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Turbulence: one of the most important scientific problems

Figure: Turbulence in classical fluids
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Turbulence: characteristics
• no consensus definition of turbulence
• spatially complex
• aperiodic in time
• spanning several orders of magnitude in spatial extent and

temporal frequency
• chaotic

sensitive to initial conditions (unpredictable)
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Quantum turbulence
• turbulence in quantum fluids (superfluid Heliums,

Bose-Einstein condensates, superconductors, etc)
• expected to be similar to classical turbulence at large scales
• expected to be distinct from classical turbulence at small

scales set by the healing length, which is the characteristic
size of local defects (basically vortices) of the order parameter
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Vortex turbulence vs wave turbulence
• eddies in classical turbulence and vortices in quantum

turbulence
eddy (or vortex) as the fundamental characteristic of the
traditional turbulence (vortex turbulence)

• wave turbulence: a type of turbulence different from the
traditional one, where eddies (or vortices) exist but do not
dominate the physics

• decomposition: vortex (incompressible) and wave
(compressible)

v = vi + vc

∇ · vi = 0, ∇× vc = 0

• vortex dominant vs wave dominant
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Quantum wave turbulence: experiments and numerics
[Navon et al, Nature 539, 72 (2016)]

• onset of 3D turbulence in BEC by shaking
• numerical modeling using Gross-Pitaevskii equation

i~∂tϕ =

(
−∇

2

2m
+ V (t,x) + g|ϕ|2 − µ

)
ϕ

with excellent agreement with experimental measurements
• wave dominant (from numerics) isotropic steady turbulent

state
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Turbulence: open problems
• onset mechanism of (classical and quantum) turbulence
• control parameter of quantum turbulence (like the Reynolds

number in classical turbulence)
• (non-)universal properties (Kolmogorov scaling law,

Kolmogorov-Zakharov scaling law, energy cascade, etc)
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Why applied holography (AdS/CFT)?

• Quantum systems can be dually described by classical
gravitational theories.

• Far-from-equilibrium dynamics as well as near-equilibrium
transport processes can be easily realized.

• Dissipation at finite temperature is naturally included by
putting a black hole in the bulk.
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Facts about (applied) AdS/CFT
• Finite temperature field theory with finite chemical potential

is dual to a charged black hole in the bulk AdS:

Temperature ←→ Hawking temperature
Conserved charge ←→ Charge

Chemical potential ←→ Electric potential
Energy dissipation ←→ Energy accretion

[YT, X.-N, Wu and H. Zhang, arXiv:1407.8273]

Yu Tian (田雨) From Laminar Flow to Wave Turbulence in Holographic Superfluid



Motivation and introduction Laminar-turbulent transition in holographic superfluids Wave turbulence in holographic superfluids Conclusion and discussion

1 Motivation and introduction

2 Laminar-turbulent transition in holographic superfluids

3 Wave turbulence in holographic superfluids

4 Conclusion and discussion

Yu Tian (田雨) From Laminar Flow to Wave Turbulence in Holographic Superfluid



Motivation and introduction Laminar-turbulent transition in holographic superfluids Wave turbulence in holographic superfluids Conclusion and discussion

• Action of the simplest holographic superfluid model
[Hartnoll, Herzog and Horowitz, arXiv:0803.3295]

I =

∫
M

d4x
√
−g(−1

4
FABFAB − |DΨ|2 −m2|Ψ|2).

• Background metric

ds2 = L2

z2
[−f (z)dt2 − 2dtdz + dx2 + dy2], f (z) = 1− z3

z3h
.

• Heat bath temperature

T =
3

4πzh
.
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• The hairless-hairy phase transition of the black hole occurs at
the critical electric potential (chemical potential) µc = 4.06.

• The above transition is interpreted as the normal-superfluid
phase transition of the boundary system.
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The laminar-turbulent transition by shaking (periodic driving)
• Shaking a holographic superfluid in a periodic box of length L

with an appropriate frequency ω

ux = A sinωt

• Random initial perturbations
• The laminar-turbulent transition observed at the shaking

amplitude A = Ac
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• The case of laminar flow

Figure: Superfluid velocity fields for the shaking amplitude A < Ac
at around the twentieth shaking cycles which changes direction and
at the twentieth shaking cycles it is zero.
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• The case of turbulent flow

Figure: Superfluid velocity fields for the shaking amplitude A > Ac
before, at and after the twentieth shaking cycles where the total net
velocity changes its direction. For the middle panel, the total net
velocity is approximately zero.
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Figure: The configurations of |ψ| after 1, 2, 3, 4, 5 and 25 shaking cycles
for A > Ac.

Yu Tian (田雨) From Laminar Flow to Wave Turbulence in Holographic Superfluid



Motivation and introduction Laminar-turbulent transition in holographic superfluids Wave turbulence in holographic superfluids Conclusion and discussion

• Characterization of the laminar-turbulent transition by the
total kinetic energy

Ekin(t) =
∫

1

2
u2|ψ|2d2x

at integral shaking cycles
• Characterization of the laminar-turbulent transition by vortex

formation
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Kinetic energy spectra and direct energy cascade
• Kinetic energy spectra:

Ekin(t) =
∫ ∞

0
εkin(t, k)dk

• Direct energy cascade in holographic superfluids:
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Figure: εkin(k) after 2, 3, 4 and 6 shaking cycles, respectively.
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Kolmogorov −5/3 scaling law in vortex turbulence
• The turbulent dynamics is assumed to be characterized by the

energy dissipation rate per unit mass ε at one end of an
inertial range k− < k < k+.

• Dimensional analysis simply gives

εkin(k) = Cε2/3k−5/3

(εkin : [L3T−2], ε : [L2T−3], k : [L−1])

in the inertial range, where C is a dimensionless constant.
• Kolmogorov −5/3 scaling law and direct energy cascade in

vortex turbulence (relaxation) of holographic superfluids
[Chesler, Liu and Adams, 2012; Lan, YT and Zhang, 2016]
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The scaling law in shaken holographic superfluids
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Figure: The kinetic energy spectra εkin(k) for vortex relaxation (left) and
shaking (right) in holographic superfluids. The left panel shows two
scaling law, one the Kolmogorov −5/3 scaling law in the inertial range
and the other the −3 scaling law characterizing free vortices. The right
panel shows only one scaling law, which is different from −5/3 or −3.
Wave turbulence?
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Wave turbulence in holographic superfluids
• decomposition: vortex (incompressible) and wave

(compressible)
u = ui + uc

∇ · ui = 0, ∇× uc = 0

Ei,c(t) =
∫

1

2
u2

i,c|ψ|2d2x =

∫ ∞

0
εi,c(t, k)dk

εkin(t, k) = εi(t, k) + εc(t, k)
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• compressible to incompressible ratios:

ϵ
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Figure: The typical ratios of compressible to incompressible energy
spectra εc(k)/εi(k) for vortex relaxation (left) and shaking (right).
The left panel shows that waves mainly live at small k and vortices
dominate the large k regime. The right panel is a telltale signature
of wave turbulence.
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Conclusion
• The lamina-turbulent transition is observed by shaking 2D

holographic superfluids.
• The turbulent state of the shaken holographic superfluids has

a ∼ −2.5 scaling law.
• The turbulent state of the shaken holographic superfluids is

identified as a wave turbulence.
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Discussion
• Onset mechanism of 2D quantum turbulence (in holographic

superfluids)?
• Chaotic behavior from linear analysis (Lyapunov exponents)?
• More physical insights from the holographic point of view?
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元宵节快乐！

Happy Lantern Festival!
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Thanks for your attention!
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