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Motivation

* |s existence of string theory realizations of de Sitter
space ~settled?
— Notoriously difficult
— After 20 years not entirely clear
— Key question for string theory, and de Sitter space theory

* KKLT paradigm proposed construction
— Questions because of “many moving parts”
— No one has full Lagrangian
— Hard to explicitly construct the 10d model of de Sitter
space

* Yet exist compelling probe approximation and
effective 4d theory arguments



* Oneissue that others and | raised is that a
relevant (and light) field ignored

— Field is “radion” associated with throat

* For explicit constructions was conifold deformation
parameter

— Was neglected in most earlier analyses
* Seemed ot lead to an instability for vg. M>~7 (in

presence of antibrane)

* Bena, Dudas, Grana, Luest, Blumenhagen, Klawer Schlechter
independently found related instability

— Could do effective 5d theory and identify origin and
meaning of instability

* Destabilization for too small g.M?
— M related to flux
— |leads to runaway of IR brane
— Independent of volume modulus metastability



New Work

* This talk (based on recent work with S Lust)

— Effective potentials in warped compactifications
more subtle

— Need to take account of constraints
— Significant change in IR of throat

— Related to light KK modes in IR, even of the
stabilized Kahler moduli



Outline: New Work

Turns out effective theories for warped
compactifications much more subtle

Need to impose metric constraints

Low energy potential construction requires
understanding full metric

Qualitative change of potential behavior
IN IR!



Big Lesson

Kahler moduli stabilized

But in warped geometries their KK modes are
still light

Comparable in mass to conifold deformation
parameter

Runaway behavior goes away



Outline

* Introduce KKLT: way of finding
oerturbative/manageable loophole
* Review

— “conifold destabilization”

— 5d EFT radion IS conifold deformation parameter

— Seemed uplift destabilizes conifold (radion) if M
too small--Really a runaway radion

 Show why EFT must be modified
— And how it resolves issue




KKLT:

Construction of de Sitter
e 10d Calabi-Yau /F-theory construction

— Fluxes stabilize all complex structure moduli

— But Kahler (volume) modulus o remains
undetermined

e KKLT resolution

— Step 1: Break no-scale structure with
nonperturbative gauge contributions to stabilize
Kahler modulus at large volume

* Yields AdS4 as low-energy theory

* Uplift energy

— Anti D3 brane; but in warped geometry (KS throat)
* Suppresses uplift



Warped Geometry (String Theory)

(Kachru, Polchinski, Verlinde)
Cartoon: RS warped AdS throat glued onto CY

CY acts as UV brane

But Klebanov-Strassler AdS space

— Constantly changing (increasing) AdS curvature

— AdS. but with “running N_¢"
* N,,=MK; N.= M; hierarchy from e2Mk/Mg

Caps off at a critical length
Conifold deformation region is “IR brane”
KPV paper: 4d Mink space as low-energy EFT



Potential Issue

Slicing needs consistent UV and IR boundary conditions
— Or additional space-dependent energy in bulk

If all heavy fields integrated out (and ignored) you don’t get a
consistent geometry

Need uplift energy to be present in UV
— Otherwise you are assuing UV source already
* No need for throat

— Consistency requires means for transferring energy
Whatever stabilizes system plays this role

How to resolve?

Clearly need a backreaction of some sort

— Associated with stabilized geometry

— Can absorb and transfer energy

In 5d language, Goldberger-Wise Mechanism!



Note: 10d

Full construction too hard
— Branes and antibranes

— Many moduli fields

— Which to keep?

From 4d perspective perfectly fine

— But is the underlying framework consistent and stable?

We will grant ALL KKLT assumptions

— String elements assumed possible

Can construct 5d theory that has many of the
essential features

— Necessary preliminary for consistency of theory

— Points to what we need to keep in 10d construction
And show still a potential instability



5d EFT

5d theory has all ingredients to probe consistency and stability of the
gravity construction

|.  Warping: 5d Klebanov-Strassler Geometry
— AdS; but with “running N "

. Hierarchy from e2M¥/Mg_

Ill.  CY space serves as UV AdS boundary

IV. Conifold deformation ends space on IR boundary
— (negative tension) Note has to be different AdS

V. Can construct full toy model
Including stabilization mechanism
Important but omitted

So let’s study essential 5d ingredients: bent branes on boundary
determining geometry and GW stabilization to allow for consistent
geometry



GW

Guarantees radion moves so that

Both junction conditions are satisfied
— And entire bulk can be consistently sliced

Notice radion is localized in IR

Responding to mismatch in boundary conditions
Clearly any stabilized geometry needs analog field
GW bulk field, and radion



GW Response to Perturbation

IR. To see more explicitly how the matching works, we add the IR boundary term
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The relevant equations of motion are the Einstein Equations that relate the metric to
hoth the bulk and the brane energy. It will be important that we include the energy of the
kinetic term of the GW field, since a shift in radion adjust the kinetic term in such a way
that energy redistributes throughout the bulk., We use a general RS tvpe metric

ds? = e—A4(#) Nupdztdz? — rfr:f-r.;ng. (3.10)

where to leading order A = 2kr.p. We are interested in the deviation in the presence of a
perturbing IR brane energy.

We nse [56]
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and the junction condition at the IR brane is
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Response
Perturb radion slightly

Leads to required shift in bulk energy

We need to include the change in bulk energy from the change in 8¢ /8¢, which arises from
the shift in v, in the presence of the perturbation. The dominant contribution to the change
comes from the A term in the GW solution ahove and is approximately
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which gives us the correct junction condition if
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The important thing (here we are assuming the uplift vields Minkowski) is that the GW field
take the form such that the uplift is that required in the UV as well. We have
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Can identify GW field in 10d theory!

V = Adt + dgoe

From a dual perspective, you really have a running coupling
Explicit breaking conformal invariance from running
Spontaneous breaking at IR brane position

Can explicitly identify running in KKLT: Hedecker et al

I The LK. Kel. |1Y] Jentines tne Gy Neld H and argiues 10s slowly varving potentlal 1 tne
radial direction is a result of the kinetic term for a field originating in the 10d theory from
the flux of the NS 2-form potential Ba on the 5% evele of the 711, Thev explicitly construet a
potential consistent with *running Neyg¢” and describe how with this field they can stabilize a
geometty that consists of the CY region. a conifold region with constant warp factor, and the
warped deform conifold. This is in the spirit of the dual interpretation of the GW mechanism,



Can Identify Radion in KKLT!

First let’s consider the “conifold instability”
e S: Conifold deformation parameter

4
Z*‘“'i — 5. (3.10)
a=1

The deformation parameter 5 is the complex structure modulus whose absolute value corre-
sponds to the size of the 3-sphere at the tip of the cone.

j =S, (3.11)
A



Potential for S

The supersymmetric potential for this field induced by the Klebanov-Strassler geometry is
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where g i3 the stabilized vev of the dilaton, fmp = {1-’|:)1r3]3-""9, » as we argne below is not
relevant here (and is in any case suppressed in the small S region), whereas the constant ¢/,
multiplyving the term coming solely from the warp factor, denotes an order one coefficient,
whose approximate numerical value was determined in [46] to be ¢ &= 1.18.

Add potential from antibrane:
The antibrane contributes a perturbation
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We follow [56] and define ¢ = ?m; 1.75. For p anti-D3 branes the potential is multiplied

hv p, and this is taken care by simply replacing &' — ¢'p.



“Conifold” instability

The general form of the potential {we factor out Ajmg./c’) is
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The barrier disappears when rj,-“'fg = 0/16.

We zee that the perturbation from the antibrane (yielding the & type perturbation above]
vields the potential proportional to the above with § = ¢'¢gs/mK? and |e| = Mgs/27K. By
writing it this way we keep € and 4 as small parameters. This gives preciselv the stability
condition found in [59], namely
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S Potential

Figure 1: The potential Vi g of [16] for the complex structure modulus S of the Klebanov-
Strassler throat given in (2.17). The solid blue line corresponds to the full potential, while
the dotted orange line does shows the naive potential that does not take into account the
effects of warping (¢’ = 0). Both potentials have the same supersymmetric minimum but

differ drastically at small S.

The potential (2.17) has a supersymmetric minimum, corresponding to dg¥ = 0, which,

for S < .-"'LS, 15 at
2r K ,
- § 3 — —
sgs == Ajexp ( Qsﬂf) : (2.19)




With Uplift

Figure 2: The contribution Vg (solid blue line) of an D3-brane placed in the Klebanov-
Strassler throat to the potential for S. The two other lines represent the original potential
Vis (dotted orange line) for the specific value |/g;M = 6 as well as the superposition
Viks + V3 (dashed green line)

K



Radion is the Conifold Deformation
Parameter

We identify based on its effect on metric
And its potential
S~®3where @ is the radion in GW potential

This means checking for stability of RS type
geometry is checking for stability wrt conifold
deformation parameter!

Exactly what Bena, Dudas, Grana, Luest;
Blumenhagen, Klaewer Shlechter did



“Radion” Scalar: S~@3
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mass i3 not suppressed by e, When we use
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we find the S mass squared is suppressed by 1/g, M 2 In terms of the properly normalized
field ¢ (see below), the mass squared scales (over the exponential suppression) as 1/(gsM?)?,
which is how all KK masses associated with the IR region of the conifold throat would scale
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where ¢ = 1.75 so that the parameter S is indeed related to ¢®, and is the parameter
determining the warping in the throat. This ¢ is precisely the radion of GW and has the
correct potential to both determine the length of the throat and the warping in the IR as well
as to respond to perturbations to generate a consistent geometryv. The radion mass squared,
as with the values of KK mass squared. is suppressed by a factor 1/(g,M :JE in units of the
confinement scale, where the confinement scale is suppressed relative to the warped string

scale by 1/(4/gsM ).



Notice form of potential:
conifold<—— radion

The supersymmetric potential for this field induced by the Klebanov-Strassler geometry is
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where ge is the stabilized vev of the dilaton, Imp = {1-’|:}1.3]3-""9._ ¢ as we argne below is not
relevant here (and is in any case suppressed in the small S region), whereas the constant ¢f,
multiplying the term coming solely from the warp factor, denotes an order one coetficient,
whose approximate nmumerical value was determined in [46] to be ¢ = 1.18.

The potential for the 5 field is essentially the potential above that we had for a GW field,
but takes a slightly different form than that above due to supersymmetry, namely

0 A A2 .. A% g%
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(3.13)
where rewriting the potential in this GW form breaks down near the “IR brane” where
(2rM /K log 5;';18 gets big, Reallv the original form is enough to see that we have weakly
explicitly broken scale invariance. Here A\ = Kgs and As = (M /27), and € = Aa/A1. The
minimum oceurs at Sigg = Aje 2TR/Mas — pASe—M/A2 — ARe—1/€ Here the SY? dependence
comes from the Kahler potential whereas the remaining dependence is from the superpoten-

2
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tial. The nonrernormalization theorems in the supersyvmmetric potential guarantee the full
potential is alwavs proportional to the leading order potential.



Runaway radion if too big a
perturbation

The general form of the potential (we factor out }J‘f;rgs;'r’ is

V= &3 (1 + elog %) + 4843 (3.19)
0
The barrier disappears when rj_,-“'fg = 9/16.

We see that the perturbation from the antibrane (yielding the & tyvpe perturbation above|
vields the potential proportional to the above with & = z“"f"_,-“'_r,esrr.l% and |e| = Mgs /27K . By
writing it this way we keep € and & as small parameters. This gives preciselv the stability
condition found in [56], namely
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Real potential instability

Need largish g.M?
But hard to satisfy

Hierarchy problematic

— K/Mg.~KM/M?%g,

— KM bounded in a given geometry
Another problem

— Cosmological phase transition for RS like geometries
* Cremenelli, Nicolis, Rattazzi//Hassanain, March-Russell, Schellvinger

— High temperature AdS/Schwarschild

— Cosmological phase transition won’t complete

— Need to evolve to RS

— Upper bound on M?~21 for this geometry
Caveilat: We are assuming supergravity solution applies even for
small M

— However if it doesn’t we still have to work out solution to have
example



Warped Conifold Potential

* Turns out the assumed S potential is not
correct

— In IR!
* Need to impose various constraints
e Let’s get a taste of how this wokrs



A CLOSER LOOK AT THE CONIFOLD POTENTIAL
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— S = complex structure modulus

> Superpotential:
M 3 : § ~ vol(S?)
W ~ jf_?rj AL = —‘S(]ﬂgﬁ+ 1) + LKS
2mi S 2,

» Kihler portential requires knowledge of warp factor:
Klebanov-Strassler solution:
—4:'1“-'} gS(HrM)

4

|SI*
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A CLOSER LOOK AT THE CONIFOLD POTENTIAL

-------------------------------------------------------------------------------------------------------

» Kihler metric: [Douglas, Shelton, Torroba, '07, "08]
! 2
g(aM)

NE

Gz = 050K ~ [E_MXS A X5~ e A ~

» Anti-brane instability:
Requires knowledge of the (oft-shell)

potential away from the minimum]/

can we use the KS
warp factor here?!

&

KES
minimum

i




COMPLEX STRUCTURE OF THE DEFORMED CONIFOLD

-------------------------------------------------------------------------------------------------------

» Deformed conifold in C*: T 5 §2
4
Z ?=S5
=1
S = complex structure modulus

S ~ vol(5%)
» metric on the deformed conifold:

. 89
A8 = —KI:'I:I|:

: |dz* + (°)°] + cosh? (%) (2”7 + ("] + sinh:(%) gy + tng]]

3K3(1)

\ complex structure just a conformal factor?!

Answer: did not fix gauge (coordinates) yet!




COMPLEX STRUCTURE OF THE DEFORMED CONIFOLD

-------------------------------------------------------------------------------------------------------

» First: understand gauge fixing without warping:

L | L | .2
ﬂ’jm = {1’34 + d_'rﬂl._q

» Gauge fixing of Calabi-Yau deformations:

g; — 8 +908; [Candelas, de la Ossa '91]
= g'5g,; =0 Visg,; =0
(traceless) (harmonic)

(will get modified in the presence of warping!)  [Giddings, Maharana '05],
[Shiu et al. "08],

»> ] OT i I = . - e F0T
Deformed conifold: [Douglas, Torroba ‘08
: 1 -
With warp factor no®8ij = 9s8i ~ 55i harmonic but not traceless!
longer traceless! -




COMPLEX STRUCTURE OF THE DEFORMED CONIFOLD

-------------------------------------------------------------------------------------------------------

» Add compensating diffeomorphism:

Solution:
Ansatz:

T 1 sinh(27)— 27
f? — {"?TTL{:L{:}J}J}J}} r‘rr{r} — —?
28 sinh=t

» Interpretation:
Replace ¢ with “new” S-dependent radial variable: 7 — T(7,5)

Analytic solution:

EiT f .
r . -1 | 5
_.5' =n"(T(r,5),5) Iz.5)=F|F I.'r]——4 lﬂg—%]

1
with F(x) = —log [sinh(2x) — 2x|

£1



COMPLEX STRUCTURE OF THE DEFORMED CONIFOLD

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

» The radial coordinate as a funcrion of 5:
Tiz. 5)

5::-’:-."_,-"5"-(

» UV behavior (t — o0): T(7,5) = 7—log8/§

» Compare with UV expansion of the metric:
dsZelc — o) = S¥P ($dT>+ 2ds},, ) = S3e>® (gde+2ds?,

Deformation acts only in the IR!



Deformtoins of warped geometries

The most general form of a background which preserves all 1sometries of a four-dimensional
maximally-symmetric spacetime takes the form

, - UV
dsiy = e AWg drtda” 4 e 24Wg - (y)dy™dy™ (4.1)

5 K

We need to consider both the variations of the warp factor 44 and the varnations of the

nternal metric dgp,y,. It was found in [9,10] that these are not independent but related by
[ J' mn ¢ 1
':I _'4. —_ _1!'" "Js:-"?nn . |.r4-|3':|

n K

This can be understood as an extension of the traceless condition (2.3) to the warped case.

The harmonic gauge condition (2.2) also needs to be modified accordingly and becomes

v?nft'-‘iﬂrj?l'?mj — . |f44}

n K



Solve using diffeomorpism

To find solutions 4 A and dgmy, satisfying these conditions, one can start from a deformation
§gY and add an infinitesimal diffeomorphism which acts as a compensating gauge transfor-
mation,

OGmn = fli,fﬁm + Vmiin + Vaiim . (4.6)

5 K

With this ansatz the modified harmonic gange condition (4.4) becomes a set of second order
differential equations on 1, which have to be solved to find dgmy. Subsequently, one can use
(4.3) to determine 4A.



Even More General

Here, u'(2") denotes a set of four-dimensional scalar fields, parametrizing moduli or also
massive excitations of the background solution. It seems to be natural to mtroduce a similar
x* dependence for the warp factor as A [r. ul (r“J] However, as we will see this notation has
to be taken with a grain of salt.

The general space-time dependent ansatz for the metric now reads

. o a(r.ul (z) , - S 2 ;
ds? = 2™ @) g (r)detdz” + [-f-*f("” @)dr + K, (r, x)dz"| | (8.2)

where gi; denotes the components of an a-priorl undetermined four-dimensional metric and
we also allow for possible off-diagonal components K.

Satisfy higher d
a2 4 L pr An2 apy b | 917(a 1 oa 4y f ti
3DZA+6(D-A) + gap D" Drd” + 2V () — 1(—‘ RS =0. €g Oor motion
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We recall that it takes the form
i No off-
300D A+ Egjat.D;(rﬁa DT-{I_-"?'E' =10, (8.15) .
diagonal
- . . constraint arises from the traceless part of the five-dimensional Einstein equatior. .

vanishing four-dimensional momenta, Oﬂuf = {1, and a symmetric background spa
R = %gm,f?. 1t reduces to

(V! — g, [QD;_.-{ +Dif] =0.
Traceless EE

The constraint therefore reads

2D;A+ Dif =0,



E a 0

Figure 2: Left: The potential as a function of S/S;. Right: The warp factor e 447 for
S5/S; = 2.0,1.0,0.5,0.1 Both plots are created using the differential constraints (8.15) and

(8.17) but 1ignoring the Hamiltonian constrain (8.13).



No Second Minimum

Figure 3: Comparison of the potential computed by [10] (blue) and our potential {red). The
solid line 1s the potential for the conifold modulus S and the dashed line the contribution

from the antibrane. Their superposition is illustrated i Figure 4.



Punchline

/
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Figure 4: Superposition of the potential for S and the antibrane potential for different values
of M? (from large to small). The “old” potential is in blue, for small values of M its minimum
disappears. The red potential, which was computed using the constraint (8.15), always has

a minimum, irrespective of the value of M.



Conclude

Low energy effective theory nontrivial in context of warped
compactifications

Solving Einstein’s Equations consistently even off-shell leads
to qualitative change in form of potential

Here related to fact that warped compactificaton shape can
change in the IR

Not determined solely by the UV stabilization
Essentially allows for KK modes of volume moduli
Though not yet explicit in our formalism

Resolves the mysterious and now-seen-to-be spurious
instability

Can have interesting consequences in the future



