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Parametrizations vs. theories 

Advantages of  parametrizations:

We do not need to know the theory!
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They only get us half  way there - they need 
interpretation in terms of  a theory 

They give us a false sense of  achievement - constraints 
can be meaningless or not independent 

They have limited range of  validity  

Disadvantages of  parametrizations:

We need theory-specific tests as well!



Waveform 

taken from B. P. Abbott et al. (LIGO -Virgo) Phys. Rev. Lett. 116, 061102 (2016)
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Extracting new physics 

Step-by-step guide for your favourite candidate:

Study compact objects and determine their properties 

Model the inspiral (post-Newtonian); model the 
ringdown (perturbation theory) 

Do full-blown numerics to get the merger (requires initial 
value formulation!) 
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Scalar fields in BH spacetimes  

S.W. Hawking, Comm. Math. Phys. 25, 152 (1972).

⇤� = 0

stationary, as the endpoint of  collapse 
asymptotically flat, i.e. isolated

The equation

admits only the trivial solution in a BH spacetime that is

⇤� = U 0(�)

The same is true for the equation

with the additional assumption of  local stability

U 00(�0) > 0

T. P. S. and V.  Faraoni, Phys. Rev. Lett. 108, 081103 (2012)
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Scalar-tensor theory 
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2!(') + 3 d'ĝµ⌫ = 'gµ⌫ = A2(�)gµ⌫

Thomas P. Sotiriou - Yukawa Institute, Kyoto, March 2nd 2018



No difference from GR?

Actually there is...

Perturbations are different! 

They even lead to new effects, e.g. superradiance 

In general, relaxing the symmetries of  the scalar can 
lead to “hairy” solutions. 

Cosmic evolution or matter could also lead to scalar 
“hair” 

E. Barausse and T.P.S., Phys. Rev. Lett. 101, 099001 (2008).

A. Arvanitaki and S. Dubovksy, Phys. Rev. D 83, 044026 (2011) 
R. Brito, V. Cardoso and P. Pani, Lect.Notes Phys. 906, 1 (2015)

T. Jacobson, Phys. Rev. Lett. 83, 2699 (1999); 
M. W. Horbatsch and C. P. Burgess, JCAP 1205, 010 (2012). 
V. Cardoso, I. P. Carucci, P. Pani and T. P. S., Phys. Rev. Lett. 111, 111101 
(2013)

C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014).
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Generalized Galileons 

One can actually have terms in the action with more than 2 
derivatives and still have second order equations:

�((@�)2⇤�) = 2[(@µ@⌫�)(@µ@⌫�)� (⇤�)2]��

Inspired by galileons: scalars that enjoy galilean symmetry 

It includes well-know terms, such as

(rµ�)(r⌫�)G
µ⌫ �

�
R↵�µ⌫R↵�µ⌫ � 4Rµ⌫Rµ⌫ +R2

�

A. Nicolis, R. Rattazzi and E. Trincherini, Phys. Rev. D 79, 064036 (2009)

G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974) 
C. Deffayet et al., Phys. Rev. D 80, 064015 (2009)

P. Kanti et al., Phys. Rev. D 54, 5049 (1996).

Known “hairy” solutions! For example, for the coupling

e�(R2 � 4Rµ⌫Rµ⌫ +Rµ⌫�Rµ⌫�)
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No-hair for shift-symmetric generalised galileons

L. Hui, A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013).

Staticity and spherical symmetry 
Asymptotic flatness 
     must be finite on the horizon 
Restrictions on the dependence of       on   

Generalized Galileons 

Assumptions:

rµJ
µ = 0

J2

Jµ �

Straightforward generalisation to slowly-rotating solutions

Hairy black holes with (linearly) time-dependent hair exist

T.P.S. and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102 (2014); 
 	 	 	 	 	 	 	 	    Phys. Rev. D 90, 124063 (2014).

E. Babichev and C. Charmousis, JHEP 1408, 106 (2014)
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A simple exception 

Consider the action

The corresponding scalar equation is

S =
m

2
P
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⇤�+ ↵G = 0

The Gauss-Bonnet term does not vanish in BH spacetimes!

T.P.S. and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102 (2014); 
 	 	 	 	 	 	 	 	    Phys. Rev. D 90, 124063 (2014).

Perturbative solution in Schwarzschild spacetime

�0 = �2↵(r2 + 2Mr + 4M2)

Mr4
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Dynamical formation of hair 
Black hole hair formation in shift-symmetric generalised scalar-tensor gravity 15
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Figure 4. Top-left: Radial scalar field profile, multiplied by the radius, at
di↵erent instances of time in an Oppenheimer-Snyder spacetime. The field and its
time derivative have been chosen to vanish initially and the dust star has initial size
rB/M = 5.0. The apparent horizon forms after about tAH/M ⇠ 21.25. Top-right:

Same initial data but for a dust star of initial size rB/M = 10.0. The apparent
horizon forms after about tAH/M ⇠ 49.0. Bottom-left: Initial stellar configuration
with rB/M = 5.0 but di↵erent scalar field initial data, namely ⇧0 given by a spherically
symmetric Gaussian shell with parameters ⌃(✓,�) = ⌃00, r0/M = 10 and �/M = 1
in (35). Bottom-right: l = m = 0 mode of the scalar field evolved in an Oppenheimer-
Snyder geometry with rB/M = 5 for various initial configurations of the scalar. We
have rescaled it by the extraction radius rex/M = 40 and shifted it in time by
tAH/M = 21.25 signalling the black hole formation. The di↵erent types of initial
configurations, as indicated in the legend, determine the evolution at early times. As
can be seen in all figures, after the stellar collapse the scalar eventually approaches
the known analytic solution in Schwarzschild spacetime (22) and exhibits an r�1

asymptotic fall-o↵ independent of the initial data.

in table 2.

In the top panels of figure 4 we present the radial profile multiplied by the radius,

r|�|, at di↵erent instances in time for a scalar that is initially entirely trivial in

Oppenheimer-Snyder backgrounds with rB/M = 5 and rB/M = 10 respectively. For the

bottom-left panel of figure 4 we have used Initial Data 2, with ⇧0 being a spherically

symmetric Gaussian field in an Oppenheimer-Snyder background with rB/M = 5. In

Black hole hair formation in shift-symmetric generalised scalar-tensor gravity 12
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Figure 1. Radial scalar field profile, multiplied by the radius, at di↵erent instances
of time in a Schwarzschild background for various initial data. Top-left: the field and
its time derivative have been chosen to vanish initially but the scalar still develops
a nontrivial profile as it is sourced by the Kretschmann scalar. Top-right: the field
vanishes initially and the derivative ⇧0 is given as a spherically symmetric Gaussian
shell with parameters ⌃(✓,�) = ⌃00, r0/M = 10 and �/M = 1 in (35). Bottom-left:

initially vanishing scalar with ⇧0 given as a dipolar Gaussian shell with parameters
⌃(✓,�) = ⌃11, r0/M = 10 and �/M = 1 in (35). The type of data breaks spherical
symmetry. We present the profiles along the ✓ = 0 axis. During the evolution the scalar
field sheds o↵ its dipole moment through quasi-normal ringing as shown in the right
panel of figure 3 and settles down to a spherical profile. Bottom-right: Comparison of
early (t/M = 10) and late time (t/M = 300) profiles in Schwarzschild geometry for
various initial configurations. In all cases, at late times the field converges to the known
analytic solution (22) with an asymptotic fall-o↵ r|�| = constant, independently of the
initial field content, as it is sourced by the Kretschmann scalar.

evolution of the scalar field profile in detail for the various characteristic cases in figure

1. All four panels actually present the radial profile rescaled by the radius, r|�|, as this
illustrates clearly the asymptotic behaviour. r|�| always remained smooth throughout

the evolution. The presence of apparent kinks in the plots is due to the fact that we plot

the absolute value of � and use a logarithmic scale. In all cases, the solutions approach

r|�| = constant for large radii at late times. This agrees well with the leading order

behaviour � ⇠ 2�
Mr +O

�
1
r2

�
expected from the analytic solution (22).

First evidence that hair form from collapse 

Stars have zero scalar “charge” 

R. Benkel, T.P.S. and H. Witek, Phys. Rev. D 94 (R), 121503 (2016); 
 	 	 	 	 	 	 	 	   Class. Quant. Grav. 34, 064001 (2017)

 N. Yunes and L. C. Stein, Phys. Rev. D 83, 104002 (2011).
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Black hole scalarization 

⇤� = �f 0(�)G
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No-hair theorem for the action

provided that	 	 	 	 	 ,	f 0(�0) = 0 f 00(�0)G < 0

That is, for the equation

trivial solutions are unique if  admissible, if  the effective mass is 
positive

But if  it is negative then there can be“scalarization”!

H. O. Silva, J. Sakstein, L. Gualtieri, T.P.S, and E. Berti, arXiv:1711.02080 [gr-qc]
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Black hole scalarization 
H. O. Silva, J. Sakstein, L. Gualtieri, T.P.S, and E. Berti, arXiv:1711.02080 [gr-qc]3

FIG. 1. Scalar field in the decoupling limit. Results of the numerical
integration of the decoupled scalar field equation (9), assuming ℓ = 0
and a Schwarzschild background. Top panel: asymptotic value of the
scalar field as a function of η/M2. Cusps correspond to scalarized
solutions. Bottom-left panel: effective potential Veff for η/M2

= 0
and 5. In the latter case Veff develops a negative region and it can
support bound states. Bottom-right panel: radial profiles of δϕ for
the first three scalarized solutions, corresponding to η/M2

= 2.902,
19.50 and 50.93. These profiles have 0, 1 and 2 nodes, respectively.

Scalarized black holes in qsGB gravity. We now consider
BH solutions obtained by integrating the full set of equa-
tions (2a) and (2b). We search for static, spherically sym-
metric solutions, i.e. a = a(r), b = b(r), ϕ = ϕ(r). We define
Γ = log a, Λ = log b, as in [17]. The field equations can be
cast as three coupled ordinary differential equations for Γ, Λ
and ϕ. Since these equations are not particularly illuminating,
we do not present them here.

The equation for Λ can be integrated algebraically [9, 10,
17]:

eΛ =
−A + δ

√
A2 − 4B

2
, δ = ±1 , (11)

where A = (1/4)r2ϕ′2−(r+ηϕϕ′/2)Γ′−1 and B = (3/2)Γ′ϕ′ϕ.
In BH solutions exp(−Λ), exp(Γ) → ∞ at the event horizon
rh, and this implies δ = 1 [17]. Replacing Eq. (11) in the
remaining equations,we are left with two differential equations
for Γ and ϕ. A near-horizon expansion of the field equations
shows that ϕ′′

h
= ϕ′′(r = rh) is finite if

ϕ′h =
rh

ηϕh

(

−1 + ξ
√

1 − 6η2ϕ2
h
/r4

h

)

, (12)

where ξ = ±1. The ξ = −1 branch does not result in a BH
solution, as discussed in [17] for the exponential coupling.
Therefore, regularity on the horizon requires

r4
h − 6η2ϕ2

h ≥ 0 . (13)

Eq. (13) defines a region in the (rh, ϕh)–plane within which BH
solutions with a regular (real) scalar field configuration exist.

The value of the scalar field at the horizon is bound in
the range 0 ≤ ϕh ≤ ϕmax

h
= r2

h
/(
√

6η). We do not consider

FIG. 2. Spontaneous scalarization of black holes. Left: the regions
in the η − M (in solar mass units) space where scalarized BHs exist.
The solutions belonging to each band are characterized by the number
of nodes of the scalar field radial profile. We only show the first three
scalarization regions, but our numerical analysis suggests an infinite
number of them. Top-right: the scalar field profiles for sample BH
solutions in each of the first three bands. Bottom-right: normalized
scalar charge Q/M as a function of η/M2. The most charged BHs
belong to the n = 0 band.

solutions with ϕh < 0 because qsGB gravity is invariant under
ϕ → −ϕ. The field equations are invariant under the rescalings
rh → rh/l, M → M/l, η → η/l2, corresponding to a freedom
in choosing length units. BH solutions are then characterized
by dimensionless quantities such as η/M2 and η/r2

h
.

For each value of η/M2 we have numerically solved the
field equations, with ϕh in the range [0, ϕmax] and the other
boundary conditions fixed from the requirement of regularity
at the horizon. We have then extracted the scalar quantities
characterizing the solution – the mass M, the scalar charge
Q, and the asymptotic value of the scalar field ϕ∞ – from the
asymptotic expansions [10, 17, 23]:

eΓ = 1 − 2M/r + Q2M/(12r2) , (14)

ϕ = ϕ0 +Q/r +QM/r2
+ (32QM2 − Q3)/(24r3) . (15)

While the Schwarzschild solution (ϕh = 0, ϕ0 = 0) is allowed
for any value of η, a solution with ϕh ! 0, ϕ∞ = 0 only ex-
ists when η/M2 belongs to a set of scalarization bands, i.e.
[2.53, 2.89], [17.86,19.50], [47.90, 50.92], etc. The right-end
values of these bands correspond to the eigenvalues of η/M2

found by solving the linear equation of the scalar field on a
fixed background. The scalarization bands in η/M2 corre-
spond to regions bounded by parabolas in the η − M plane
(shadowed regions in the left panel of Fig. 2). The scalar field
profiles of these solutions have n = 0, 1, . . . nodes (top-right
panel of Fig. 2), corresponding to the order number of the
scalarization band. A similar ladder of excited states was ob-
served for scalarized NSs in scalar-tensor theory [24, 25]. The
normalized scalar charge1 Q/M of these solutions is shown in

1 In other theories with a Gauss–Bonnet coupling the scalar charge and the

Scalarization in bands! 
(Non-perturbative) 

It works for neutron stars 
too! (work underway)

Simplest but generic model:

f =
⌘

8
�2

See also: D. D. Doneva and S. S. Yazadjiev, arXiv:1711.0187 [gr-qc]
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Conclusions

Studying stationary compact objects beyond GR is the 
starting point of  producing waveforms  

No-hair theorems act as uniqueness theorems for certain 
classes of  theories 

…but they also help us identify interesting models 

Exciting phenomenology waits to be tested! 

Major obstacle: lack of  predictions  
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