Dynamical screening of scalar waves in Cubic Galileon model

Takashi Hiramatsu

Rikkyo University

Collaboration with Kazuya Koyama (ICG, Portsmouth)

Many attempts to extend General Relativity in the context of scalar(vector)-tensor theories

Required : GR should recover around the Sun = scalar d.o.f. must be screened around a massive object

Screening mechanisms

- Potential : Chameleon/Symmetron
- 1st-derivative : k-moflage
- 2nd-derivative : Vainshtein e.g. Babichev, Deffa

e.g. Babichev, Deffayet, CQG30 (2013) 184001 [arXiv:1304.7240]

We use the Cubic Galileon model (with $g_{\mu\nu} = \eta_{\mu\nu}$)

Nikolis, Rattazzi, Trincherini, PRD79 (2009) 064036 [arXiv:0811.2197] Deffayet, Esposito-Farese, Vikman, PRD79 (2009) 084003 [arXiv:0901.1314] Deffayet, Deser, Esposito-Farese, PRD80 (2009) 064015 [arXiv:0906.1967]

$$S = \int d^4x \left[\frac{c_2}{2} (\partial \varphi)^2 + \frac{c_3}{2M^3} \Box \varphi (\partial \varphi)^2 + \frac{\beta}{2m_{\rm pl}} \rho \varphi \right]$$
$$c_2 \Box \varphi + \frac{c_3}{M^3} \left[(\Box \varphi)^2 - \partial_\mu \partial_\nu \varphi \partial^\mu \partial^\nu \varphi \right] = \frac{\beta}{2m_{\rm pl}} \rho$$

Introduction – Vainshtein screening

Static case

$$c_2 \nabla^2 \varphi + \frac{c_3}{M^3} \left[(\nabla^2 \varphi)^2 - \partial_i \partial_j \varphi \partial^i \partial^j \varphi \right] = -\frac{\beta}{2m_{\rm pl}} \rho$$

Spherical star

Vainshtein radius :
$$r_* = \left(\frac{4c_3\beta\rho_0}{3c_2^2M^3m_{\rm pl}}r_s^3\right)^{1/3}$$

Spherical star

 \rightarrow scalar dof is suppressed near the star

Non-spherical cases

 \rightarrow the suppression becomes weak

Bloomfield, Burrage, Davis, PRD91 (2015) 083510 [arXiv:1408.4759]

Binary star

 \rightarrow deviating from superposition of Galileon fields sourced by them

TH, Hu, Koyama, Schmidt, PRD, arXiv:1101.5210

Disk system

 \rightarrow anti-screening near the centre of disk

Ogawa, TH, Kobayashi, CQG, arXiv:1802.04969

Yet another effect on Vainshtein mechanism

$$\partial_{\mu}\partial_{\nu}\varphi\partial^{\mu}\partial^{\nu}\varphi \; \ni \; (\partial_{i}\dot{\varphi})^{2}$$

This term emerges when the system is dynamical, e.g., scalar wave radiation.

Can this term suppress the scalar wave radiation ?

3D simulations are too heavy to survey the parameter space

 $(\rightarrow$ Claudia de Rham's talk last week)

So, let us switch to 1D spherical system

Field redefinition

$$c_{2}\Box\varphi + \frac{c_{3}}{M^{3}}\left[(\Box\varphi)^{2} - \partial_{\mu}\partial_{\nu}\varphi\partial^{\mu}\partial^{\nu}\varphi\right] = \frac{\beta}{2m_{\rm pl}}\rho$$

$$\rho(t,x) = \rho_{0}[1 + \Xi(t)]\Theta(x)$$

$$x = \frac{r}{r_{0}} \quad \frac{t}{r_{0}} \to t \quad \frac{\varphi}{c_{2}M^{3}r_{0}^{2}} \to \varphi \quad \mu = \frac{\beta\rho_{0}}{c_{2}^{2}M^{3}m_{\rm pl}}$$

$$\Box \varphi + c_3 \left[(\Box \varphi)^2 - \partial_\mu \partial_\nu \varphi \partial^\mu \partial^\nu \varphi \right] = \frac{\mu}{2} [1 + \Xi(t)] \Theta(x)$$

Basic equations

Static part + time-dependent part

$$\varphi(t,x) = \varphi_0(x) + \pi(t,x)$$

Evolution equation of $\pi(t, x)$

$$\ddot{\pi} = \frac{2x^2 K^2 \pi'' + 4x L \pi' + 4c_3 K (x^2 \dot{\pi}'^2 + 2x \pi' \pi'' + \pi'^2) - \mu x^2 K \Xi(t) \Theta(x)}{2x \left[2c_3 K (2\pi' + x\pi'') + xJ\right]}$$

Linearised equation

$$\ddot{\pi} = \frac{K^2}{J}\pi'' + \frac{2L\pi'}{xJ} - \frac{\mu K}{2J}\Xi(t)\Theta(x) \qquad \begin{cases} y(x) = \frac{1}{4} \left[-1 + \sqrt{1 + 4c_3\mu}\frac{U(x)}{x^3} \right] \\ K(x) = 4y(x) + 1 \\ L(x) = 4y(x)^2 + 2y(x) + 1 + c_3\mu\Theta(x) \\ J(x) = 12y(x)^2 + 4y(x) + 1 + c_3\mu\Theta(x) \end{cases}$$

Time-dependent density field (sinusoidal + Gaussian-like)

 $\Theta(x) = e^{-x^3}$

 $\rho(t, x) = \rho_0 [1 + \Xi(t)] \Theta(x)$

Density profile

Enclosed mass

 $U(x) = \int \Theta(x) x^2 \, dx = \frac{1}{3} (1 - e^{-x^3})$

Time-dependence $\Xi(t) = A \sin(\omega t)$

$$\Xi(t) = \mathbf{A}\sin(\mathbf{\omega}t)$$

$$\Box \varphi + \mathbf{c_3} \left[(\Box \varphi)^2 - \partial_\mu \partial_\nu \varphi \partial^\mu \partial^\nu \varphi \right] = \frac{\mu}{2} [1 + \Xi(t)] \Theta(x)$$

Fiducial parameters

- *A* Amplitude of pulsation
- ω Frequency of pulsation
- μ Matter coupling constant
- *c*₃ Non-linear coupling constant

A = 0.3 $\omega = 4\pi$ $\mu = 1$ $c_3 = 100$

Results : scalar waves

zoom..

Non-linear

Linearised

Amplitude of radiated scalar wave is suppressed by ~20%.

Non-linear/Linearised

As the non-linearity or matter coupling becomes stronger, the wave is more suppressed.

Non-linear/Linearised

For larger pulsation amplitude, the wave is more suppressed.

Linear equation has resonant nature.

 \rightarrow we should carefully consider

We investigate dynamical effects of Vainshtein mechanism in the cubic Galileon model.

Finding : scalar waves from a pulsating star are suppressed by non-linear effects.

To-do

- resonant nature of the linearised equation (ω dependence)
- should go to 3D again ?