

Quantum features in cosmological perturbations?

- J. Martin, A. Micheli, and V. Vennin, EPL 142, 18001
- J. Martin, A. Micheli, and V. Vennin, JCAP. 2022, 051
- A. Micheli and P. Peter, « Quantum Cosmological Gravitational Waves? » in Handbook of Quantum Gravity

Amaury Micheli

RIKEN iTHEMS, Wako

Context and motivations

Leading Scenario

Quantum fluctuations of matter and gravity during inflation gives initial conditions for structure formation in very good agreement with observation¹.

• Distribution of matter in the Universe is an (as of now, only) observational window on linearised quantum gravity!

Can we use it to probe this regime?

• In particular, a direct proof that inhomogeneities cannot have a classical origin would show that gravity can and should be quantised.

II - Naive quantum state of perturbations

Reasons to have hope

Quantum state cosmological perturbations

- Framework: GR and single field slow roll inflation, focus on scalar perturbations represented by Mukhanov-Sasaki v(x), same can be done for gravitational waves^{2,3}.
- Dynamics at quadratic order: only mixing $\pm k$ Fourier modes via

$$\hat{H}_{\boldsymbol{k},-\boldsymbol{k}} = \hat{\pi}_{\boldsymbol{k}} \hat{\pi}_{-\boldsymbol{k}} + k^2 \hat{v}_{\boldsymbol{k}} \hat{v}_{-\boldsymbol{k}} + \frac{z'}{z} \left(\hat{\pi}_{\boldsymbol{k}} \hat{v}_{-\boldsymbol{k}} + \hat{v}_{\boldsymbol{k}} \hat{\pi}_{-\boldsymbol{k}} \right) \quad \text{with} \quad \hat{\pi}_{\boldsymbol{k}} = \hat{v}_{\boldsymbol{k}}' - \frac{z'}{z} \hat{v}_{\boldsymbol{k}},$$
$$[\hat{v}_{\boldsymbol{k}}, \hat{\pi}_{\boldsymbol{k}'}] = i\hbar \delta \left(\boldsymbol{k} + \boldsymbol{k}' \right), \quad z = M_{\rm Pl} a \sqrt{2\epsilon_1}$$

- Evolve as parametric oscillators: $\hat{v}''_{k} + \left(k^2 \frac{z''}{z}\right)\hat{v}_{k} = 0$ Initial amplitude?
- Simplest assumption: vacuum initial state → 2-mode squeezed vacuum (TMSV)

Fluctuations of quantities in a TMSV?

• Vacuum initial state Gaussian + quadratic hamiltonian: state remains Gaussian.

4/11

Fluctuations in a TMSV

- Gaussian state completely determined by covariance matrix γ_{ij} made of 2-point correlation functions of creation/annihilation operators $\hat{c}_{\pm k}^{(\dagger)}$
- TMSV: Homogeneity and isotropy⁴: $n_k=\langle \hat{c}_{\pm {m k}}^{\dagger}\hat{c}_{\pm {m k}}\rangle$ number of particles $c_k=\langle \hat{c}_{{m k}}\hat{c}_{-{m k}}\rangle$ pair correlation
 - Purity of the state $p_k=1$ reduces it to two parameters: squeezing parameter r_k and angle φ_k : $n_k=\sinh^2(r_k);$ $c_k=-\sinh(2r_k)e^{i\varphi_k}/2$

Squeezing in inflation?

- Initially, uncorrelated vacuum fluctuations: $n_k = c_k = 0$
- After Hubble crossing, strong squeezing $r_k \approx N$ and correlations: $n_k \approx |c_k| \approx e^{2N}$

How quantum are they?

Quantum correlations

- Many measures of 'quantumness' of correlations between two systems \mathcal{S}_1 and \mathcal{S}_2 e.g. Bell inequalities.
- Consider Quantum Discord $\mathcal{D}\left(\mathcal{S}_{1},\mathcal{S}_{2}\right)$ constructed such that

 \mathcal{S}_i described by classical probabilities

$$\mathcal{D}\left(\mathcal{S}_1,\mathcal{S}_2\right)=0$$

Quantum setting $\mathcal{D}\left(\mathcal{S}_1,\mathcal{S}_2\right) \geq 0$

N number of e-folds

Discord of $\pm k$ pairs? Large⁵

Take Home Message 1

In the sense of most non-classicality criteria, two-mode squeezing generates strong quantum correlations between $\pm k$ modes⁶.

Robustness?

Detectability?

5. [arXiv:1510.04038 Martin and Vennin]

6/11

6. [arXiv:2211.10114 Martin, Micheli, and Vennin]

III - Universe is not an ideal quantum optics experiment

The caveats

1) Robustness? - A simple model of decoherence

- Most systems ${\mathcal S}$ are not isolated. They interact and get correlated with their environment ${\mathcal E}$.
- Generically reduces purity of the state and tend to classicalise internal correlations
 Decoherence
- Minimal decoherence model for perturbations:
 - S = a pair of modes $\pm k$
 - \mathcal{E} = other pairs $\pm k'$ of perturbations or modes of other fields
 - Take $\hat{\rho}_{\pm k}$ to be a mixed 2-mode squeezed state^{4,6} parametrised by r_k, φ_k and purity $0 \le p_k \le 1$.
- Can be dynamically realised by considering a linear coupling and deriving a Lindblad equation⁷.
- 4. [arXiv:0505379 Campo and Parentani]

1) Robustness? - Weakened correlations

• Discord in presence of decoherence^{6,7}

Take Home Message 2

Quantum correlations can always be erased by sufficient decoherence but there is a competition between correlation build up and interaction erasing quantum features^{4,6,7}.

Left to answer: Where are we in this plot for the precise dynamics of inflation?

6. [arXiv:2211.10114 Martin, Micheli, and Vennin]

7. [arXiv:2112.05037 Martin, Micheli and Vennin]

4. [arXiv:0505379 Campo and Parentani]

2) Detectability?

- Measured operators fixed by cosmological dynamics: only $\hat{\zeta} \sim \hat{v}$ Is it sufficient? No
- For a generic operator $f(\hat{v}_{\pm k}, \hat{\pi}_{\pm k})$ compare:

True quantum expectation values with TMSV

Stochastic average with a Gaussian probability $W(v_{\pm k}, \pi_{\pm k})$ with same covariance as TMSV

$$\langle f(\hat{v}_{\pm \mathbf{k}}, \hat{\pi}_{\pm \mathbf{k}}) \rangle$$
 $\langle f(v_{\pm \mathbf{k}}, \pi_{\pm \mathbf{k}}) \rangle_{\text{st.}} = \int dv_{\pm \mathbf{k}} d\pi_{\pm \mathbf{k}} f(v_{\pm \mathbf{k}}, \pi_{\pm \mathbf{k}}) W(v_{\pm \mathbf{k}}, \pi_{\pm \mathbf{k}})$

Take Home Message 2

Because squeezing is very large, for polynomial $f(\hat{v}, \hat{\pi})$, we have $\langle f(\hat{v}, \hat{\pi}) \rangle \approx \langle f(v, \pi) \rangle_{\text{st.}^{8,3}}$.

Conclusions and perspectives

• In this simple model, correlations are simple, perturbations exhibit quantum correlations, which might persist in presence of decoherence, but seems very challenging to measure them because requires complicated combinations of \hat{v} and $\hat{\pi}$.

• To hope to find quantum signatures in the perturbations it seems necessary to consider richer situations beyond Gaussian level⁹ or with more fields¹⁰.

9. [arXiv:2001.09149 Green and Porto]

10. [arXiv:1508.01082 Maldacena]

Thank you for your attention!

Bibliography

Based on:

- L. P. Grishchuk and Y. V. Sidorov, Squeezed Quantum States of Relic Gravitons and Primordial Density Fluctuations, Phys. Rev. D 42, 3413 (1990)
- D. Polarski and A. A. Starobinsky, *Semiclassicality and Decoherence of Cosmological Perturbations*, Class. Quantum Grav. **13**, 377 (1996)
- A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec, *Inflation and Squeezed Quantum States*, Phys. Rev. D **50**, 4807 (1994).
- C. Kiefer and D. Polarski, *Emergence of Classicality for Primordial Fluctuations: Concepts and Analogies*, Ann. Phys. **510**, 137 (1998).
- D. Campo and R. Parentani, *Inflationary Spectra and Partially Decohered Distributions*, Phys. Rev. D **72**, 045015 (2005).

and:

- J. Martin, A. Micheli, and V. Vennin, Comparing Quantumness Criteria, EPL 142, 18001.
- J. Martin, A. Micheli, and V. Vennin, Discord and Decoherence, JCAP. 2022, 051 (2022).
- A. Micheli and P. Peter, Quantum Cosmological Gravitational Waves? In « Handbook of Quantum Gravity », Springer.