quartic vertices

cubic vertices

Polarization tensors:

$$\epsilon_{\mu_1...\mu_s} \to z_{\mu_1} z_{\mu_2} \dots z_{\mu_s} , \qquad z^2 = 0$$

No on-shell non-trivial functions of momenta:

$$p_1^{\mu} + p_2^{\mu} + p_3^{\mu} = 0$$
 \Rightarrow $p_1 \cdot p_2 = \frac{1}{2} \left(m_1^2 + m_2^2 - m_3^2 \right)$, etc.

$$\mathcal{A}_3 \sim z_{12}^{n_{12}} z_{13}^{n_{13}} z_{23}^{n_{23}} z p_{12}^{m_{12}} z p_{23}^{m_{23}} z p_{31}^{m_{31}}$$

$$n_{12} + n_{13} + m_{12} = s_1,$$

 $n_{12} + n_{23} + m_{23} = s_2,$
 $n_{13} + n_{23} + m_{31} = s_3.$

Finite number of solutions. \rightarrow On-shell cubic amplitudes nailed down by Lorentz invariance.

Best possible scaling

Build the exchange diagrams:

Finite number of cubic vertices \rightarrow finite number of exchange diagrams \rightarrow bounded growth with energy

$$\mathcal{A}_{\mathrm{exchange}} \sim E^{\#}$$

Best possible scaling

Classify all analytic quartic amplitudes (contact terms):

2 independent invariants made of momenta (2 Mandelstams)

This is the contact diagram:

Best possible scaling

Try to cancel off highest energy scaling of exchange diagrams, working down:

$$A_4 = A_{\text{exchange}} + A_{\text{contact}}$$

Best possible scalings

KH, James Bonifacio (to appear)

Best scaling for spin-1:

 E^4

$$\Lambda_2 \sim (M_P m)^{1/2}$$

allow additional scalar \rightarrow can achieve $E^0 \rightarrow$ Higgs mechanism

Best scaling for spin-2:

$$E^6 \qquad \Lambda_3 \sim \left(M_P m^2\right)^{1/3}$$

allow additional scalar+vector \rightarrow no simple gravitational Higgs mechanism

Christensen, Stefanus (2014) Nima Arkani-Hamed, Huang, Huang (2017)

Conjecture for higher spins:

$$\mathcal{A}_4 \sim \begin{cases} E^{3s} & s \text{ even,} \\ E^{3s+1} & s \text{ odd.} \end{cases}$$

$$\Lambda_{\max} = \begin{cases} \Lambda_{\frac{3s}{2}} & s \text{ even,} \\ \Lambda_{\frac{3s+1}{2}} & s \text{ odd.} \end{cases}$$

$$\Lambda_n \equiv (M_p m^{n-1})^{1/n}$$

Best EFTs for spin-2

Spin-2 Result: Best possible scaling is E^6

Only theories that achieve this are dRGT theory and pseudo-linear

DRGT theory:

de Rham, Gabadadze, Tolley (2011)

$$\frac{M_P^{D-2}}{2} \int d^D x \ |e| R[e] - m^2 \sum_n a_n \int \epsilon_{A_1 \cdots A_D} e^{A_1} \wedge \cdots \wedge e^{A_n} \wedge 1^{A_{n+1}} \wedge \cdots \wedge 1^{A_n}$$
2 parameters

Pseudo-linear theory:

KH: 1305.7227

$$\mathcal{L} = -\frac{1}{2} \partial_{\lambda} h_{\mu\nu} \partial^{\lambda} h^{\mu\nu} + \partial_{\mu} h_{\nu\lambda} \partial^{\nu} h^{\mu\lambda} - \partial_{\mu} h^{\mu\nu} \partial_{\nu} h + \frac{1}{2} \partial_{\lambda} h \partial^{\lambda} h - \frac{1}{2} m^{2} (h_{\mu\nu} h^{\mu\nu} - h^{2})$$
Also 2 parameters
$$+ \lambda_{3} \frac{m^{2}}{M_{p}} \eta^{\mu_{1} \nu_{1} \cdots \mu_{3} \nu_{3}} h_{\mu_{1} \nu_{1}} h_{\mu_{2} \nu_{2}} h_{\mu_{3} \nu_{3}} + \lambda_{4} \frac{m^{2}}{M_{p}^{2}} \eta^{\mu_{1} \nu_{1} \cdots \mu_{4} \nu_{4}} h_{\mu_{1} \nu_{1}} h_{\mu_{2} \nu_{2}} h_{\mu_{3} \nu_{3}} h_{\mu_{4} \nu_{4}} + \frac{1}{M_{p}} \eta^{\mu_{1} \nu_{1} \cdots \mu_{4} \nu_{4}} \partial_{\mu_{1}} \partial_{\nu_{1}} h_{\mu_{2} \nu_{2}} h_{\mu_{3} \nu_{3}} h_{\mu_{4} \nu_{4}}$$

Constraints from forward dispersion relations: dRGT theory allowed island

Cheung, Remmen (2016)

Constraints from forward dispersion relations: Pseudo-linear not allowed

James Bonifacio, KH, Rachel Rosen (1607.06084)

Forward amplitude: $\mathcal{A}_{\text{forward}} \sim \frac{E^4}{M_P^2 m^2}$

$$f(TTTT)_{-} = \frac{\lambda_1^2}{m^2 M_p^2}$$

$$f(VVVV)_{+} = -\frac{15\lambda_{1}^{2} + 13\lambda_{1}\lambda_{3} + 5\lambda_{3}^{2}}{12 m^{2} M_{p}^{2}}$$

$$f(SSSS) = -\frac{5\lambda_1^2 + 6\lambda_1\lambda_3 + \lambda_3^2 + 2\lambda_4}{9m^2M_p^2}$$

No allowed region

•

Constraints from eikonal scattering

Another traditional constraint on EFTs:
Superluminality of small fluctuations on non-trivial Lorentz-violating backgrounds (e.g. Velo-Zwanziger problem)

Less problematic: superluminality in the S-matrix

Camanho, Edelstein, Maldacena, Zhiboedov (2016)

Eikonal scattering:

high-energy, fixed impact parameter:

$$s/t \to \infty$$

Eikonal kinematics (massive)

Light-cone coordinates:

KH, Austin Joyce, Rachel A. Rosen (1708.05716)

large momenta small momentum transfer

$$p_1^{\mu} = \left(\frac{1}{2p^+} \left(\frac{\vec{q}^2}{4} + m_A^2\right), p^+, \frac{q^i}{2}\right), \qquad p_3^{\mu} = \left(\frac{1}{2p^+} \left(\frac{\vec{q}^2}{4} + m_A^2\right), p^+, -\frac{q^i}{2}\right),$$

$$p_2^{\mu} = \left(p^-, \frac{1}{2p^-} \left(\frac{\vec{q}^2}{4} + m_B^2\right), -\frac{q^i}{2}\right), \qquad p_4^{\mu} = \left(p^-, \frac{1}{2p^-} \left(\frac{\vec{q}^2}{4} + m_B^2\right), \frac{q^i}{2}\right).$$

$$\begin{split} \epsilon_T^{\mu}(p_1) &= \left(\frac{\vec{q} \cdot \vec{e}_1}{2p^+}, 0, e_1^i\right) \,, \qquad \epsilon_L^{\mu}(p_1) = \left(\frac{1}{2m_A p^+} \left(\frac{\vec{q}^{\;2}}{4} - m_A^2\right), \frac{p^+}{m_A}, \frac{q^i}{2m_A}\right) \,, \\ \epsilon_T^{\mu}(p_2) &= \left(0, -\frac{\vec{q} \cdot \vec{e}_2}{2p^-}, e_2^i\right) \,, \qquad \epsilon_L^{\mu}(p_2) = \left(\frac{p^-}{m_B}, \frac{1}{2m_B p^-} \left(\frac{\vec{q}^{\;2}}{4} - m_B^2\right), -\frac{q^i}{2m_B}\right) \,, \\ \epsilon_T^{\mu}(p_3) &= \left(-\frac{\vec{q} \cdot \vec{e}_3}{2p^+}, 0, e_3^i\right) \,, \qquad \epsilon_L^{\mu}(p_3) = \left(\frac{1}{2m_A p^+} \left(\frac{\vec{q}^{\;2}}{4} - m_A^2\right), \frac{p^+}{m_A}, -\frac{q^i}{2m_A}\right) \,, \\ \epsilon_T^{\mu}(p_4) &= \left(0, \frac{\vec{q} \cdot \vec{e}_4}{2p^-}, e_4^i\right) \,, \qquad \epsilon_L^{\mu}(p_4) = \left(\frac{p^-}{m_B}, \frac{1}{2m_B p^-} \left(\frac{\vec{q}^{\;2}}{4} - m_B^2\right), \frac{q^i}{2m_B}\right) \,. \end{split}$$

$$\begin{split} \epsilon_T^{\mu\nu}(p_a) &= \epsilon_T^\mu(p_a) \epsilon_T^\nu(p_a) \,, \\ \epsilon_V^{\mu\nu}(p_a) &= \frac{i}{\sqrt{2}} \left(\epsilon_T^\mu(p_a) \epsilon_L^\nu(p_a) + \epsilon_L^\mu(p_a) \epsilon_T^\nu(p_a) \right) \,, \\ \epsilon_S^{\mu\nu}(p_a) &= \sqrt{\frac{D-1}{D-2}} \left[\epsilon_L^\mu(p_a) \epsilon_L^\nu(p_a) - \frac{1}{D-1} \left(\eta^{\mu\nu} - \frac{1}{p_a^2} p_a^\mu p_a^\nu \right) \right] \,. \end{split}$$

Eikonal limit

$$=e^{\left(\Box \right) }$$

$$i\mathcal{A}_{\text{eikonal}} = 4p^-p^+ \int d^2\mathbf{b} \, e^{i\mathbf{b}\cdot\mathbf{q}} \left(e^{i\delta(\mathbf{b})} - 1\right)$$
, $\delta(\mathbf{b}) = \frac{1}{4p^-p^+} \int \frac{d^2\mathbf{q}}{(2\pi)^2} \, e^{-i\mathbf{b}\cdot\mathbf{q}} \mathcal{A}_0(\mathbf{q})$

Time delay:
$$\Delta x^- = \frac{1}{p^-} \delta$$

Eikonal

Eikonal phase depends only on *on-shell* three point amplitudes:

Cubic massive spin-2 vertices

\mathcal{A}_1	$z_1 \cdot z_2 \ z_2 \cdot z_3 \ z_3 \cdot z_1$	$h_{\mu\nu}^3$
\mathcal{A}_2	$(p_1 \cdot z_3 \ z_1 \cdot z_2 + p_3 \cdot z_2 \ z_1 \cdot z_3 + p_2 \cdot z_1 \ z_2 \cdot z_3)^2$	$\sqrt{-g}R\big _{(3)}$
\mathcal{A}_3	$ (p_1 \cdot z_3)^2 (z_1 \cdot z_2)^2 + (p_3 \cdot z_2)^2 (z_1 \cdot z_3)^2 + (p_2 \cdot z_1)^2 (z_2 \cdot z_3)^2 $	$\delta_{\nu_1}^{[\mu_1} \delta_{\nu_2}^{\mu_2} \delta_{\nu_3}^{\mu_3} \delta_{\nu_4}^{\mu_4]} \partial_{\mu_1} \partial^{\nu_1} h_{\mu_2}^{\nu_2} h_{\mu_3}^{\nu_3} h_{\mu_4}^{\nu_4}$
\mathcal{A}_4	$p_1 \cdot z_3 \ p_2 \cdot z_1 \ p_3 \cdot z_2 \ (p_1 \cdot z_3 \ z_1 \cdot z_2 + p_3 \cdot z_2 \ z_1 \cdot z_3 + p_2 \cdot z_1 \ z_2 \cdot z_3)$	$\sqrt{-g} \left(R_{\mu\nu\rho\sigma}^2 - 4R_{\mu\nu}^2 + R^2 \right) \Big _{(3)}$
\mathcal{A}_5	$(p_1 \cdot z_3)^2 (p_2 \cdot z_1)^2 (p_3 \cdot z_2)^2$	$\sqrt{-g} R^{\mu\nu}_{\rho\sigma} R^{\rho\sigma}_{\alpha\beta} R^{\alpha\beta}_{\mu\nu} \Big _{(3)}$

D=4: no A_4 , 2 additional parity violating amplitudes

Massive spin-2 eikonal

$$\frac{1}{s}\delta^{\lambda,\lambda'} = \begin{bmatrix} T & T & V & V & S \\ T & \frac{4t(b^2\pi^2+b)E(b\pi)a_2+E_0(b\pi)(b^2(a_2-a_3+18a_2)\pi^3+4(ba_3\pi)}{2b^3\pi^3(b^2\pi)} & 0 & \frac{E_1(b\pi)(b^2\pi^2(a_3-2ba_3)-b(a_3)-4(b\pi)a_2}{4b^2\pi^2(b^2\pi)} & 0 & \frac{E_2(b\pi)(a_3-2ba_3)}{2\sqrt{3}\log^2\pi} \\ 0 & \frac{E_0(b\pi)(b^2\pi^2(a_3-2ba_3)-b(a_3)-4(b^2\pi^2+b)E_1(b\pi)a_2}{2b^2\pi^3(b^2\pi)} & 0 & \frac{b\pi E_1(b\pi)a_2+4bE_2(b\pi)a_3}{4b\pi^2\pi} & 0 \\ V & V & V & S \end{bmatrix}$$

$$\alpha_1 \leftrightarrow h_{\mu\nu}^3$$
 $\alpha_2 \leftrightarrow \text{Einstein-Hilbert}$
 $\alpha_3 \leftrightarrow \text{Pseudo-linear}$
 $\alpha_4 \leftrightarrow \text{Gauss-Bonnet}$
 $\alpha_5 \leftrightarrow \text{Riemann}^3$

Massive spin-2 eikonal

diagonalize in powers of 1/b

$$\frac{1}{s}\delta^{\lambda,\lambda'} \to \begin{pmatrix}
\frac{\frac{\lambda_0(b\,m)\,a_2}{2\,\mathrm{Mp}^2\,\pi}}{0} & 0 & 0 & 0 & 0 \\
0 & \frac{K_0(b\,m)\,a_2}{2\,\mathrm{Mp}^2\,\pi}} & 0 & 0 & 0 \\
0 & 0 & \frac{K_0(b\,m)\,a_2}{4\,\mathrm{Mp}^2\,\pi}} & 0 & 0 \\
0 & 0 & 0 & \frac{K_0(b\,m)\,a_2}{4\,\mathrm{Mp}^2\,\pi}} & 0 \\
0 & 0 & 0 & 0 & \frac{K_0(b\,m)\,a_2}{4\,\mathrm{Mp}^2\,\pi}
\end{pmatrix}$$

non-negative

Massive spin-2 eikonal constraints

Allowed cubic vertex:
$$\mathcal{L}_3 \propto \frac{1}{2M_{\rm Pl}} R_{\rm EH}^{(3)} + \frac{m^2}{2M_{\rm Pl}} h_{\mu\nu}^3$$

Vertex not of this form \rightarrow new physics at m

KK reduction of Einstein-Hilbert

Conjecture: massive time delay avoided in KK theory by using this cubic vertex, not by cancellations among the KK tower

Massive spin-2 eikonal constraints

Constraints on dRGT theory:

Massless higher spins

KH, Austin Joyce, Rachel Rosen (1712.10021)

Cubic vertices:

Spin-1
$$\mathcal{A}_{YM} \sim (p_1 \cdot z_3)(z_1 \cdot z_2) + (p_3 \cdot z_2)(z_1 \cdot z_3) + (p_2 \cdot z_1)(z_2 \cdot z_3)$$
$$\mathcal{A}_{F^3} \sim (p_1 \cdot z_3)(p_2 \cdot z_1)(p_3 \cdot z_2)$$

$$\underline{\text{Spin-2}} \qquad \qquad \text{Einstein-Hilbert} \quad \sim \quad \left(\mathcal{A}_{\text{YM}}\right)^2$$

Gauss-Bonnet
$$\sim (A_{YM})(A_{F^3})$$
 vanishes in $D=4$

(Riemann)³
$$\sim (\mathcal{A}_{F^3})^2$$

$$\frac{\mathrm{Spin-}s}{(\mathcal{A}_{\mathrm{YM}})^s}$$

$$\frac{(\mathcal{A}_{\mathrm{YM}})^{s-1}(\mathcal{A}_{F^3})}{(\mathcal{A}_{\mathrm{YM}})^{s-2}(\mathcal{A}_{F^3})^2}$$
vanish in $D\!\!=\!\!4$

(linear curvature)³ $\sim (\mathcal{A}_{F^3})^s$

Massless higher spins

KH, Austin Joyce, Rachel Rosen (1712.10021)

Spin- s vertices:	$(\mathcal{A}_{\mathrm{YM}})^s$	$({\cal A}_{F^3})^s$
gauge symmetry:	deforms	does not deform (linear)
Consistency/locality at quartic order (4 particle test) Benincasa, Cachazo (2007)	×	✓
Eikonal constraints		×
		$\delta(b) = \pm \alpha^2 \frac{s^{s-1}}{2^{3s+2}\pi} \frac{(8s-2)!!}{b^{4s}}.$

Conclusions

- Eikonal scattering and dispersion relations can provide useful model independent constraints on massive theories.
- An isolated massive spin-2 is not completely ruled out.
- Going beyond leading interactions: dispersion relations beyond the forward limit, subleading corrections to the Eikonal approximation may provide more information.
- May be useful as part of a bootstrap to solve large N QCD.