
Model Independent Constraints from Eikonal Scattering 

Kurt Hinterbichler (Case Western)

Kyoto, Mar. 2, 2018

 arxiv: 1708.05716 w/ Austin Joyce and Rachel Rosen

 arxiv: 1803:xxxxx w/ James Bonifacio

 arxiv: arXiv:1712.10020 w/ James Bonifacio, Austin Joyce and Rachel Rosen



Isolated massive spinning particles?

Is it possible to have a theory  
with a spectrum like this:

mass

0

m

M �
parametrically  
large gap M � m

Common lore says No: a massive higher spin always comes 
with more states at parametrically the same mass

Spin 0, 1/2: Yes (pseudo Goldstones)

Spin 1, 3/2: Yes (spontaneously broken weakly coupled gauge theory/SUGRA)

Spin ≥ 2:    ?



Isolated massive spinning particles?

Examples:

mass

0

m

no large gap � m

Kaluza Klein theory:

Confining gauge theory

String theory

~ m

towers of spin ≤ 2 m2 ⇠ �laplacian

m2 ⇠ 1

↵0

m2 ⇠ ⇤2
QCDtowers of all spins

towers of all spins



Isolated massive spinning particles?

Can there be “elementary” particles with spin ≥ 2 ?

� intrinsic size ?

Could the graviton have a small Hubble-scale mass?

Are there Hadrons with Compton wavelength 

IR modification scale

V (r) ⇠ 1

r
e
�mr

, m ⇠ H



Isolated massive spinning particles?

If such isolated massive particles are possible, there must exist an 
effective field theory (EFT) for them with a cutoff parametrically larger 
than the mass:

⇤ � m

If such an EFT doesn’t exist:  problem solved

If it does exist:  must figure out if it can be UV completed

approach: look for such EFTs and find obstructions to UV completion.



What is the highest possible strong coupling scale in an EFT of a 
single massive particle?

e.g. Spin-2:   Einstein-Hilbert + generic potential

Equivalently: what is the softest possible UV behavior of the tree amplitude?

Best possible EFT

dRGT theory

Einstein-Hilbert + generic potential

dRGT theory

⇤5 ⇠
�
MPm

4
�1/5

⇤3 ⇠
�
MPm

2
�1/3

A4 ⇠ E10

A4 ⇠ E6



Best possible EFT

Generic EFT:

L ⇠ (@h)2

+h3 + @2h3 + @4h3 + · · ·
+h4 + @2h4 + @4h4 + · · ·
...

Field redefinitions → put fields on shell: transverse, traceless, ⇤ ! �m2

KH, James Bonifacio  (to appear)

Classify all on-shell cubic and quartic vertices

+h2



Polarization tensors:

✏µ1...µs ! zµ1zµ2 . . . zµs z2 = 0

If some of the particles are identical, then the amplitude must also be invariant under

additional permutation symmetries. For example, for the scattering of four identical particles

the amplitude must have an S4 symmetry under interchanging particle labels. Lastly, in

low dimensions there can be dimensionally-dependent identities that introduce redundancies

between various amplitudes. These need to be accounted for when finding an irreducible set

of amplitudes.

3.1 Cubic terms

We start by constructing the on-shell cubic terms. Consider a three-point interaction of

particles with spins (l1, l2, l3), as in Figure ??. For each li > 0, introduce a null vector zi.

Momentum conservation with all momenta incoming gives4

p1µ + p2µ + p3µ = 0. (3.10)

Equation (3.10) and pii = �m2
i imply that 2pij = m2

i + m2
j � m2

k for distinct i, j, k, so all

contractions pij can be written in terms of masses. Contracting (3.10) with zi gives the three

relations

zp12 + zp13 = 0, (3.11a)

zp21 + zp23 = 0, (3.11b)

zp31 + zp32 = 0. (3.11c)

This means that there are only three independent contractions zpij, rather than six. In total,

there are therefore six independent Lorentz scalars that can be used to construct the on-shell

parity-even cubic amplitude, which can be taken to be

z12, z13, z23, zp12, zp23, zp31. (3.12)

Each zi must appear li times in the cubic amplitude, since each polarisation vector appears

once. The amplitude is thus a linear combination of terms of the form

zn12
12 zn13

13 zn23
23 zpm12

12 zpm23
23 zpm31

31 , (3.13)

4In general these momenta must be complex for the on-shell cubic amplitude to be non-vanishing. To

calculate exchange diagrams these cubic amplitudes must be analytically continued to real o↵-shell momenta.
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n12 + n13 +m12 = s1,

n12 + n23 +m23 = s2,

n13 + n23 +m31 = s3.

A3 ⇠

Finite number of solutions. → On-shell cubic amplitudes nailed down by Lorentz invariance.

cubic vertices

,

No on-shell non-trivial functions of momenta:

pµ1 + pµ2 + pµ3 = 0 p1 · p2 =
1

2

�
m2

1 +m2
2 �m2

3

�
) ,  etc.



+ +

Build the exchange diagrams:

A3

A3

A3A3A3 A3

Aexchange ⇠ E#

Finite number of cubic vertices  →  finite number of exchange diagrams → 
bounded growth with energy

Best possible scaling



Classify all analytic quartic amplitudes (contact terms):

Contracting (3.16) with zi gives the four relations

zp12 + zp13 + zp14 = 0, (3.18a)

zp21 + zp23 + zp24 = 0, (3.18b)

zp31 + zp32 + zp34 = 0, (3.18c)

zp41 + zp42 + zp43 = 0. (3.18d)

This means that there are only eight independent contractions zpij, rather than 12. In total,

there are 16 independent Lorentz scalars. The amplitude is a sum of powers of these scalars5

pk1212 pk1313 zn12
12 zn13

13 zn14
14 zn23

23 zn24
24 zn34

34 zpm13
13 zpm14

14 zpm21
21 zpm24

24 zpm31
31 zpm32

32 zpm42
42 zpm43

43 , (3.19)

where kij, nij and mij are non-negative integers satisfying

n12 + n13 + n14 +m13 +m14 = l1, (3.20a)

n12 + n23 + n24 +m21 +m24 = l2, (3.20b)

n13 + n23 + n34 +m31 +m32 = l3, (3.20c)

n14 + n24 + n34 +m42 +m43 = l4. (3.20d)

The kij are unconstrained by (3.20), reflecting the fact that there are on-shell quartic am-

plitudes with arbitrarily many derivatives (unlike the cubic case, where there are a finite

number of amplitudes). Restricting to only positive powers of kij reflects the fact that we

are interested only in tree-level 4 particle amplitudes coming from contact terms in the

lagrangian.

The parity-odd quartic amplitudes contain contractions of the form "(p1p2p3zi), "(pipjzkzl),

"(pizjzkzl), or "(zizjzkzl). There are 35 such contractions. These must be multiplied by

parity-even contractions so that the result contains enough z’s. The term multiplying a con-

traction of the antisymmetric tensor is of the form (3.19), where nij and mij satisfy (3.20)

with li ! li � 1 if the antisymmetric tensor contracts with zi.

5For identical particles, this construction of quartic amplitudes di↵ers slightly from that in [12, 13]. We

include factors of p12 and p13 in the amplitude building blocks and linear combinations are found that contain

a bounded number of momenta and that are invariant under all permutations of the external particles. This

means that Bose symmetry is inbuilt but the number of momenta must be bounded. In [13], tensor structures

without pij ’s are considered and invariance is imposed for the “kinematic” permutations that leave s and t

invariant. Each structure is then multiplied by a coe�cient fi(s, t), where the fi are further constrained by

Bose symmetry.
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n12 + n13 + n14 +m13 +m14 = s1,

n12 + n23 + n24 +m21 +m24 = s2,

n13 + n23 + n34 +m31 +m32 = s3,

n14 + n24 + n34 +m42 +m43 = s4.

unconstrained

This is the contact diagram:

KH, James Bonifacio  (to appear)Best possible scaling

2 independent invariants made of momenta (2 Mandelstams)

Acontact ⇠



Aexchange +AcontactA4 =

Try to cancel off highest energy scaling of exchange diagrams, working down:

KH, James Bonifacio  (to appear)Best possible scaling

+ + +

⇠ E#



Best possible scalings

Conjecture for higher spins:

possible Lorentz invariant interaction terms, whether ghostly or not, parity violating or not.

The reason we allow for terms that violate parity, is that there was still the possibility, as

mentioned in [9], that there may be parity-violating interactions that can be added to dRGT

which maintain its ghost-freeness and high cuto↵. Here we will show that no non-trivial

parity violating interaction can be added consistent with the E6 behavior and corresponding

⇤3 cuto↵.

Our results are in the same spirit as [10,11], where model independent strong coupling

scales for theories of massive higher spins coupled to electromagnetism are given. In these

works, the model independent cuto↵ ⇤ ⇠
m

e2s�1 is found for massive spin-s particles interact-

ing with electromagnetism, when self-interactions of the massive high spins are not included.

The analysis was done at the level of the Lagrangian, by looking for the scale suppressing

various possible non-removable interaction terms.

In our case, the possible Lagrangian interaction terms become very numerous, especially

as the number of derivatives in increased. In addition, when working with Lagrangians one

always has to worry about integration by parts identities and field redefinition ambiguities

which do not a↵ect on-shell S-matrix elements and hence do not alter the amplitudes. For

this reason, we will instead work directly with on-shell amplitudes, avoiding these ambiguities

and greatly simplifying the construction of the general four particle S-matrix. We describe

this method in section 2.

This method is generalizable to other field content and massive higher spins, at the

price of more computational complexity. Based on calculations we hope to report in the

future, we conjecture that a self-interacting, massive spin s � 1 field should have a 4 particle

tree amplitude growing at least as fast as

A4 ⇠

8
<

:
E3s s even,

E3s+1 s odd.
(1.1)

[KH: Do you know how the scaling should go for a general n-particle amplitude?]

Choosing a simple scaling where fields come with powers of MP and derivatives come

with powers of m, as is usually chosen in massive gravity, this corresponds to a strong

5

coupling scale

⇤max =

8
<

:
⇤ 3s

2
s even,

⇤ 3s+1
2

s odd.
(1.2)

where ⇤n ⌘ (Mpmn�1)1/n.

2 Description of the calculation

Our method is as follows. The first step is to calculate the most general 2 ! 2 tree-level

scattering amplitude for a theory containing a single massive spinning field. This amplitude

is a sum of the exchange diagrams using two cubic vertices, and contact diagrams using a

quartic vertex. The first observation is that the cubic vertices can all be taken to be on

the free-particle shell, i.e. the fields made transverse and traceless and ⇤ ! �m2. This

can always be accomplished via field re-definitions, at the expense of changing the quartic

terms. The quartic terms can then also be taken on-shell, since at tree level they contribute

to the 4-particle amplitude only through the contact diagram in which all lines are on-shell

external lines. The problem of writing the most general theory thus reduces to the problem

of writing the most general on-shell 3-point and 4-point interactions.

We thus need to catalogue all the possible on-shell cubic and quartic terms. To do this

we use a method discussed in [12, 13] and that we describe below. The on-shell cubic terms

are fixed entirely by Lorentz invariance and there are a finite number of them. The number

of powers of energy, corresponding to the number of derivatives in the lagrangian, that can

appear non-trivially at cubic order is therefore bounded. Using these to construct the s,

t, and u channel 4 point exchange amplitudes, we get an expression that grows with some

leading power at high energies. We next then catalogue the possible quartic terms. These

come in a finite number of structures multiplied by analytic functions of the Mandelstam

invariants. Expanding the functions in powers of the Mandelstams, we generate all the

possible quartic terms with higher and higher powers of energy. Since the analytic functions

are arbitrary, the number of possible derivatives and terms is unbounded, though the number

of structures is fixed. We then ask whether the contact diagrams from these quartic terms can

potentially cancel against the high-energy behavior of the exchange amplitudes. Working

our way down from the highest powers of energy, we eventually reach a power of energy

6

coupling scale

⇤max =

8
<

:
⇤ 3s

2
s even,

⇤ 3s+1
2

s odd.
(1.2)
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6

Best scaling for spin-1: 

allow additional scalar → can achieve E0   → Higgs mechanism

E4 ⇤2 ⇠ (MPm)1/2

KH, James Bonifacio  (to appear)

Best scaling for spin-2: E6 ⇤3 ⇠
�
MPm

2
�1/3

allow additional scalar+vector → no simple gravitational Higgs mechanism

Nima Arkani-Hamed, Huang, Huang (2017) 
Christensen, Stefanus (2014) 



Best EFTs for spin-2

MD�2
P

2

Z
dDx |e|R[e]�m2

X

n

an

Z
✏A1···ADeA1 ^ · · · ^ eAn ^ 1An+1 ^ · · · ^ 1An

de Rham, Gabadadze, Tolley (2011)

2 parameters

DRGT theory:

KH:  1305.7227Pseudo-linear theory:

is the Fierz-Pauli mass term L0,2 ⇠ hµ⌫hµ⌫ � h2. The higher terms are the pseudo-linear

counterparts of the dRGT mass terms (1.7).

Using the anti-symmetries of the ⌘ symbol (3.1) it is easy to see that the terms (3.2)

take the form (2.1), and hence are ghost free: if any one of the h’s in (3.2) carries the indices

00, then no other h can carry a 0 index, so the terms are linear in h00, and h00 multiplies a

function of hij only. Only the structure of contractions in (3.2) can produce this property.

3.2 Two-derivative terms

We now generalize the structure of the terms (3.2) to include two derivatives. The only

way to insert derivatives so as to give the right Hamiltonian structure (2.1) is through the

following D � 1 two derivative terms,

L2,n ⇠ ⌘µ1⌫1···µn+1⌫n+1@µ1@⌫1hµ2⌫2 hµ3⌫3 · · ·hµn+1⌫n+1 , 1  n  D � 1. (3.4)

Again we can see using the anti-symmetry of the ⌘ symbol (3.1) how these terms take the

form (2.1): if any one of the h’s in (3.2) carries the indices 00, then no other h or derivative

can carry a 0 index, so the term is linear in h00, and h00 multiplies a function of hij only.

If, in the @@h factor, one of the derivatives and one of the h indices carry 0’s (leading to a

potentially dangerous ḣ0i), then no other h or derivative carries a 0, and we may integrate

by parts the @0 o↵ of h0i. If both derivatives carry a 0 (leading to a worrisome double time

derivative) then all the remaining indices, those of the h’s, must take spatial values, and we

may integrate by parts one of the time derivatives, resulting in terms with only first time

derivatives of the spatial components, ḣij.

Note that L2,1 is not in fact a term because it is a total derivative (it is the linearization

of ⇠
p
�gR) so in fact we have only D � 2 genuine two-derivative terms. The term L2,2

is nothing but the kinetic term of (1.1), i.e. the quadratic part of ⇠
p
�gR, and so it is

invariant under linearized di↵eomorphisms (1.2).

The higher terms L2,n for n > 2 are not di↵eomorphism invariant. These pseudo-linear

terms should correspond to fully non-linear, non-di↵eomorphism invariant two-derivative

terms (as yet unknown) which may be added to massive gravity.

In D = 4, there is one such novel two-derivative term, cubic in h,

L2,3 ⇠ ⌘µ1⌫1···µ4⌫4@µ1@⌫1hµ2⌫2 hµ3⌫3hµ4⌫4 . (3.5)
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⌘µ1⌫1···µ3⌫3hµ1⌫1hµ2⌫2hµ3⌫3

⌘µ1⌫1···µ4⌫4hµ1⌫1hµ2⌫2hµ3⌫3hµ4⌫4

L = �1
2
@�hµ⌫@�hµ⌫ + @µh⌫�@⌫hµ� � @µhµ⌫@⌫h +

1
2
@�h@�h� 1

2
m2(hµ⌫hµ⌫ � h2) +

1
MP

hµ⌫Tµ⌫

+
1

Mp

+�3
m2

Mp

+�4
m2

M2
p

Also 2 parameters

Spin-2 Result: Best possible scaling is E6 
Only theories that achieve this are dRGT theory and pseudo-linear



Constraints from forward dispersion relations:  
dRGT theory allowed island

Cheung, Remmen (2016)



Constraints from forward dispersion relations:  
Pseudo-linear not allowed

James Bonifacio, KH, Rachel Rosen (1607.06084 )

No allowed region

3

limit, as it does in dRGT, and it is these s2 parts of the
amplitude which are constrained by positivity. We will
only need to consider the scattering of external polariza-
tions that are purely tensor (T), vector (V) or scalar (S).
As for dRGT massive gravity, the result is independent
of the arbitrary mass scale µ. We find:

f(TTTT )+ =
9�2

1 + 4�1�3

3m2M2
p

,

f(TTTT )� =
�2
1

m2M2
p

,

f(TV TV ) = �
3�2

1 + 4�1�3

16m2M2
p

,

f(TSTS) = �
4�2

1 + 2�1�3

3m2M2
p

,

f(V V V V )+ = �
15�2

1 + 13�1�3 + 5�2
3

12m2M2
p

,

f(V V V V )� = �
15�2

1 + 4�1�3 � 4�2
3 + 4�4

16m2M2
p

,

f(V SV S) = �
3�2

1 � 8�1�3 � 12�2
3 + 8�4

48m2M2
p

,

f(SSSS) = �
5�2

1 + 6�1�3 + �2
3 + 2�4

9m2M2
p

.

(8)

Here we refer to [9] for notation and conventions of the
polarizations. In particular, the “+” and “�” subscripts
correspond to choosing polarizations that are parallel and
orthogonal respectively.

We can see from these results that there is no choice
of parameters that satisfies positivity bounds for all he-
licities. From f(TTTT )� we see that we must have
�1 6= 0. We may then scale the Planck mass, and flip
the sign of hµ⌫ if necessary, to set �1 = 1. Putting this
into f(V V V V )+, the resulting polynomial in �3 never
achieves a positive value. Thus, unlike dRGT massive
gravity, there is no window of parameter space consis-
tent with positivity constraints.

IV. MASSIVE VECTOR

It is natural to ask whether other theories, perhaps
even simpler ones, can provide an IR completion of the
Galileon consistent with positivity. For instance, one
might wonder if the tensor modes of the massive graviton
are needed or if a window of positivity can be found for
a theory that contains only massive vector modes. Theo-
ries of ghost-free massive vectors have attracted interest
recently [21–29], and within this class there are examples
where the longitudinal mode behaves like a Galileon in
the massless limit.

Here, we consider the most general two-derivative
theory of a massive vector whose helicity-0 mode has

Galileon interactions in the decoupling limit,

L = �
1
4F

2
µ⌫ +m2A2 + �3

m
Mp

AµA⌫@µA⌫

+�4
1

M2
p
A2(@µAµ@⌫A⌫

� @µA⌫@⌫Aµ)

+�5
1

M2
p
AµA⌫@�Aµ(@�A⌫

� @⌫A�)

+�6
1

M2
p
A2@µA⌫(@µA⌫

� @⌫Aµ)

+�7
1

M2
p
AµA⌫(@µA�@⌫A�

� @�Aµ@�A⌫)

+O
�
A5

�
,

(9)

with Fµ⌫ ⌘ @µA⌫ � @⌫Aµ. We only need terms up to
fourth order in the fields because we are only considering
constraints from tree-level four-particle scattering.
To see the Galileon limit, we extract the behavior of

the helicity-0 mode of the massive vector by making the
replacement,

Aµ ! Aµ +
1

m
@µ� , (10)

and then taking the limit m ! 0 and Mp ! 1 with
⇤3 ⌘ (m2MP )1/3 fixed,

LDL = �
1

4
F 2
µ⌫ + (@�)2 + �3

1

m2Mp
@µ�@⌫�@µ@⌫�

+�4
1

m4M2
p

(@�)2
�
(⇤�)2 � @µ@⌫�@

⌫@µ�
�
.

(11)

This is the action for a cubic and quartic Galileon [7].
Thus the scattering amplitude for the longitudinal mode
goes like ⇠

s3

m4M2
P

at high energy, just as in dRGT mas-

sive gravity, but will acquire an O(s2) part beyond the
decoupling limit which will be constrained by the posi-
tivity analysis.
We perform the same analysis as above for the massive

vector Lagrangian (9) and consider scattering for pure
vector and scalar states. We find

f(V V V V )± = 0 ,

f(V SV S) =
�7

m2M2
p

,

f(SSSS) = �
�2
3 + 2�5 � 4�7

m2M2
p

.

(12)

From this we see that, while the components involving
the scalar polarization can be made positive, no choice
of coe�cients is consistent with f(V V V V )± > 0.
The values of f , however, are sensitive to higher deriva-

tive operators which we have neglected by restricting to
a two-derivative action in (9). And, unlike the case of
pseudo-linear massive gravity, such terms can be included
without introducing extra degrees of freedom into the
theory. For example, the following gauge invariant 4-
derivative operators familiar from the Euler-Heisenberg
Lagrangian,

1

m2M2
p

⇥
c1F

µ
⌫F

⌫
⇢F

⇢
�F

�
µ + c2(Fµ⌫F

µ⌫)2
⇤
, (13)
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massive gravity, there is no window of parameter space
for which the positivity constraints are obeyed.

As another example of an IR completion of the
Galileon, we also consider a self-interacting massive vec-
tor boson. In particular, we focus on a massive vector
whose helicity-0 mode gives a Galileon theory in the
decoupling limit. In this case, we find that no two-
derivative Lagrangian satisfies positivity, but with the
addition of higher derivative terms, positivity can be sat-
isfied.

It is important to keep in mind what the analyticity
constraints tell us. The analyticity constraint we are dis-
cussing is a constraint on the four-particle S-matrix in
the forward limit. Satisfying this constraint is a neces-
sary but not su�cient condition for UV completion by
a local Lorentz invariant quantum field theory. It is not
su�cient because even if this forward limit four-particle
constraint is satisfied, there could always be further con-
straints on higher point amplitudes, at di↵erent kinemat-
ics, or other considerations entirely, that are not satisfied.
On the other hand, if these constraints are violated, it
does not mean that the e↵ective field theory is incon-
sistent. It simply means that the UV completion, if it
exists, is not a local Lorentz invariant field theory of the
usual type. It could be something more unusual; perhaps
not strictly local (for example the proposal of [15] for the
Galileon, or [16] for wrong sign DBI in two dimensions),
not Lorentz invariant, or not a field theory at all.

II. PSEUDO-LINEAR MASSIVE GRAVITY

In this section we review the pseudo-linear theory
of massive gravity. For further details, see [10]. The
quadratic part of the Lagrangian is the Fierz-Pauli La-
grangian [17] describing a pure spin-2 particle of mass m
using a symmetric tensor field hµ⌫ ,
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In four dimensions there are three possible pseudo-linear
terms we can add to (1) such that the total number of
degrees of freedom are unchanged,
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Here �1,�3,�4 are dimensionless couplings and Mp is a
mass scale suppressing powers of the field. (One of the
�’s is redundant and can be absorbed into Mp, but we
will keep all three explicit so as to keep track of signs and
when coe�cients vanish.) The first of these terms L2,3

is a two-derivative cubic interaction that is not the cubic
truncation of Einstein-Hilbert,
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where we anti-symmetrize with weight one. The latter
two terms L0,3 and L0,4 are symmetric polynomials in
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We have used notation h for the matrix hµ

⌫ where the
upper index is raised with the Minkowski metric. The
brackets indicate traces of the enclosed matrix products.
The overall scaling on m and Mp is chosen so that

one indeed recovers a Galileon theory for the helicity-0
mode of the massive graviton in the limit m ! 0 and
Mp ! 1 with ⇤3 ⌘ (m2Mp)1/3 fixed. Specifically, just
as in dRGT massive gravity, the zero-derivative terms
generate the Galileon terms for the helicity-0 mode in this
“decoupling” limit, as well as a mixing term between the
helicity-0 and helicity-2 modes. Di↵ering from dRGT,
the derivative interaction L2,3 gives a new contribution
to the scalar-tensor sector in the decoupling limit.

III. CONSTRAINTS

To derive constraints on the parameters �1, �3, and
�4, we follow the procedure of [9] and refer readers
there for further details (see also [18]). We consider the
four-particle amplitude A(s, t) for the scattering of some
crossing-symmetric choice of polarizations of our spin-2
particle. This amplitude is that of an assumed UV com-
plete theory whose low energy limit is our pure spin-2
e↵ective field theory. We take the forward limit t ! 0
and consider the quantity f defined by the contour inte-
gral

f =
1

2⇡i

I

�
ds

A(s, 0)

(s� µ2)3
. (6)

Here µ is an arbitrary mass scale taken to be in the in-
terval 0 < µ2 < 4m2. The contour � is chosen such that
it encircles the single particle poles s = m2, s = 3m2 and
s = µ2. The single particle poles come from tree level ex-
change in the e↵ective theory, and so their residues and
hence f can be computed at tree level solely within the
e↵ective theory. Given unitarity and locality and the fact
that our theory has a mass gap, the Froissart bound ap-
plies [19, 20] and one can deform the contour to encircle
the multi-particle branch cuts starting at s = 4m2 and
s = 0, dropping the vanishing boundary contour at infin-
ity. By the optical theorem and crossing symmetry, the
value obtained from encircling the branch cuts is related
to the total cross section which must be positive, so one
finds that (6) must be strictly positive for a theory with
any non-trivial interaction:

f > 0 . (7)

We proceed to calculate f for the pseudolinear theory
(2). The amplitude goes as A(s, 0) ⇠ s2 in the forward
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massive gravity, there is no window of parameter space
for which the positivity constraints are obeyed.

As another example of an IR completion of the
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any non-trivial interaction:
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massive gravity, there is no window of parameter space
for which the positivity constraints are obeyed.

As another example of an IR completion of the
Galileon, we also consider a self-interacting massive vec-
tor boson. In particular, we focus on a massive vector
whose helicity-0 mode gives a Galileon theory in the
decoupling limit. In this case, we find that no two-
derivative Lagrangian satisfies positivity, but with the
addition of higher derivative terms, positivity can be sat-
isfied.

It is important to keep in mind what the analyticity
constraints tell us. The analyticity constraint we are dis-
cussing is a constraint on the four-particle S-matrix in
the forward limit. Satisfying this constraint is a neces-
sary but not su�cient condition for UV completion by
a local Lorentz invariant quantum field theory. It is not
su�cient because even if this forward limit four-particle
constraint is satisfied, there could always be further con-
straints on higher point amplitudes, at di↵erent kinemat-
ics, or other considerations entirely, that are not satisfied.
On the other hand, if these constraints are violated, it
does not mean that the e↵ective field theory is incon-
sistent. It simply means that the UV completion, if it
exists, is not a local Lorentz invariant field theory of the
usual type. It could be something more unusual; perhaps
not strictly local (for example the proposal of [15] for the
Galileon, or [16] for wrong sign DBI in two dimensions),
not Lorentz invariant, or not a field theory at all.

II. PSEUDO-LINEAR MASSIVE GRAVITY

In this section we review the pseudo-linear theory
of massive gravity. For further details, see [10]. The
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�’s is redundant and can be absorbed into Mp, but we
will keep all three explicit so as to keep track of signs and
when coe�cients vanish.) The first of these terms L2,3

is a two-derivative cubic interaction that is not the cubic
truncation of Einstein-Hilbert,

L2,3 = 12 �[µ1
⌫1

�µ2
⌫2
�µ3
⌫3
�µ4]
⌫4

(@µ1@
⌫1h ⌫2

µ2
)h ⌫3

µ3
h ⌫4
µ4

, (3)

where we anti-symmetrize with weight one. The latter
two terms L0,3 and L0,4 are symmetric polynomials in

hµ⌫ ,

L0,3 =
1

6

�
[h]3 � 3[h][h2] + 2[h3]

�
, (4)

L0,4 =
1

24

�
[h]4 � 6[h]2[h2] + 3[h2]2 + 8[h][h3]� 6[h4]

�
.

(5)
We have used notation h for the matrix hµ

⌫ where the
upper index is raised with the Minkowski metric. The
brackets indicate traces of the enclosed matrix products.
The overall scaling on m and Mp is chosen so that

one indeed recovers a Galileon theory for the helicity-0
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the derivative interaction L2,3 gives a new contribution
to the scalar-tensor sector in the decoupling limit.
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To derive constraints on the parameters �1, �3, and
�4, we follow the procedure of [9] and refer readers
there for further details (see also [18]). We consider the
four-particle amplitude A(s, t) for the scattering of some
crossing-symmetric choice of polarizations of our spin-2
particle. This amplitude is that of an assumed UV com-
plete theory whose low energy limit is our pure spin-2
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it encircles the single particle poles s = m2, s = 3m2 and
s = µ2. The single particle poles come from tree level ex-
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hence f can be computed at tree level solely within the
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value obtained from encircling the branch cuts is related
to the total cross section which must be positive, so one
finds that (6) must be strictly positive for a theory with
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Here µ is an arbitrary mass scale taken to be in the in-
terval 0 < µ2 < 4m2. The contour � is chosen such that
it encircles the single particle poles s = m2, s = 3m2 and
s = µ2. The single particle poles come from tree level ex-
change in the e↵ective theory, and so their residues and
hence f can be computed at tree level solely within the
e↵ective theory. Given unitarity and locality and the fact
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ity. By the optical theorem and crossing symmetry, the
value obtained from encircling the branch cuts is related
to the total cross section which must be positive, so one
finds that (6) must be strictly positive for a theory with
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We proceed to calculate f for the pseudolinear theory
(2). The amplitude goes as A(s, 0) ⇠ s2 in the forward

Lint =

3

limit, as it does in dRGT, and it is these s2 parts of the
amplitude which are constrained by positivity. We will
only need to consider the scattering of external polariza-
tions that are purely tensor (T), vector (V) or scalar (S).
As for dRGT massive gravity, the result is independent
of the arbitrary mass scale µ. We find:

f(TTTT )+ =
9�2

1 + 4�1�3

3m2M2
p

,

f(TTTT )� =
�2
1

m2M2
p

,

f(TV TV ) = �
3�2

1 + 4�1�3

16m2M2
p

,

f(TSTS) = �
4�2

1 + 2�1�3

3m2M2
p

,

f(V V V V )+ = �
15�2

1 + 13�1�3 + 5�2
3

12m2M2
p

,

f(V V V V )� = �
15�2

1 + 4�1�3 � 4�2
3 + 4�4

16m2M2
p

,

f(V SV S) = �
3�2

1 � 8�1�3 � 12�2
3 + 8�4

48m2M2
p

,

f(SSSS) = �
5�2

1 + 6�1�3 + �2
3 + 2�4

9m2M2
p

.

(8)

Here we refer to [9] for notation and conventions of the
polarizations. In particular, the “+” and “�” subscripts
correspond to choosing polarizations that are parallel and
orthogonal respectively.

We can see from these results that there is no choice
of parameters that satisfies positivity bounds for all he-
licities. From f(TTTT )� we see that we must have
�1 6= 0. We may then scale the Planck mass, and flip
the sign of hµ⌫ if necessary, to set �1 = 1. Putting this
into f(V V V V )+, the resulting polynomial in �3 never
achieves a positive value. Thus, unlike dRGT massive
gravity, there is no window of parameter space consis-
tent with positivity constraints.

IV. MASSIVE VECTOR

It is natural to ask whether other theories, perhaps
even simpler ones, can provide an IR completion of the
Galileon consistent with positivity. For instance, one
might wonder if the tensor modes of the massive graviton
are needed or if a window of positivity can be found for
a theory that contains only massive vector modes. Theo-
ries of ghost-free massive vectors have attracted interest
recently [21–29], and within this class there are examples
where the longitudinal mode behaves like a Galileon in
the massless limit.

Here, we consider the most general two-derivative
theory of a massive vector whose helicity-0 mode has

Galileon interactions in the decoupling limit,

L = �
1
4F

2
µ⌫ +m2A2 + �3

m
Mp

AµA⌫@µA⌫

+�4
1

M2
p
A2(@µAµ@⌫A⌫

� @µA⌫@⌫Aµ)

+�5
1

M2
p
AµA⌫@�Aµ(@�A⌫

� @⌫A�)

+�6
1

M2
p
A2@µA⌫(@µA⌫

� @⌫Aµ)

+�7
1

M2
p
AµA⌫(@µA�@⌫A�

� @�Aµ@�A⌫)

+O
�
A5

�
,

(9)

with Fµ⌫ ⌘ @µA⌫ � @⌫Aµ. We only need terms up to
fourth order in the fields because we are only considering
constraints from tree-level four-particle scattering.
To see the Galileon limit, we extract the behavior of

the helicity-0 mode of the massive vector by making the
replacement,

Aµ ! Aµ +
1

m
@µ� , (10)

and then taking the limit m ! 0 and Mp ! 1 with
⇤3 ⌘ (m2MP )1/3 fixed,

LDL = �
1

4
F 2
µ⌫ + (@�)2 + �3

1

m2Mp
@µ�@⌫�@µ@⌫�

+�4
1

m4M2
p

(@�)2
�
(⇤�)2 � @µ@⌫�@

⌫@µ�
�
.

(11)

This is the action for a cubic and quartic Galileon [7].
Thus the scattering amplitude for the longitudinal mode
goes like ⇠

s3

m4M2
P

at high energy, just as in dRGT mas-

sive gravity, but will acquire an O(s2) part beyond the
decoupling limit which will be constrained by the posi-
tivity analysis.
We perform the same analysis as above for the massive

vector Lagrangian (9) and consider scattering for pure
vector and scalar states. We find

f(V V V V )± = 0 ,

f(V SV S) =
�7

m2M2
p

,

f(SSSS) = �
�2
3 + 2�5 � 4�7

m2M2
p

.

(12)

From this we see that, while the components involving
the scalar polarization can be made positive, no choice
of coe�cients is consistent with f(V V V V )± > 0.
The values of f , however, are sensitive to higher deriva-

tive operators which we have neglected by restricting to
a two-derivative action in (9). And, unlike the case of
pseudo-linear massive gravity, such terms can be included
without introducing extra degrees of freedom into the
theory. For example, the following gauge invariant 4-
derivative operators familiar from the Euler-Heisenberg
Lagrangian,

1

m2M2
p

⇥
c1F

µ
⌫F

⌫
⇢F

⇢
�F

�
µ + c2(Fµ⌫F

µ⌫)2
⇤
, (13)

...

Forward amplitude: Aforward ⇠ E4

M2
Pm

2



Constraints from eikonal scattering

Another traditional constraint on EFTs:   
Superluminality of small fluctuations on non-trivial Lorentz-violating 
backgrounds  (e.g. Velo-Zwanziger problem)

p3

p2

p1

p4

x
�

x
+

�
�x

�

Figure 1: The shockwave geometry and its connection to scattering. The shockwave travels in the x
�

direction. It is traversed by a particle traveling in the x
+ direction which experiences a time delay �x

� as

it crosses the shock.

the form

ds
2 = �2dx

+dx
� + F (x+

, ~x)dx
+2 + d~x

2
, (5.33)

where the function F (x+
, ~x) must satisfy a Poisson equation in the transverse variables

(r2
� m

2)F (x+
, ~x) = �16⇡G T++ , (5.34)

where T++ is a component of the matter stress tensor Tµ⌫ sourcing the shockwave. Interestingly,

this background is a solution to the equations of motion for a massive spin-2 with an arbitrary

potential [59]. This is because the nonlinear terms drop out of the Einstein equations and F (x+
, ~x)

solves, in e↵ect, the linear equations of motion of a massive particle. This is a particular feature of

the metric (5.33) analogous to the Aichelburg–Sexl solution in General Relativity which also solves

both the linear and fully non-linear equations. We can write the background metric (5.33) in the

Kerr–Schild form

ḡµ⌫ = ⌘µ⌫ + F (x+
, ~x)`µ`⌫ , (5.35)

where `
µ is a covariantly constant null vector, r̄µ`⌫ = `

2 = 0 chosen to point in the x
� direction

`
µ = (1, 0,~0) , (5.36)

and take the stress tensor to be that of a point particle moving at the speed of light with energy

28

Less problematic: superluminality in the S-matrix

Eikonal scattering:

high-energy, fixed impact parameter:

s/t ! 1

Camanho, Edelstein, Maldacena, Zhiboedov (2016)



Eikonal kinematics (massive)

which comes from the completeness relation of massive graviton polarizations:

X

I

✏
I
↵�✏

⇤I
µ⌫ = N↵�µ⌫ . (2.11)

The problem of computing the time delay in an arbitrary theory of massive spin-2s has been

essentially reduced to the concrete problem of enumerating the possible on-shell 3-point vertices

and using them to compute the operator M
13,↵�
3

(i@~b)N↵�µ⌫M
µ⌫,24

3
(i@~b). In what follows we will

describe how to do this and how to extract the time delay.

2.2 Eikonal Kinematics

We will now make the eikonal kinematics explicit. We are interested in 2 ! 2 scattering where par-

ticle A with mass mA scatters o↵ of particle B with mass mB. Particle A has incoming momentum

p
µ
1

and outgoing momentum p
µ
3
, particle B has incoming momentum p

µ
2

and outgoing momentum

p
µ
4
.

Throughout we work in lightcone coordinates (x�
, x

+
, x

i),

x
± =

1
p

2

�
x

0
± x

1
�

, (2.12)

where the Minkowski metric takes the form,

⌘µ⌫ =

0

B@
0 �1 0

�1 0 0

0 0 �ij

1

CA , (2.13)

with i, j, . . . = 2, . . . , D � 1 running over the transverse directions.

We want the amplitude with the following kinematics,

p
µ
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◆
, (2.14)

p
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✓
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�
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✓
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2p�

✓
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,
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◆
. (2.15)

These are exactly on-shell: p
2

1
= p

2

3
= �m

2

A and p
2

2
= p

2

4
= �m

2

B, p
µ
1

+ p
µ
2

= p
µ
3

+ p
µ
4
. The

independent Mandelstam invariants are

s = �(p1 + p2)
2 =

(m2

A + 2p
+
p

�)(m2

B + 2p
+
p

�)

2p+p�
+

m
2

A + m
2

B + 4p
+
p

�

2p+p�

~q
2

4
+

1

2p+p�

~q
4

16
,

t = �(p1 � p3)
2 = �~q

2
. (2.16)

We construct polarization tensors for the massive particles out of the following transverse (labeled

9

by T ) and longitudinal (labeled by L) massive spin-1 polarization tensors:

✏
µ
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Here the ~e ’s are normalized vectors that live in the (D � 2)-plane transverse to x
+
, x

�; there are

D � 2 independent such vectors, and so there are D � 2 independent T polarization vectors. Thus

the transverse polarizations actually come along with an additional label � = 1, 2, · · · , D � 2 which

indexes an orthonormal basis of the transverse space e
i
�,

e�ie
i
�0 = ���0 ,

X

�

e
i
�e

j
� = �

ij
. (2.18)

For example, we will usually choose the standard basis of linear polarization vectors,

e
i
� = �

i
� . (2.19)

The polarization vectors (2.17) are exactly transverse, orthonormal, and complete,
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T (pa) = paµ✏

µ
L(pa) = 0,

✏T,� µ(pa)
⇤
✏
µ
T,�0(pa) = ���0 , ✏Lµ(pa)

⇤
✏
µ
L(pa) = 1, ✏Tµ(pa)

⇤
✏
µ
L(pa) = 0 ,

✏
µ
L(pa)✏

⌫
L(pa)

⇤ +
X

�

✏
µ
T,�(pa)✏

⌫
T,�(pa)

⇤ = ⌘
µ⌫

�
1

p2
a
p

µ
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a . (2.20)

where a = 1, 2, 3, 4 labels the momenta.

The polarization tensors for a massive spin-2 are constructed out of these as follows:

✏
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Here T , V , S stand for tensor, vector and scalar polarizations, respectively. In the expression for

✏
µ⌫
T (pa), it is understood that we replace eiej 7! eij with eij , which is symmetric and traceless.

As in the spin-1 case, the ✏
µ⌫
V depend on a transverse vector ei and so it comes with an additional

label � = 1, 2, · · · , D � 2 running over a basis of these transverse vectors. The ✏
µ⌫
T depend on
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Here the ~e ’s are normalized vectors that live in the (D � 2)-plane transverse to x
+
, x

�; there are

D � 2 independent such vectors, and so there are D � 2 independent T polarization vectors. Thus

the transverse polarizations actually come along with an additional label � = 1, 2, · · · , D � 2 which

indexes an orthonormal basis of the transverse space e
i
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e�ie
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�0 = ���0 ,
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For example, we will usually choose the standard basis of linear polarization vectors,

e
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� . (2.19)

The polarization vectors (2.17) are exactly transverse, orthonormal, and complete,
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where a = 1, 2, 3, 4 labels the momenta.

The polarization tensors for a massive spin-2 are constructed out of these as follows:
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Here T , V , S stand for tensor, vector and scalar polarizations, respectively. In the expression for

✏
µ⌫
T (pa), it is understood that we replace eiej 7! eij with eij , which is symmetric and traceless.

As in the spin-1 case, the ✏
µ⌫
V depend on a transverse vector ei and so it comes with an additional

label � = 1, 2, · · · , D � 2 running over a basis of these transverse vectors. The ✏
µ⌫
T depend on
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Eikonal limit

+
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Note that the tree level diagram is

M
ĩi,jj̃
0

= 4|p
�
p

+
|

Z
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b e
ib·q

�
ĩi,jj̃(b) , (A.24)

so inverse Fourier transforming, we can write the eikonal phase as the Fourier transform of the tree

level diagram,
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q

(2⇡)D�2
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which is the 2 ! 2 scattering amplitude in impact parameter space.

The eikonal phase is a matrix, and diagonalizing this matrix gives the eigenstates which propagate

with a definite phase. For each such state, the associated eigenvalue, �, is then related to the time

delay of propagation of that state by

�x
� =

1

|p�|
� . (A.26)

B Cubic Vertices of dRGT

One of the applications of our analysis is to constrain the possible parameters in nonlinear massive

gravity which are consistent with positivity of the eikonal amplitude. Therefore, it is worth being

explicit about the cubic vertices that appear in the dRGT theory [28] and what the constraints are.

Here we specialize to D = 4. The dRGT theory is a 2-parameter family which can be written as
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h↵⌫ . The relation between the parameters ↵3, ↵4 here and the parameters c3, d5

used in Section 5.2 is

↵3 = �2c3 , ↵4 = �4d5. (B.3)

In order to see what cubic terms are present we expand the action (B.1) out to cubic order
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Eikonal

Eikonal phase depends only on on-shell three point amplitudes:
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ĩi,jj̃
0

(q) , (A.24)

which is the 2 ! 2 scattering amplitude in impact parameter space.

�(b) =
1

4p�p+

Z
d2

q

(2⇡)2
e
�ib·q

A0(q) , (A.25)

The eikonal phase is a matrix, and diagonalizing this matrix gives the eigenstates which propagate

with a definite phase. For each such state, the associated eigenvalue, �, is then related to the time

delay of propagation of that state by

�x
� =

1

|p�|
� . (A.26)

B Cubic Vertices of dRGT

One of the applications of our analysis is to constrain the possible parameters in nonlinear massive

gravity which are consistent with positivity of the eikonal amplitude. Therefore, it is worth being

explicit about the cubic vertices that appear in the dRGT theory [28] and what the constraints are.

Here we specialize to D = 4. The dRGT theory is a 2-parameter family which can be written as

S = M
2

Pl

Z
d4

x
p

�g

✓
R

2
+

m
2

2

h �
[K]2 � [K2]

�
+ ↵3

�
[K]3 � 3[K][K2] + 2[K3]

�
(B.1)

+ ↵4

�
[K]4 � 6[K]2[K2] + 8[K][K3] + 3[K2]2 � 6[K4]

� i ◆
.

The tensor K is defined to be (with the definition gµ⌫ = ⌘µ⌫ + hµ⌫)

K
µ
⌫ = �

µ
⌫ �

p
gµ↵⌘↵⌫ = �

1X

n=1

(2n)!

(1 � 2n)(n!)24n
(Hn)µ

⌫ , (B.2)

with H
µ
⌫ = g

µ↵
h↵⌫ . The relation between the parameters ↵3, ↵4 here and the parameters c3, d5

used in Section 5.2 is

↵3 = �2c3 , ↵4 = �4d5. (B.3)

In order to see what cubic terms are present we expand the action (B.1) out to cubic order

Lh = M
2

Pl

✓
1

8
hEh �

m
2

8
(h2

µ⌫ � h
2) + R

(3)

EH
[h] +

m
2

16

�
(3 + 2↵3)h

3

µ⌫ � (4 + 3↵3)hh
2

µ⌫ + (1 + ↵3)h
3
�◆

+O
�
h

4
�

,

(B.4)

40

A0(q) ⇠
1

q2 +m2

q1

q21 = �(q22 +m2)

res A0 ⇠
X

I

A13I
3 AI24

3

1 3

2 4
I

�(s, b) =

P
I A13I

3 (i@b)AI24
3 (i@b)

2s

Z
d2q

(2⇡)2
e�iq·b

q2 +m2

=

P
I A13I

3 (i@b)AI24
3 (i@b)

2s


1

2⇡
K0(mb)

�



Cubic massive spin-2 vertices

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

cubic part of the Riemann cubed term (which is the same on-shell as Weyl cubed). The other two

Lagrangians appear only in the massive case because they are not di↵eomorphism invariant: L1 is

the cubic part of the potential in dRGT massive gravity which survives on-shell (h µ
µ = 0), and L3

is the two-derivative pseudo-linear term of [31, 32].

Note that the on-shell amplitudes stemming from these Lagrangians are not given by the Ai

above in a direct manner, but instead are linear combinations of the Ai. In detail, the amplitudes

we get from the canonically-normalized expansion gµ⌫ = ⌘µ⌫ + 2M

2�D
2

Pl
hµ⌫ and the usual Feynman

rules are

• h
3:

L1 =
m

2

3M

D�2
2

Pl

h
3

µ⌫ ,

B1 =
2m

2

M

D�2
2

Pl

z1 · z2 z2 · z3 z3 · z1 . (3.20)

• Einstein–Hilbert:

L2 =
M

D�2

Pl

2

p
�gR

��
(3)

,

B2 =
2

M

D�2
2

Pl

(p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3)
2
� 3B1 . (3.21)

• Pseudo-linear:

L3 =
4!

M
D�2

Pl

�
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.22)

B3 = �
1

M

D�2
2

Pl

h
(p1 · z3)

2 (z1 · z2)
2 + (p3 · z2)

2 (z1 · z3)
2 + (p2 · z1)

2 (z2 · z3)
2

i
�

1

2
B2 +

3

2
B1 .

• Gauss–Bonnet:

L4 =
M

D�2

Pl

m2

p
�g

�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
� ���

(3)

, (3.23)

B4 = �
80

M

D�2
2

Pl
m2

p1 · z3 p2 · z1 p3 · z2 (p1 · z3 z1 · z2 + p3 · z2 z1 · z3 + p2 · z1 z2 · z3) � 20B3 + 30B1 .

• R
3:

L5 =
M

D�2

Pl

m4

p
�g R

µ⌫
⇢�R

⇢�
↵�R

↵�
µ⌫

���
(3)

,

B5 =
48

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
�

3

10
B4 + 6B2 + 12B1 . (3.24)

15

• 0-derivative structure

A1 =
m

2

M

D�2
2

Pl

(z1 · z2)(z2 · z3)(z3 · z1). (3.9)

• 2-derivative structures

A2 =
1

M

D�2
2

Pl

⇥
(p1 · z3)

2(z1 · z2)
2 + (p3 · z2)

2(z1 · z3)
2 + (p2 · z1)

2(z2 · z3)
2
⇤
, (3.10)

A3 =
1

M

D�2
2

Pl

h
(p1 · z3)(p3 · z2)(z1 · z2)(z1 · z3) + (p1 · z3)(p2 · z1)(z1 · z2)(z2 · z3)

+ (p2 · z1)(p3 · z2)(z1 · z3)(z2 · z3)
i
. (3.11)

• 4-derivative structure

A4 =
1

M

D�2
2

Pl
m2

(p1 ·z3)(p2 ·z1)(p3 ·z2)
h
(p1 ·z3)(z1 ·z2)+(p3 ·z2)(z1 ·z3)+(p2 ·z1)(z2 ·z3)

i
. (3.12)

• 6-derivative structure

A5 =
1

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
. (3.13)

Here we have chosen all the amplitudes to scale with a power of some Planck mass, MPl, and

momenta to scale with powers of 1/m. There is no loss of generality in these assignments because

in a general cubic amplitude which is a linear combination of these,

5X

i=1

aiAi , (3.14)

where the ai are dimensionless coe�cients, any di↵erent choice of scalings can be absorbed into the

ai.

This counting of independent structures can be understood from the fact that there are five

possible cubic terms in the action for a massive spin-2 field which cannot be field redefined away

or into each other:

L1 ⇠ h
3

µ⌫ , (3.15)

L2 ⇠
p

�g R|
(3)

, (3.16)

L3 ⇠ �
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.17)

L4 ⇠
p

�g
�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
���

(3)
, (3.18)

L5 ⇠
p

�g R
µ⌫

⇢�R
⇢�

↵�R
↵�

µ⌫

���
(3)

, (3.19)

Three of these are familiar from the massless case: L2 is the cubic part of the Einstein–Hilbert

action, L4 is the cubic part of the Gauss–Bonnet term (which is trivial in D = 4) and L5 is the

14

• 0-derivative structure

A1 =
m

2

M

D�2
2

Pl

(z1 · z2)(z2 · z3)(z3 · z1). (3.9)

• 2-derivative structures

A2 =
1

M

D�2
2

Pl

⇥
(p1 · z3)

2(z1 · z2)
2 + (p3 · z2)

2(z1 · z3)
2 + (p2 · z1)

2(z2 · z3)
2
⇤
, (3.10)

A3 =
1

M

D�2
2

Pl

h
(p1 · z3)(p3 · z2)(z1 · z2)(z1 · z3) + (p1 · z3)(p2 · z1)(z1 · z2)(z2 · z3)

+ (p2 · z1)(p3 · z2)(z1 · z3)(z2 · z3)
i
. (3.11)

• 4-derivative structure

A4 =
1

M

D�2
2

Pl
m2

(p1 ·z3)(p2 ·z1)(p3 ·z2)
h
(p1 ·z3)(z1 ·z2)+(p3 ·z2)(z1 ·z3)+(p2 ·z1)(z2 ·z3)

i
. (3.12)

• 6-derivative structure

A5 =
1

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
. (3.13)

Here we have chosen all the amplitudes to scale with a power of some Planck mass, MPl, and

momenta to scale with powers of 1/m. There is no loss of generality in these assignments because

in a general cubic amplitude which is a linear combination of these,

5X

i=1

aiAi , (3.14)

where the ai are dimensionless coe�cients, any di↵erent choice of scalings can be absorbed into the

ai.

This counting of independent structures can be understood from the fact that there are five

possible cubic terms in the action for a massive spin-2 field which cannot be field redefined away

or into each other:

L1 ⇠ h
3

µ⌫ , (3.15)

L2 ⇠
p

�g R|
(3)

, (3.16)

L3 ⇠ �
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.17)

L4 ⇠
p

�g
�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
���

(3)
, (3.18)

L5 ⇠
p

�g R
µ⌫

⇢�R
⇢�

↵�R
↵�

µ⌫

���
(3)

, (3.19)

Three of these are familiar from the massless case: L2 is the cubic part of the Einstein–Hilbert

action, L4 is the cubic part of the Gauss–Bonnet term (which is trivial in D = 4) and L5 is the

14

• 0-derivative structure

A1 =
m

2

M

D�2
2

Pl

(z1 · z2)(z2 · z3)(z3 · z1). (3.9)

• 2-derivative structures

A2 =
1

M

D�2
2

Pl

⇥
(p1 · z3)

2(z1 · z2)
2 + (p3 · z2)

2(z1 · z3)
2 + (p2 · z1)

2(z2 · z3)
2
⇤
, (3.10)

A3 =
1

M

D�2
2

Pl

h
(p1 · z3)(p3 · z2)(z1 · z2)(z1 · z3) + (p1 · z3)(p2 · z1)(z1 · z2)(z2 · z3)

+ (p2 · z1)(p3 · z2)(z1 · z3)(z2 · z3)
i
. (3.11)

• 4-derivative structure

A4 =
1

M

D�2
2

Pl
m2

(p1 ·z3)(p2 ·z1)(p3 ·z2)
h
(p1 ·z3)(z1 ·z2)+(p3 ·z2)(z1 ·z3)+(p2 ·z1)(z2 ·z3)

i
. (3.12)

• 6-derivative structure

A5 =
1

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
. (3.13)

Here we have chosen all the amplitudes to scale with a power of some Planck mass, MPl, and

momenta to scale with powers of 1/m. There is no loss of generality in these assignments because

in a general cubic amplitude which is a linear combination of these,

5X

i=1

aiAi , (3.14)

where the ai are dimensionless coe�cients, any di↵erent choice of scalings can be absorbed into the

ai.

This counting of independent structures can be understood from the fact that there are five

possible cubic terms in the action for a massive spin-2 field which cannot be field redefined away

or into each other:

L1 ⇠ h
3

µ⌫ , (3.15)

L2 ⇠
p

�g R|
(3)

, (3.16)

L3 ⇠ �
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.17)

L4 ⇠
p

�g
�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
���

(3)
, (3.18)

L5 ⇠
p

�g R
µ⌫

⇢�R
⇢�

↵�R
↵�

µ⌫

���
(3)

, (3.19)

Three of these are familiar from the massless case: L2 is the cubic part of the Einstein–Hilbert

action, L4 is the cubic part of the Gauss–Bonnet term (which is trivial in D = 4) and L5 is the

14

• 0-derivative structure

A1 =
m

2

M

D�2
2

Pl

(z1 · z2)(z2 · z3)(z3 · z1). (3.9)

• 2-derivative structures

A2 =
1

M

D�2
2

Pl

⇥
(p1 · z3)

2(z1 · z2)
2 + (p3 · z2)

2(z1 · z3)
2 + (p2 · z1)

2(z2 · z3)
2
⇤
, (3.10)

A3 =
1

M

D�2
2

Pl

h
(p1 · z3)(p3 · z2)(z1 · z2)(z1 · z3) + (p1 · z3)(p2 · z1)(z1 · z2)(z2 · z3)

+ (p2 · z1)(p3 · z2)(z1 · z3)(z2 · z3)
i
. (3.11)

• 4-derivative structure

A4 =
1

M

D�2
2

Pl
m2

(p1 ·z3)(p2 ·z1)(p3 ·z2)
h
(p1 ·z3)(z1 ·z2)+(p3 ·z2)(z1 ·z3)+(p2 ·z1)(z2 ·z3)

i
. (3.12)

• 6-derivative structure

A5 =
1

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
. (3.13)

Here we have chosen all the amplitudes to scale with a power of some Planck mass, MPl, and

momenta to scale with powers of 1/m. There is no loss of generality in these assignments because

in a general cubic amplitude which is a linear combination of these,

5X

i=1

aiAi , (3.14)

where the ai are dimensionless coe�cients, any di↵erent choice of scalings can be absorbed into the

ai.

This counting of independent structures can be understood from the fact that there are five

possible cubic terms in the action for a massive spin-2 field which cannot be field redefined away

or into each other:

L1 ⇠ h
3

µ⌫ , (3.15)

L2 ⇠
p

�g R|
(3)

, (3.16)

L3 ⇠ �
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.17)

L4 ⇠
p

�g
�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
���

(3)
, (3.18)

L5 ⇠
p

�g R
µ⌫

⇢�R
⇢�

↵�R
↵�

µ⌫

���
(3)

, (3.19)

Three of these are familiar from the massless case: L2 is the cubic part of the Einstein–Hilbert

action, L4 is the cubic part of the Gauss–Bonnet term (which is trivial in D = 4) and L5 is the

14

• 0-derivative structure

A1 =
m

2

M

D�2
2

Pl

(z1 · z2)(z2 · z3)(z3 · z1). (3.9)

• 2-derivative structures

A2 =
1

M

D�2
2

Pl

⇥
(p1 · z3)

2(z1 · z2)
2 + (p3 · z2)

2(z1 · z3)
2 + (p2 · z1)

2(z2 · z3)
2
⇤
, (3.10)

A3 =
1

M

D�2
2

Pl

h
(p1 · z3)(p3 · z2)(z1 · z2)(z1 · z3) + (p1 · z3)(p2 · z1)(z1 · z2)(z2 · z3)

+ (p2 · z1)(p3 · z2)(z1 · z3)(z2 · z3)
i
. (3.11)

• 4-derivative structure

A4 =
1

M

D�2
2

Pl
m2

(p1 ·z3)(p2 ·z1)(p3 ·z2)
h
(p1 ·z3)(z1 ·z2)+(p3 ·z2)(z1 ·z3)+(p2 ·z1)(z2 ·z3)

i
. (3.12)

• 6-derivative structure

A5 =
1

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
. (3.13)

Here we have chosen all the amplitudes to scale with a power of some Planck mass, MPl, and

momenta to scale with powers of 1/m. There is no loss of generality in these assignments because

in a general cubic amplitude which is a linear combination of these,

5X

i=1

aiAi , (3.14)

where the ai are dimensionless coe�cients, any di↵erent choice of scalings can be absorbed into the

ai.

This counting of independent structures can be understood from the fact that there are five

possible cubic terms in the action for a massive spin-2 field which cannot be field redefined away

or into each other:

L1 ⇠ h
3

µ⌫ , (3.15)

L2 ⇠
p

�g R|
(3)

, (3.16)

L3 ⇠ �
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.17)

L4 ⇠
p

�g
�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
���

(3)
, (3.18)

L5 ⇠
p

�g R
µ⌫

⇢�R
⇢�

↵�R
↵�

µ⌫

���
(3)

, (3.19)

Three of these are familiar from the massless case: L2 is the cubic part of the Einstein–Hilbert

action, L4 is the cubic part of the Gauss–Bonnet term (which is trivial in D = 4) and L5 is the

14

• 0-derivative structure

A1 =
m

2

M

D�2
2

Pl

(z1 · z2)(z2 · z3)(z3 · z1). (3.9)

• 2-derivative structures

A2 =
1

M

D�2
2

Pl

⇥
(p1 · z3)

2(z1 · z2)
2 + (p3 · z2)

2(z1 · z3)
2 + (p2 · z1)

2(z2 · z3)
2
⇤
, (3.10)

A3 =
1

M

D�2
2

Pl

h
(p1 · z3)(p3 · z2)(z1 · z2)(z1 · z3) + (p1 · z3)(p2 · z1)(z1 · z2)(z2 · z3)

+ (p2 · z1)(p3 · z2)(z1 · z3)(z2 · z3)
i
. (3.11)

• 4-derivative structure

A4 =
1

M

D�2
2

Pl
m2

(p1 ·z3)(p2 ·z1)(p3 ·z2)
h
(p1 ·z3)(z1 ·z2)+(p3 ·z2)(z1 ·z3)+(p2 ·z1)(z2 ·z3)

i
. (3.12)

• 6-derivative structure

A5 =
1

M

D�2
2

Pl
m4

(p1 · z3)
2 (p2 · z1)

2 (p3 · z2)
2
. (3.13)

Here we have chosen all the amplitudes to scale with a power of some Planck mass, MPl, and

momenta to scale with powers of 1/m. There is no loss of generality in these assignments because

in a general cubic amplitude which is a linear combination of these,

5X

i=1

aiAi , (3.14)

where the ai are dimensionless coe�cients, any di↵erent choice of scalings can be absorbed into the

ai.

This counting of independent structures can be understood from the fact that there are five

possible cubic terms in the action for a massive spin-2 field which cannot be field redefined away

or into each other:

L1 ⇠ h
3

µ⌫ , (3.15)

L2 ⇠
p

�g R|
(3)

, (3.16)

L3 ⇠ �
[µ1
⌫1

�
µ2
⌫2

�
µ3
⌫3

�
µ4]

⌫4
@µ1@

⌫1h
⌫2

µ2
h

⌫3
µ3

h
⌫4

µ4
, (3.17)

L4 ⇠
p

�g
�
R

2

µ⌫⇢� � 4R
2

µ⌫ + R
2
���

(3)
, (3.18)

L5 ⇠
p

�g R
µ⌫

⇢�R
⇢�

↵�R
↵�

µ⌫

���
(3)

, (3.19)

Three of these are familiar from the massless case: L2 is the cubic part of the Einstein–Hilbert

action, L4 is the cubic part of the Gauss–Bonnet term (which is trivial in D = 4) and L5 is the
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vertices is the same form as that of the Einstein–Hilbert term in the theory of a massless spin-2,

as can be verified by looking at Section 3.2. In the massive theory, there is a contribution from

the Einstein–Hilbert vertex which is proportional to m
2, but this is precisely canceled o↵ by this

particular choice of h
3
µ⌫ coe�cient.

4.2 Amplitude in General D

Diagonalizing the amplitude (4.4) in general D explicitly is an intricate task. However, it is straight-

forward to insert the constraints from D = 4 into the general dimension amplitude and check if the

result is sub-luminal. Plugging in the parameter values (4.20), we obtain

M4 =
a

2

2
s
2

M
D�2

Pl

✓
P1SP3S

D + 2

8(D � 1)
+

1

4
P1V P3V ~e2 · ~e4 +

1

2
P1T P3T e

ij
2
e
ij
4

◆
(4.22)
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8(D � 1)
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1

4
P2V P4V ~e2 · ~e4 +

1

2
P2T P4T e

ij
2
e
ij
4

◆
1

2⇡
D�2

2

⇣
m

b

⌘D�4
2

KD�4
2

(mb).

This amplitude is diagonal and positive, and so the phase shifts are all positive and we see that all

of the polarizations experience an asymptotic time delay. There is still the question of whether this

is the most general possible amplitude which is consistent with positivity in general dimension. In

order to answer this question, we turn to a slightly di↵erent computation; we compute the eikonal

amplitude for a massive spin-2 scattering o↵ of a scalar particle. This amplitude is e↵ectively a

subsector of (4.4) and so the constraints in this case must also be satisfied by (4.4) in order for

the theory to experience time delays. We will see that the constraints are the same as (4.20).

Additionally, this calculation is most closely related to the Shapiro time delay experiences by a

massive graviton propagating in a shockwave background.

5 Scalar–Spin-2 Eikonal Scattering

We now restrict our attention to the eikonal scattering between a scalar particle, �, and a massive

graviton. This is e↵ectively a subsector of the previous amplitude where we average over the

polarizations of one of the external gravitons so that it acts a scalar source [23].11 We must again

compute the following t-channel tree diagram in the eikonal limit, using the kinematics of Section

2.2:

where canonically normalized gravity corresponds to a2 = 2. One interesting thing to note about

this combination of terms is that the on-shell cubic amplitude from this linear combination of

cubic vertices is the same as that of the Einstein–Hilbert term in the theory of a massless spin-2

as can be verified by looking at Section 3.2. In the massive theory, there is a contribution from

the Einstein–Hilbert vertex which is proportional to m
2
, but this is precisely canceled o↵ by this

particular choice of h
3
µ⌫ coe�cient.

4.2 Amplitude in general D

Diagonalizing the amplitude (4.5) in general D explicitly is an intricate task. However, it is straight-

forward to insert the constraints from D = 4 into the general dimension amplitude and check if the

result is sub-luminal. Plugging in the parameter values (4.21), we obtain
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This amplitude is clearly positive, so we see that all of the polarizations experience an asymptotic

time delay. There is still the question of whether this is the most general possible amplitude which

is consistent with positivity in general dimension. In order to answer this question, we turn to

a slightly di↵erent computation. That is, we compute the eikonal amplitude for a massive spin-2

scattering o↵ of a scalar particle. This amplitude is e↵ectively a subsector of (4.5) and so the

constraints in this case must also be satisfied by (4.5) in order for the theory to experience time

delays. We will see that the constraints are the same as (4.21). Assitionally, this calculation is

most closely related to the Shapiro time delay experiences by a massive graviton propagating in a

shockwave background.

5 Scalar–Spin-2 scattering

Diagonalizing the amplitude (4.5) in general D is a demanding undertaking. To simplify this task,

we restrict our attention to the eikonal scattering between a scalar particle and a massive graviton.

This is e↵ectively a subsector of the previous amplitude where we average over the polarizations

of one of the external gravitons so that it acts a scalar source [19].
11

We must again compute the

following t-channel tree diagram in the eikonal limit, using the kinematics of section 2.2:

.T T

S S

11
Alternatively, we could imagine sending in a classical coherent state with the scalar polarization: this will cause

the final state to also be the scalar polarization, and we will get the same subsector of the amplitude.
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11Alternatively, we could imagine sending in a classical coherent state with the scalar polarization: this will cause

the final state to also be the scalar polarization, and we will get the same subsector of the amplitude.
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Massive spin-2 eikonal constraints

KK reduction of Einstein-Hilbert

Conjecture: massive time delay avoided in KK theory by using this cubic 
vertex, not by cancellations among the KK tower

Allowed cubic vertex:

Vertex not of this form → new physics at m

L3 / 1

2MPl

R(3)

EH
+

m2

2MPl

h3

µ⌫ ,



Massive spin-2 eikonal constraints

dispersion relation 
allowed region

eikonal 
allowed line

Constraints on dRGT theory:



Massless higher spins
KH, Austin Joyce, Rachel Rosen (1712.10021)

Imposing this condition further restricts the number of allowed structures.

In situations where some of the particles are identical, we can decompose the amplitudes further into
irreducible representations of the symmetric group of particle interchange, and only those structures
invariant under interchange are allowed.

Finally, there can be additional parity violating amplitudes in some dimensions. We will not consider
these cases.

2.2 Vectors

Let’s enumerate the allowed vector 3pt structures. We first consider massive vectors. There are 4
independent structures, we decompose them into irreducible representations of the symmetric group.
Two are totally antisymmetric

• 1 derivative structure

C1 = (p1 · z3)(z1 · z2) + (p3 · z2)(z1 · z3) + (p2 · z1)(z2 · z3) (14)

• 3 derivative structure
C2 = (p1 · z3)(p2 · z1)(p3 · z2), (15)

and two have mixed symmetry, one way to decompose them is as

C3 = (p1 · z3)(z1 · z2) (16)

C4 = (p2 · z1)(z2 · z3), (17)

where C3 is antisymmetric under interchanging (1 $ 2) and C4 is antisymmetric under interchanging
(2 $ 3)

Massless Vectors: The above amplitudes are for massive vectors, we can obtain the amplitudes for
massless vectors by demanding invariance under the gauge symmetry. Only two structures survive this,
the massless vector 3-point amplitudes are C1 and C2.

C1 = (p1 · z3)(z1 · z2) + (p3 · z2)(z1 · z3) + (p2 · z1)(z2 · z3) (18)

C2 = (p1 · z3)(p2 · z1)(p3 · z2). (19)

These correspond to the Yang–Mills cubic vertex and the F
3 vertex.

3 Higher-spin 3-point structures

The spin-2 3-point structures are the square of the spin-1 amplitudes; we are therefore tempted to posit
that the spin-s amplitudes are the sth power of the spin-1 ones. Let’s change notation slightly and define

A = (p1 · z3)(z1 · z2) + (p3 · z2)(z1 · z3) + (p2 · z1)(z2 · z3) (20)
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Massless higher spins

Spin-s vertices: (AYM)s (AF 3)s
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✔ ⨯Eikonal constraints

Consistency/locality at 
quartic order (4 particle test)

✔⨯
Benincasa, Cachazo (2007)

KH, Austin Joyce, Rachel Rosen (1712.10021)



Conclusions

• Eikonal scattering and dispersion relations can provide useful model 
independent constraints on massive theories.

• Going beyond leading interactions: dispersion relations beyond the 
forward limit, subleading corrections to the Eikonal approximation 
may provide more information. 

• An isolated massive spin-2 is not completely ruled out.

• May be useful as part of a bootstrap to solve large N QCD.


