NANOGrav Signal from Ultra Slow-Roll Inflation

Alireza Talebian

School of Astronomy

Institute for Research in Fundamental Sciences

YITP long-term workshop Gravity and Cosmology 2024 Jan 29 (Mon)

Gravitational Waves: A New Window onto the Universe

A brief history of GW physics: past, present, future

1916 Albert Einstein predicts GWs based on his theory of general relativity 2016 LIGO annouces first direct detection of a GW event (GW150914) 202x Next milestone: Detection of a stochastic GW background (GWB)

Big news on 29th june Compelling evidence for a GWB reported by several teams!

© nanograv.org

Cosmic Background of the 21th century

CMB: Cosmic microwave background

Relic photons from the early Universe

[Sato-Polito, Kamionkowski: 2305.05690]

GWB: Gravitational-wave background

Relic gravitons from the early Universe \sim or \sim astrophysical signal

Pulsars: cosmic clocks scattered across the Milky Way

Cosmic lighthouse

© nanograv.org

PTAs are galaxy-sized GW detectors that allow us to search for nHz GWs

© nanograv.org

Hallmark signature in cross-correlation of timing residuals of pulsar pairs

Quadrupolar correlations described by Hellings–Downs (HD) curve [Hellings, Downs: Astrophys. J. 265 (1983) L39]

Hellings-Downs curve

Compelling evidence for HD correlations

2306.16213: NANOGrav

68 pulsars, 16 yr of data, HD at $\sim 3 \cdots 4\,\sigma$

2306.16215: PPTA

2306.16214: EPTA+InPTA

2306.16216: CPTA

Interpretation: SMBHBs (realistic) or new physics (speculative)

Supermassive black-hole binaries

GWs from the Big Bang

SMBHBs: No SMBHB mergers observed \rightarrow data-driven field thanks to PTAs **New physics**: Probe cosmology at early times, particle physics at high energies

BSM scenarios: Inflationary gravitational waves, **scalar-induced gravitational waves**, cosmological phase transition, cosmic strings, domain walls, axions, and many more

New physics: many BSM models predicting a GWB from the Big Bang

Cosmic defects Cosmic strings, domain walls

Inflation Non-minimal blue-tilted models

Phase transition Modified QCD transition, dark sector

Scalar perturbations Associated with primordial black holes PBH dark matter, supermassive BHs

NANOGrav 15-year New-Physics Signals

© arXiv: 2306.16219

Single (Slow-roll) Inflation

Perturbations: Turn on Quantum Mechanics

 $\phi(t, \mathbf{x}) = \phi(t) + \delta \phi(t, \mathbf{x})$

Modes exit the horizon during Inflation and re-enter during RD or MD era

Ozsoy&Tasinato (2301.03600)

Scalar-induced gravitational waves (SIGWs)

$$ds^{2} = -a^{2} \left[(1+2\Phi)d\tau^{2} + \left((1-2\Psi)\delta_{ij} + \frac{1}{2}h_{ij} \right) dx^{i}dx^{j} \right]$$
$$\Phi \simeq \Psi$$

$$h_{\mathbf{k}}^{\lambda''}(\eta) + 2\mathcal{H}h_{\mathbf{k}}^{\lambda'}(\eta) + k^2 h_{\mathbf{k}}^{\lambda}(\eta) = 4S_{\mathbf{k}}^{\lambda}(\eta),$$

$$S_{\mathbf{k}}^{\lambda} = \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} \, \varepsilon_{ij}^{\lambda}(\hat{\mathbf{k}}) \, q^{i} q^{j} \left[2\Phi_{\mathbf{q}} \Phi_{\mathbf{k}-\mathbf{q}} + \left(\mathcal{H}^{-1}\Phi_{\mathbf{q}}' + \Phi_{\mathbf{q}}\right) \left(\mathcal{H}^{-1}\Phi_{\mathbf{k}-\mathbf{q}}' + \Phi_{\mathbf{k}-\mathbf{q}}\right) \right] \qquad \Phi_{\mathbf{k}} = \frac{2}{3}\mathcal{T}(\mathbf{k}\tau)\mathcal{R}_{\mathbf{k}}.$$

$$\begin{split} \bar{\Omega}_{\rm GW}^{\rm ind}\left(f\right) &= \int_{0}^{\infty} \mathrm{d}v \int_{|1-v|}^{1+v} \mathrm{d}u \,\mathcal{K}\left(u,v\right) \mathcal{P}_{\mathcal{R}}\left(uk\right) \mathcal{P}_{\mathcal{R}}\left(vk\right) \\ \Omega_{\rm GW}^{\rm ind}\left(f\right) &= \Omega_{\rm r}\left(\frac{g_{*}\left(f\right)}{g_{*}^{0}}\right) \left(\frac{g_{*,s}^{0}}{g_{*,s}\left(f\right)}\right)^{4/3} \bar{\Omega}_{\rm GW}^{\rm ind}\left(f\right) \end{split}$$

Ultra-Slow-Roll (USR) model

USR inflation is a setup with a flat potential (Kinney 2006)

It was proposed as an example of single field model violating Maldacena's non-Gaussianity condition (M. H. Namjoo, H. F., M. Sasaki, 2012)

The background equations are given by

$$\ddot{\phi} + 3H\dot{\phi} = 0$$
, $3M_P^2H^2 = \frac{1}{2}\dot{\phi}^2 + V_0 \simeq V_0$,

The setup is in a non-attractor phase so $N = N(\phi, \phi)$.

The setup: SR-USR-SR

In collaboration with Hassan Firouzjahi arXiv: 2307.03164

The setup is a three-phase model of inflation:

 $SR \rightarrow USR \rightarrow SR$

The CMB modes leave the horizon in first SR phase.

The USR modes experience growth: $\mathcal{R} \propto a(t)^3$

 $V(\phi)$ $\tau_i \le \tau \le \tau_e$ USR $\varphi_{\rm CMB}$

USR modes lead to PBHs formation and SIGWs during RD era!

The setup: SR-USR-SR

 $V(\phi)$

A key feature of the USR setup is that $\dot{\phi}$ falls off exponentially:

$$\dot{\phi} \propto {\sf a}(t)^{-3} \longrightarrow \epsilon \equiv - rac{\dot{H}}{H^2} \propto {\sf a}(t)^{-6}$$

Here h measures the sharpness of the transition:

For a sharp transition $h \ll -1$. For a mild transition $h \longrightarrow 0$.

As ϵ falls off exponentially, \mathcal{R} grows exponentially:

$$\mathcal{R}_{k} = \frac{H}{M_{P}\sqrt{4\epsilon_{i}k^{3}}} \left(\frac{\tau_{i}}{\tau}\right)^{3} (1+ik\tau)e^{-ik\tau}$$

The setup: SR-USR-SR

 $(h, \Delta N)$ parameter space

6

 $V(\phi)$

$$\Delta N$$
 : duration of the USR period $\Delta N = \ln \left(rac{ au_i}{ au_e}
ight)$

Here h measures the sharpness of the transition:

For a sharp transition $h \ll -1$. For a mild transition $h \longrightarrow 0$.

$$\ll -1.$$

 $\rightarrow 0.$ $h \equiv -6\sqrt{\frac{\epsilon_V}{\epsilon_e}}$

$$\mathcal{P}_{\mathcal{R}}(k, au=0)\simeq \mathcal{P}_{ ext{CMB}}\;e^{6\Delta N}\;ig(rac{h-6}{h}ig)^2g(h, au_{ ext{i}}, au_{ ext{e}}ig)$$
Local-type Non-G: $f_{NL}=rac{5h^2}{2(h-6)^2}$

 ΔN

Enhanced Power spectrum

SIGW-USR: NanoGrav signal

SIGW-USR: future observations

 $\begin{aligned} \mathbf{Axion-USR\ Model} & \text{In collaboration with Hassan Firouzjahi} \\ S = \int d^4x \sqrt{-g} \Big[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\alpha \phi}{4 f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} \Big] \\ & \text{SR-USR-SR} \end{aligned}$

The rolling field during the first SR phase contributes to instability parameter

Non-perturbative gauge field production:

$$A_k^{(-)} \propto e^{\pi\xi}$$

Primordial GWs generations

$$\begin{split} &(\partial_{\tau}^{2} + k^{2} - \frac{2}{\tau^{2}})\hat{h}_{k}^{\lambda}(\tau) = \frac{-\mathbf{a}^{3}}{M_{\mathrm{Pl}}}\Pi_{ij}^{\lambda}(\mathbf{k}) \int \frac{\mathrm{d}^{3}k \ e^{-i\mathbf{k}\cdot\mathbf{x}}}{(2\pi)^{3/2}} \left[E_{i}E_{j} + B_{i}B_{j}\right] \\ &\text{transverse traceless projector } \Pi_{ij}^{\lambda} \\ &\hat{h}_{\lambda} = \hat{h}_{\lambda}^{(\mathrm{vacuum})} + \hat{h}_{\lambda}^{(\mathrm{source})} \\ &\mathbf{A}_{-} = 0 \\ &\mathbf{A}_{+}(\tau, k) \simeq \frac{1}{\sqrt{2k}} \left(\frac{k}{2\xi aH}\right)^{1/4} e^{\pi\xi - 2\sqrt{2\xi k/aH}} \\ &\mathbf{Chiral GWs} \ \frac{f_{\mathrm{R}}(\xi) \sim 10^{-7}/\xi^{6}}{f_{\mathrm{L}}(\xi) \sim 10^{-9}/\xi^{6}} \\ &\mathcal{P}_{\lambda}^{(\mathrm{p})}(k) \simeq \frac{H^{2}}{\pi^{2}M_{\mathrm{Pl}}^{2}} \left(1 + \frac{2H^{2}}{M_{\mathrm{Pl}}^{2}}f_{\lambda}(\xi)e^{4\pi\xi}\right) \end{split}$$

Gravitational Waves Production

Summary:

- Importance of stochastic GW Background
- The stochastic gravitational wave background (SGWB) detected recently by the pulsar timing arrays (PTAs) observations may have cosmological origins.
- We generated SIGW in nanoHertz frequency from:
 - I- a three-phase model of inflation: Slow-Roll > USR > Slow-Roll
 - II- Axion-USR model

Thank You for Your Attention!

Primordial Black Holes

- Black holes formed in the early Universe
 (soon after the Big Bang through a non-stellar way)
 - Gravitational collapse of the overdense region of inhomogeneities During the radiation dominated era

$$\beta \simeq \int_{\mathcal{R}_c}^{\infty} f_{\mathcal{R}}(x) \, \mathrm{d}x \simeq \frac{1}{2} \mathrm{Erfc}\left(\frac{\mathcal{R}_c}{\sqrt{2\mathcal{P}_{\mathcal{R}}}}\right)$$

$$f_{\rm PBH}(M_{\rm PBH}) \simeq 2.7 \times 10^8 \left(\frac{M_{\rm PBH}}{M_{\odot}}\right)^{-\frac{1}{2}} \beta(M_{\rm PBH})$$

$$\frac{M_{\rm PBH}}{M_{\odot}} \simeq 30 \left(\frac{k_{\rm p}}{3.2 \times 10^5 \,\,{\rm Mpc}^{-1}}\right)^{-2}$$

PBH abundance

$$\begin{split} \textbf{Axion-USR Model} & \text{In collaboration with Hassan Firouzjahi}\\ S &= \int d^4x \sqrt{-g} \Big[\frac{M_{\text{Pl}}^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \underbrace{\alpha \phi}_{4f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} \Big] \\ & \downarrow \\ \textbf{SR-USR-SR} & \text{Chern-Simon term} \\ & \textbf{SR-USR-SR} & \textbf{Inclusions} \\ & \textbf{tachyonic production of gauge field fluctuations} \\ & \textbf{during SR phase} \\ \vec{A''} - \nabla^2 \vec{A} - \frac{\alpha}{f_a} \phi' \ \nabla \times \vec{A} = 0 \\ & J_{\text{em}} = \frac{\alpha}{f_a} \vec{E} \cdot \vec{B} \\ & \rho_{\text{em}} = \frac{1}{2} (\vec{E}^2 + \vec{B}^2) \\ \hline \mathcal{R}_{\mathbf{k}} = \mathcal{R}_{\mathbf{k}}^{(\text{vac})} + \mathcal{R}_{\mathbf{k}}^{(J)} \end{split}$$