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outline
l Slow-roll inflation

¡weakly scale-dependent, adiabatic density perturbations
¡as seen in the CMB anisotropies and LSS

l Ultra-slow roll inflation
¡enhanced density perturbations on small scales
¡could be seen in gravitational relics (SGWB, PBH)

l Sudden transition
¡need to kick slow roll into ultra-slow roll
¡ leads to particle production and non-adiabatic perturbations

l Challenging to study nonlinearity 
¡separate universe approach breaks down on some scales



Inflation 
= accelerated expansion in the very early universe
• classical expansion smoothes, isotropises and flattens
• quantum fluctuations create inhomogeneous structure



primordial density perturbations
cosmic microwave background temperature anisotropies observed by Planck satellite
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Baryon-photon plasma pressure vs density

adiabatic perturbation
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Baryon-photon plasma pressure vs density

non-adiabatic
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Classical inflation:
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spatially homogeneous scalar field, " 2 , in FLRW background
scale factor 3 = 45, adiabatic Hubble expansion, % ≡ ⁄8̇ 8

(∆: = 0 for isolated system)

( "



Scalar field inflation: ! " > "̇%
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slow roll

quasi-de Sitter (3 ≡ −)̇/)% ≪ 1)
damping ≈ driving (3% ≡ ̇3/)3 ≪ 1)

slow roll is a stable attractor whenever it exists
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slow roll attractor

Grain & Vennin 2018
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for example

inflection points in !-attractor inflation

11

Dalianis, Kehagias & Tringas (2019); Iacconi, Assadullahi, Fasiello & Wands (2022)
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Scalar field inflation: ! " > "̇%
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ultra
slow roll
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quasi-de Sitter (3 ≡ −)̇/)% ≪ 1)
damping >> driving (3% ≡ ̇3/)3 ≈ −6)

usually a transient phase that relaxes back to slow-roll attractor 
(see Pattison et al 2019)
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Scalar field inflation: ! " = $
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adiabatic perturbation



Scalar field inflation: ! " > "̇%
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slow roll

ultra
slow roll

sudden transition

!′ '( ≠ 0
feature in potential, e.g., sudden change in slope 
→ non-adiabatic change in quantum fluctuations

(non-Bunch-Davies state)



quantum fluctuations:

• ! " → ! " + %! ", ' in perturbed FLRW spacetime
• Sasaki-Mukhanov variable, ( = *%!, in spatially-flat gauge

Fourier modes obey oscillator equation
(+,, + +- + .- / (+ = 0

where ′ ≡ 3/35 = 63/37 and time-dependent mass

.- = − 9::
9 and     9 ≡ *!̇

<
• adiabatic vacuum state
– frequency real =>? 5 = @? + A? 5 > 0
– slowly-varying =̇> ≪ =>?
– defined on sub-Hubble scales (@ > 6E) during slow-roll



massless field in de Sitter:
• mode equation
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• Bunch-Davies vacuum state 
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separate universe approach:

• spatially-homogeneous limit (! → 0) of mode equation

$%&& + !( − *
&&

* $% = 0

good approx on super-Hubble scales (! < -.) during inflation
- ≡ 01 = 0∫3 45

the coarse-grained field on large scales obeys the same nonlinear 
equations of motion locally as unperturbed background universe

(neglecting spatial gradients) 

6 = 1 6 = 2 6 = 3 6 = 4

Salopek & Bond (1990); Sasaki & Tanaka (1998); 
Wands, Malik, Lyth & Liddle (2001); Rigopoulos & Shellard (2003)
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separate universes:

• local scalar field !" # → ! # + &! # in FLRW spacetime,  
scale factor '()&(, Hubble expansion, * → *+ &*

+-̈ + 3/+-̇ + 3-̇+/ + 123
1-2 +- = 0

2/+/ = 88
39:2

13
1- +- + -̇+-̇

where dots denote derivatives with respect to local proper time

• e.g., massless field in de Sitter (+/ = 0)
+-̈ + 3/+-̇ = 0

general solution
+- = ; + <=>?
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homogeneous perturbations:
• mode equation in spatially-homogeneous limit (! → 0)
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* $% = 0

• general solution

$% = ,-* + ./*012*(
– for massless field in de Sitter * ∝ 4 = −1/72
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– identifying particular solution for adiabatic vacuum state
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homogeneous perturbations:
• mode equation in spatially-homogeneous limit (! → 0)

$%&& + !( − *
&&

* $% = 0

• general solution

$% = ,* + -./0*(
– for massless field in de Sitter * ∝ 2 = −1/50

67% =
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– identifying particular solution for adiabatic vacuum state
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, scale-invariant spectrum on super-Hubble scales
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the power of separate universes
• ordinary differential equations rather than partial DEs, !#⃗ $

• describes nonlinear evolution on large scales

• conserved curvature perturbation for adiabatic perturbations

̇& ∝ () − )̇+̇ (+
• used in stochastic inflation (Starobinsky) to describe nonlinear 

quantum diffusion of coarse-grained fields during inflation

• calculate curvature perturbation in terms of the local integrated 
Hubble expansion

& = (- = ( ./ 0$



nonlinear dN for primordial density perturbations

during inflation: field perturbations fI(x,ti) on initial spatially-flat hypersurface

after inflation: curvature perturbation z constant on uniform-density hypersurface

ò=
final

initial
dtHN

t

x

Starobinsky ‘85; Sasaki & Stewart ‘96; Lyth & Rodriguez ‘05

separate universe approach
on super-Hubble scale
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Classical vs quantum inflation

l Classical inflation

l Quantum field fluctuations about fixed FLRW background 
lead to primordial metric perturbations in limit ! ≪ #$
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Classical vs quantum inflation

l Classical inflation

l Quantum field fluctuations about fixed FLRW background 
lead to primordial metric perturbations

N =

Z
H dt =

Z
H

'̇
d'

V ϕ( )

⇣ ⌘ �N =
H

'̇
�' =

�'quantum

�'classical

ϕend ϕ

N

if PBHs form when ζ ~ 1, then δφquantum ~ δφclassical,
i.e., stochastic diffusion non-negligible
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piecewise linear potential:
• Starobinsky (1992):

! " = $%& " − "( for " > "(
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• mode equation
/011 + 34 + 54 6 /0 = 0

where

54 = − 2
64 +
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• general piecewise solution

/0 =
;0
23 1 − =

36 >-?0@ + A0
23 1 + =

36 >?0@

– before transition: 
;0& = 1,   A0& = 0 (Bunch-Davies vacuum)

– after transition: 
;0- ≠ 1 + C ∆%/%& ,   A0- ≠ C ∆%/%& (excited state)
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piecewise linear potential:
• Starobinsky (1992):

! " = $%& " − "( for " > "(
%- " − "( for " < "(

• homogeneous solution after transition
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– particular solution for excited state on super-Hubble scales 8 < 8(
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– gradient terms in the adiabatic growing mode before the transition, 
source the non-adiabatic decaying mode at the transition

Leach, Liddle, Sasaki & Wands (2003)

– separate universe approach breaks down on some scales at transition
Jackson et al, arXiv:2311.03281

f

V(f) - +



piecewise linear potential:
• comoving curvature before and after transition
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piecewise linear potential:
• comoving curvature before and after transition
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piecewise linear potential:
• comoving curvature before and after transition
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piecewise linear potential:
• !" using separate universe approximation for # < %&'
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smooth inflection point: Rasanen & Tomberg (2019)

Jackson et al arXiv:2311.03281
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smooth inflection point: 
• !" using separate universe approximation for # < %&'
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summary
• separate universe approach at a sudden transition 

– breaks down on finite range of super-Hubble scales
– gradient terms generate non-adiabatic perturbation

• !" formalism to calculate primordial curvature perturbation
– include the field’s momentum beyond slow-roll limit
– include particle production at transition (sub-H modes not in BD vacuum)
– works before and after the transition, but not at the transition

• need to include #$ corrections in a gradient expansion

• stochastic inflation requires two correlated sources on noise
– at Hubble crossing and at the transition (non-Markovian)
– are quantum fluctuations effectively classical stochastic noise?
– too many contradictory views already on stochastic inflation beyond slow-

roll! 


