GC2024, 29th January 2024 YITP, Kyoto

Adiabatic and non-adiabatic evolution during inflation

David Wands

Institute of Cosmology and Gravitation, University of Portsmouth

arXiv:2311:03281 with Joe Jackson, Hooshyar Assadullahi, Andrew Gow, Kazuya Koyama, Vincent Vennin and previous work with Chris Pattison, Laura Iacconi, Matteo Fasiello Sam Leach, Andrew Liddle and Misao Sasaki

outline

Slow-roll inflation

O weakly scale-dependent, adiabatic density perturbations

○ as seen in the CMB anisotropies and LSS

Ultra-slow roll inflation

enhanced density perturbations on small scales
 could be seen in gravitational relics (SGWB, PBH)

Sudden transition

Oneed to kick slow roll into ultra-slow roll

Oleads to particle production and non-adiabatic perturbations

Challenging to study nonlinearity

○ separate universe approach breaks down on some scales

Inflation

= accelerated expansion in the very early universe

- classical expansion smoothes, isotropises and flattens
- quantum fluctuations create inhomogeneous structure

primordial density perturbations

cosmic microwave background temperature anisotropies observed by Planck satellite

Baryon-photon plasma pressure vs density

Baryon-photon plasma pressure vs density

spatially homogeneous scalar field, $\varphi(t)$, in FLRW background scale factor $a = e^N$, adiabatic Hubble expansion, $H \equiv \dot{a}/a$ $(\Delta Q = 0$ for isolated system)

for example inflection points in α -attractor inflation

Dalianis, Kehagias & Tringas (2019); Iacconi, Assadullahi, Fasiello & Wands (2022)

usually a transient phase that relaxes back to slow-roll attractor (see Pattison et al 2019)

feature in potential, e.g., sudden change in slope → non-adiabatic change in quantum fluctuations (non-Bunch-Davies state)

quantum fluctuations:

- $\varphi(t)
 ightarrow \varphi(t) + \delta \varphi(t, \vec{x})$ in perturbed FLRW spacetime
- Sasaki-Mukhanov variable, $u = a \delta \varphi$, in spatially-flat gauge Fourier modes obey oscillator equation

$$v_k^{\prime\prime} + \left(k^2 + \mu^2(\eta)\right)v_k = 0$$

where $' \equiv d/d\eta = ad/dt$ and time-dependent mass

$$\mu^2 = -rac{z^{\prime\prime}}{z}$$
 and $z \equiv rac{a \dot{\phi}}{H}$

- adiabatic vacuum state
 - frequency real $\omega_k^2(\eta) = k^2 + \mu^2(\eta) > 0$
 - slowly-varying $|\dot{\omega}_k| \ll \omega_k^2$
 - defined on sub-Hubble scales (k > aH) during slow-roll

massless field in de Sitter:

mode equation

$$v_k'' + \left(k^2 + \mu^2(\eta)\right)v_k = 0$$

where $z \propto a = -1/H\eta$
$$\mu^2 = -\frac{z''}{z} = -\frac{2}{\eta^2}$$

Bunch-Davies vacuum state

$$v_k = \frac{1}{\sqrt{2k}} \left(1 - \frac{i}{k\eta} \right) e^{-ik\eta}$$

V(\$)

- k > aH: small-scale/underdamped oscillations at early times

$$v_k = \frac{1}{\sqrt{2k}} e^{-ik\eta}$$

-k < aH: large-scale/overdamped perturbations ``frozen-in''

$$\delta\varphi_k = \frac{\nu_k}{a} = \frac{-iH}{\sqrt{2k^3}}$$

massless field in de Sitter:

mode equation

$$v_k'' + \left(k^2 + \mu^2(\eta)\right)v_k = 0$$

where $z \propto a = -1/H\eta$
$$\mu^2 = -\frac{z''}{z} = -\frac{2}{\eta^2}$$

Bunch-Davies vacuum state

$$v_k = \frac{1}{\sqrt{2k}} \left(1 - \frac{i}{k\eta} \right) e^{-ik\eta}$$

V(\$)

-k > aH: small-scale/underdamped oscillations at early times

$$v_k = \frac{1}{\sqrt{2k}} e^{-ikr}$$

- k < aH: large-scale/overdamped perturbations ``frozen-in''

$$\mathcal{P}_{\delta\varphi} = \frac{4\pi}{(2\pi)^3} \left|\frac{\nu_k}{a}\right|^2 = \left(\frac{H}{2\pi}\right)^2$$

separate universe approach:

Salopek & Bond (1990); Sasaki & Tanaka (1998);

Wands, Malik, Lyth & Liddle (2001); Rigopoulos & Shellard (2003)

• spatially-homogeneous limit ($k \rightarrow 0$) of mode equation

$$v_0^{\prime\prime} + \left(k^2 - \frac{z^{\prime\prime}}{z}\right)v_0 = 0$$

good approx on super-Hubble scales (k < aH) during inflation $a \equiv e^N = e^{\int H dt}$

N = 1 N = 2 N = 3 N = 4

the coarse-grained field on large scales obeys the same nonlinear equations of motion locally as unperturbed background universe (neglecting spatial gradients)

• *local* scalar field $\varphi_{\vec{x}}(t) \rightarrow \varphi(t) + \delta \varphi(t)$ in FLRW spacetime, scale factor $e^{N+\delta N}$, Hubble expansion, $H \rightarrow H + \delta H$

$$\begin{split} \delta\ddot{\varphi} + 3H\delta\dot{\varphi} + 3\dot{\varphi}\delta H + \frac{d^2V}{d\varphi^2}\delta\varphi &= 0\\ 2H\delta H &= \frac{8\pi}{3M_P^2} \Big(\frac{dV}{d\varphi}\delta\varphi + \dot{\varphi}\delta\dot{\varphi}\Big) \end{split}$$

where dots denote derivatives with respect to local proper time

• e.g., massless field in de Sitter ($\delta H = 0$) $\delta \ddot{\varphi} + 3H \delta \dot{\varphi} = 0$

general solution

separate universes:

$$\delta \varphi = C + Da^{-3}$$

homogeneous perturbations:

• mode equation in spatially-homogeneous limit ($k \rightarrow 0$)

$$v_0^{\prime\prime} + \left(k^2 - \frac{z^{\prime\prime}}{z}\right)v_0 = 0$$

V(\$)

• general solution

$$v_0 = \tilde{C}z + \tilde{D}z \int \frac{d\eta}{z^2}$$

– for massless field in de Sitter $z \propto a = -1/H\eta$

$$\delta\varphi_0 = \frac{\nu_0}{a} = C + D\eta^3$$

- identifying particular solution for adiabatic vacuum state

 $C = \frac{-iH}{\sqrt{2k^3}}$, scale-invariant growing mode on super-Hubble scales $D\eta^3 = \frac{H}{3\sqrt{2k^3}} \left(\frac{k}{aH}\right)^3$, decaying on super-Hubble scales

homogeneous perturbations:

• mode equation in spatially-homogeneous limit ($k \rightarrow 0$)

$$v_0^{\prime\prime} + \left(k^2 - \frac{z^{\prime\prime}}{z}\right)v_0 = 0$$

V(\$)

• general solution

$$v_0 = Cz + D \int \frac{d\eta}{z^2}$$

- for massless field in de Sitter $z \propto a = -1/H\eta$

$$\delta\varphi_0 = \frac{\nu_0}{a} = C + D\eta^3$$

- identifying particular solution for adiabatic vacuum state

 $\mathcal{P}_{C} = \left(\frac{H}{2\pi}\right)^{2}$, scale-invariant spectrum on super-Hubble scales $\mathcal{P}_{D} = \mathcal{O}\left(\frac{k}{aH}\right)^{6}$, suppressed on super-Hubble scales

the power of separate universes

- ordinary differential equations rather than partial DEs, $\varphi_{\vec{x}}(t)$
- describes nonlinear evolution on large scales
- conserved curvature perturbation for adiabatic perturbations $\dot{\zeta} \propto \delta P - \frac{\dot{P}}{-\delta \rho}$

$$\zeta \propto \delta P - \frac{1}{\dot{\rho}} \delta \rho$$

- used in stochastic inflation (Starobinsky) to describe nonlinear quantum diffusion of coarse-grained fields during inflation
- calculate curvature perturbation in terms of the local integrated Hubble expansion

$$\zeta = \delta N = \delta \left(\int H \, dt \right)$$

nonlinear δN for primordial density perturbations

Starobinsky '85; Sasaki & Stewart '96; Lyth & Rodriguez '05

after inflation: curvature perturbation ζ constant on uniform-density hypersurface

during inflation: field perturbations $\phi_I(x,t_i)$ on initial spatially-flat hypersurface

$$\zeta = N(\varphi_I) - \overline{N} = \sum_{I} \frac{\partial N}{\partial \varphi_I} \delta \varphi_I + \frac{1}{2} \sum_{I,J} \frac{\partial^2 N}{\partial \varphi_I \partial \varphi_J} \delta \varphi_I \delta \varphi_J + \cdots$$

Classical vs quantum inflation

Classical inflation

$$N = \int H \, dt = \int \frac{H}{\dot{\varphi}} \, d\varphi$$

• **Quantum** field fluctuations about fixed FLRW background lead to primordial metric perturbations in limit $k \ll aH$

Ultra-slow-roll inflation:

- V(\$)
- 2D phase space for field and momentum, $\pi = \dot{\phi}/H$

$$\begin{aligned} \frac{d\varphi}{dN} &= \pi \\ \frac{d\pi}{dN} &= -(3 - \xi)\pi - \frac{V'}{H^2} \end{aligned}$$

classical solution

-
$$\pi \propto e^{-3N}$$
 , $\varphi = \varphi_e + \frac{\pi}{3}(e^{-3N} - 1)$

• non-perturbative δN

$$N(\varphi,\pi) = -\frac{1}{3} \ln\left(1 - \frac{3(\varphi_e - \varphi)}{\pi}\right)$$
$$\zeta = \delta N = -\left(\pi + 3(\varphi_e - \varphi)\right)^{-1} \delta \varphi + \cdots$$

Namioo, Firouzjahi & Sasaki, arXiv:1210.3692

Cai et al, arXiv:1711.09998

Classical vs quantum inflation

Classical inflation

$$N = \int H \, dt = \int \frac{H}{\dot{\varphi}} \, d\varphi$$

 Quantum field fluctuations about fixed FLRW background lead to primordial metric perturbations

if PBHs form when $\zeta \sim 1$, then $\delta \varphi_{\text{quantum}} \sim \delta \varphi_{\text{classical}}$, *i.e., stochastic diffusion non-negligible*

Pend

Stochastic ultra-slow-roll:

• Langevin evolution of long-wavelength field + momentum, (φ, π) , with respect to e-folds, N:

$$\frac{d\varphi}{dN} = \pi + \hat{\xi}_{\varphi}$$
$$\frac{d\pi}{dN} = -(3 - \chi)\pi - \frac{\chi}{H^2} + \chi_{\pi}$$

ultra-slow roll, Bunch-Davies state on super-Hubble (<u>keg</u> << <u>aH</u>):

$$\langle \hat{\xi}_{\varphi}(N_1)\hat{\xi}_{\varphi}(N_2)\rangle = \left(\frac{H}{2\pi}\right)^2 \delta(N_1 - N_2), \quad \langle \hat{\xi}_{\pi}(N_1)\hat{\xi}_{\pi}(N_2)\rangle = 0$$

Firouzjahi, Nassiri-Rad & Noorbala (2018) Assadullahi, Pattison, Vennin & Wands, 2101.05741

Starobinsky (1992): ۲

$$V(\varphi) = \begin{cases} A_{+}(\varphi - \varphi_{T}) & \text{for } \varphi > \varphi_{T} \\ A_{-}(\varphi - \varphi_{T}) & \text{for } \varphi < \varphi_{T} \end{cases}$$

mode equation ٠

$$v_k^{\prime\prime} + \left(k^2 + \mu^2(\eta)\right)v_k = 0$$

where

$$\mu^2 = -\frac{2}{\eta^2} + \frac{3}{\eta_T} \left(\frac{A_+ - A_-}{A_+} \right) \delta(\eta - \eta_T)$$

general piecewise solution ٠

$$v_{k} = \frac{\alpha_{k}}{\sqrt{2k}} \left(1 - \frac{i}{k\eta}\right) e^{-ik\eta} + \frac{\beta_{k}}{\sqrt{2k}} \left(1 + \frac{i}{k\eta}\right) e^{ik\eta}$$

before transition:

 $\alpha_{k+} = 1$, $\beta_{k+} = 0$ (Bunch-Davies vacuum)

after transition:

 $\alpha_{k-} \neq 1 + \mathcal{O}(\Delta A/A_+), \ \beta_{k-} \neq \mathcal{O}(\Delta A/A_+)$ (excited state)

$$k\eta$$

• Starobinsky (1992):

$$V(\varphi) = \begin{cases} A_+(\varphi - \varphi_T) & \text{for } \varphi > \varphi_T \\ A_-(\varphi - \varphi_T) & \text{for } \varphi < \varphi_T \end{cases}$$

homogeneous solution after transition

$$\delta\varphi_0 = \frac{\nu_0}{a} = C_- + D_- \eta^3$$

- particular solution for excited state on super-Hubble scales ($k < k_T$)

$$C_{-} = \frac{-iH}{\sqrt{2k^{3}}} \left\{ 1 + \frac{2}{5} \frac{\Delta A}{A_{-}} \left(\frac{\mathbf{k}}{\mathbf{k}_{T}}\right)^{2} + \mathcal{O}\left(\frac{k}{k_{T}}\right)^{3} \right\}$$
$$D_{-} \eta^{3} = \frac{H}{3\sqrt{2k^{3}}} \left(\frac{k_{T}}{aH}\right)^{3} \mathcal{O}\left(\frac{\mathbf{k}}{\mathbf{k}_{T}}\right)^{2}$$

 gradient terms in the adiabatic growing mode before the transition, source the non-adiabatic decaying mode at the transition

Leach, Liddle, Sasaki & Wands (2003)

separate universe approach breaks down on some scales at transition

Jackson et al, arXiv:2311.03281

• comoving curvature before and after transition

 $R = \frac{v}{z} = \frac{H\delta\varphi}{\dot{\varphi}} = \zeta$ = constant for adiabatic perturbations on large-scales $k = 0.05 k_{\rm T}$ $|\mathcal{R}_k|(k^3/2\pi^2)^{1/2}$ credit Joe Jackson aHШ Exact 2 10^{-1} 10^{0} 10^{1} 10^{2} $\eta_{\rm T}/\eta$

 $V(\phi)$

1+

• comoving curvature before and after transition

 $R = \frac{v}{z} = \frac{H\delta\varphi}{\dot{\varphi}} = \zeta$ = constant for adiabatic perturbations on large-scales $k = 0.05 k_{\rm T}$ $|\mathcal{R}_k|(k^3/2\pi^2)^{1/2}$ credit Joe Jackson aHExact Ш R_{0+} 10^{-1} 10^{0} 10^{1} 10^{2} $\eta_{\rm T}/\eta$

 $V(\phi)$

1+

• comoving curvature before and after transition

 $R = \frac{v}{z} = \frac{H\delta\varphi}{\dot{\varphi}} = \zeta$ = constant for adiabatic perturbations on large-scales $k = 0.05 k_{\rm T}$ $|\mathcal{R}_k|(k^3/2\pi^2)^{1/2}$ credit Joe Jackson Exact aH R_{0+} Ш R_{0-} 10^{2} 10^{-1} 10^{0} 10^{1} $\eta_{\rm T}/\eta$

 $V(\phi)$

1+

• δN using separate universe approximation for $k < \sigma a H$

V(ø)

- | +

0

$$\delta N_k \simeq \frac{\partial N}{\partial \phi_{\rm in}} \left(\phi_*, \dot{\phi}_* \right) \delta \phi_{k*} + \frac{\partial N}{\partial \dot{\phi}_{\rm in}} \left(\phi_*, \dot{\phi}_* \right) \delta \dot{\phi}_{k*}$$

smooth inflection point: Rasanen & Tomberg (2019)

smooth inflection point:

• δN using separate universe approximation for $k < \sigma a H$

summary

- separate universe approach at a sudden transition
 - breaks down on finite range of super-Hubble scales
 - gradient terms generate non-adiabatic perturbation
- δN formalism to calculate primordial curvature perturbation
 - include the field's momentum beyond slow-roll limit
 - include particle production at transition (sub-H modes not in BD vacuum)
 - works before and after the transition, but not at the transition
 - need to include k^2 corrections in a gradient expansion
- stochastic inflation requires two correlated sources on noise
 - at Hubble crossing and at the transition (non-Markovian)
 - are quantum fluctuations effectively classical stochastic noise?
 - too many contradictory views already on stochastic inflation beyond slowroll!