Analytic Formulae for Inflationary Correlators with Dynamical Mass

Fumiya Sano

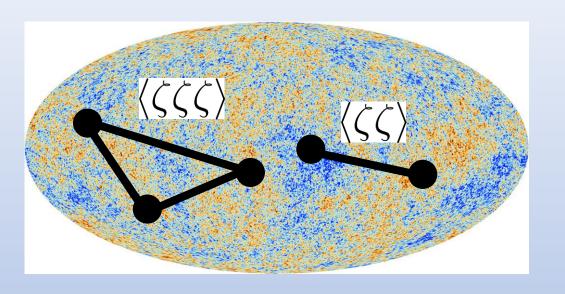
IBS CTPU-CGA / Tokyo Tech

Based on arXiv:2312.09642

Collaboration with Shuntaro Aoki, Toshifumi Noumi, and Masahide Yamaguchi

"Gravity and Cosmology 2024" at YITP, Jan. 29, 2024

Observables for Inflationary Cosmology



2pt. correlation function (power spectrum)

3pt. correlation function (bispectrum) ← Not yet observed in sufficient accuracy

$$\langle \zeta_1 \zeta_2 \zeta_3 \rangle_{\text{inf. end}} = (2\pi)^7 \delta^3(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{P_{\zeta*}^2}{(k_1 k_2 k_3)^2} S\left(\frac{k_1}{k_3}, \frac{k_2}{k_3}\right)$$
 [Chen and Wang '09]

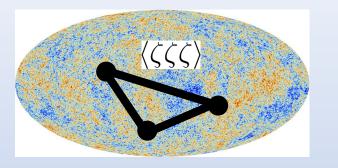
S: dim. less, model dependent shape function

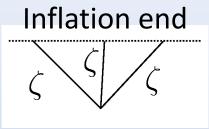
 $\langle \zeta \zeta \zeta \rangle$: effects of interactions in perturb. theory of QFT

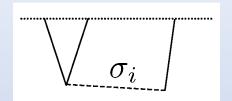
Probe for inflation models and BSM physics

Cosmological Collider Project

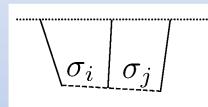
[Chen and Wang '09, Noumi et al. '12, Arkani-Hamed and Maldacena, '15, Lee et al. '16 etc.]

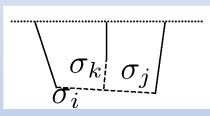






$$+$$



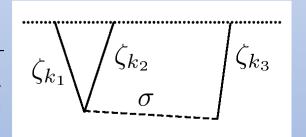


Signals for massive particles

$$S \sim \left(\frac{k_3}{k_1}\right)^{1/2} e^{-\pi\mu} \cos\left(\mu \log \frac{k_1}{k_3} + \delta\right) \quad \mu = \sqrt{\left(\frac{m_\sigma}{H}\right)^2 - \frac{9}{4}} \quad \zeta_{k_1} \sqrt{\zeta_{k_2}} \qquad \zeta_{k_3}$$

$$k_3 \ll k_1 \simeq k_2$$

$$\mu = \sqrt{\left(\frac{m_\sigma}{H}\right)^2 - \frac{9}{4}}$$



Mass: wavelength of the shape function

Dictionary for BSM particles in high energy scale $\rho_{\rm inf}^{1/4} \lesssim 10^{15}~{ m GeV}$

Supersymmetry, gauge symmetry, CP violation, swampland, ... [Baumann and Green '12] [Maru and Okawa '21] [Liu et al. '21] [Reece et al. '22]

Q. Distinction of Interactions like Colliders on Ground?

Some Directions:

- Phase of oscillation [Qin and Xianyu '22]

$$S \sim \left(\frac{k_{\rm L}}{k_{\rm S}}\right)^{1/2} e^{-\pi\mu} \cos\left(\mu \log \frac{k_{\rm L}}{k_{\rm S}} + \delta\right)$$
 Expected to be uniquely determined by $\mu, \ \frac{k_{\rm L}}{k_{\rm S}}, \ {\rm spin}, \ {\rm diagram}$

- Non-unity sound speed in EFT [Jazayeri et al. '22, Jazayeri and Renaux-Petel '23]

A peak in not-so-squeezed region $rac{k_{
m L}}{k_{
m S}}\sim c_s$ (sound horizon crossing)

- Beyond scale invariant approx. (our work)

Scale dependence De Sitter sym. breaking Non-der. ints.

Derivative ints.: $f(\partial_{\mu}\phi, \sigma, \partial_{\mu}\sigma)$

- respect shift sym. of ϕ

(de Sitter)

- EFT, SUGRA, etc.

Non-derivative ints.: $f(\phi, \sigma, \partial_{\mu}\sigma)$

- break shift sym.

(slow-roll effects)

- Higgs, axion, extra dim., etc.

$$\phi \bar{\psi} \psi \ \phi F^{\mu\nu} \tilde{F}_{\mu\nu} \ e^{\alpha \phi/M_{\rm pl}} \sigma^2$$

Demonstration of Scale Dependence

Approximated / numerical results: [Wang '19, Reece et al. '22]

Action for Inflaton ϕ + massive scalar spectator σ

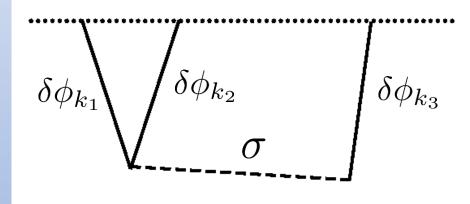
$$S = \int dx^4 \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} R - \frac{1}{2} (\partial_\mu \phi)^2 - V(\phi) - \frac{1}{2} (\partial_\mu \sigma)^2 - \frac{1}{2} m_0^2 \sigma^2 - M_{\rm pl} y \phi \sigma^2 + \mathcal{L}_{\rm diag} \right]$$
 Sym. breaking interaction

Interactions for the diagram

$$\mathcal{L}_{\text{diag}} \supset c_2(-\tau)^{-3}\sigma\delta\phi' + c_3(-\tau)^{-2}\sigma(\delta\phi')^2$$

Time dependent mass (excursion of inflaton)

$$m_{\rm eff}^2 = m_0^2 + 2y M_{\rm pl} \phi_0 \qquad \phi_0' = \frac{\sqrt{2\epsilon} M_{\rm pl}}{\tau}$$
 Slow-roll approx.
$$\phi_0 = \sqrt{2\epsilon} M_{\rm pl} \log \frac{\tau}{\tau_0}$$
 Linear approx.
$$\phi_0(\tau) \simeq \phi_{*0} - \sqrt{2\epsilon} M_{\rm pl} \left(1 - \frac{\tau}{\tau_*}\right)$$
 Initial condition
$$\phi_{*0} \simeq \sqrt{2\epsilon} M_{\rm pl} \log \frac{\tau_*}{\tau_0}$$
 Additional scale τ_0, τ_*



Linear approx.
$$\phi_0(au) \simeq \phi_{*0} - \sqrt{2\epsilon} M_{
m pl} igg(1 - rac{ au}{ au_*}igg)$$

Effects of Time-Dependent Mass

Evo. of perturb. Time of horizon crossing

$$k\tau = -1$$

Constant mass: Scale invariant $S(k_1/k_3, k_2/k_3)$

Time dependent mass: Scale dependent

Different mass for each horizon crossing scale

Dependence on values of scales itself

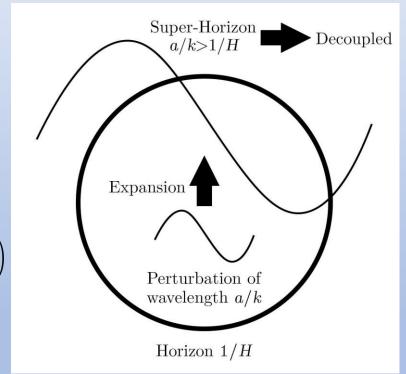
Fixing additional scales

Two additional scales $au_0, au_*
angle rac{\phi_0(au) \simeq \phi_{*0} - \sqrt{2\epsilon} M_{
m pl} \left(1 - rac{ au}{ au_*}
ight)}{\phi_{*0} \simeq \sqrt{2\epsilon} M_{
m pl} \log rac{ au_*}{ au_*}}$

$$\begin{cases} k_i \tau_* = -1 & \text{(expansion at horizon crossing)} \end{cases}$$

$$\phi_{*0} \simeq \sqrt{2\epsilon} M_{\rm pl} \log \left(\frac{k_0}{k_*}\right) \sim \mathcal{O}\!\left(N_{\rm CMB} \sqrt{2\epsilon} M_{\rm pl}\right) \text{ at the largest scale of CMB}$$

$$\tau_0, \tau_* \longleftrightarrow k_0, k_*$$



$$k_* \sim 10^{-4} \; {\rm Mpc}^{-1}$$

Analytical Results

Bispectrum

$$S = \sum_{a,b=\pm} \left[\frac{k_1 k_2}{k_3^2} \mathcal{U}_{ab}^{0,-2} \left(\frac{2k_3}{k_{123}}, \frac{k_3}{k_0} \right) + \frac{k_2 k_3}{k_1^2} \mathcal{U}_{ab}^{0,-2} \left(\frac{2k_1}{k_{123}}, \frac{k_1}{k_0} \right) + \frac{k_3 k_1}{k_2^2} \mathcal{U}_{ab}^{0,-2} \left(\frac{2k_2}{k_{123}}, \frac{k_2}{k_0} \right) \right]$$

where

$$\mathcal{U}_{\pm\pm}^{p_{1}p_{2}}(u, v) = D_{1}(p_{1}, p_{2}, \mu_{v}, \gamma) u^{5+p_{12}} {}_{3}F_{2} \begin{bmatrix} 1, 3+p_{2} \mp i\gamma, 5+p_{12} \\ \frac{7}{2}+p_{2}-i\mu_{v}, \frac{7}{2}+p_{2}+i\mu_{v} \end{bmatrix} u$$

$$\mp D_{2}(p_{1}, p_{2}, \mu_{v}, \gamma) u^{5/2+p_{1}\pm i\mu_{v}} {}_{2}\mathcal{F}_{1} \begin{bmatrix} p_{1}+\frac{5}{2}\pm i\mu_{v}, \frac{1}{2}\pm i\mu_{v} \mp i\gamma \\ 1\pm 2i\mu_{v} \end{bmatrix} u + (\mu_{v} \to -\mu_{v})$$

$$\mathcal{U}_{\pm\mp}^{p_1 p_2} (u, v) = C(p_1, p_2, \mu_v, \gamma) u^{5/2 + p_1 \pm i\mu_v} {}_{2} \mathcal{F}_{1} \begin{bmatrix} p_1 + \frac{5}{2} \pm i\mu_v, \frac{1}{2} \pm i\mu_v \mp i\gamma \\ 1 \pm 2i\mu_v \end{bmatrix} + (\mu_v \to -\mu_v)$$

$$k_{123} = k_1 + k_2 + k_3$$
, $\gamma = \pm \frac{y\sqrt{2\epsilon}M_{
m pl}^2}{H^2}$, $\mu_v^2 = \frac{1}{H^2}\Big(m_0^2 + 2y\sqrt{2\epsilon}M_{
m pl}^2\Big)\log v \mp 2y\sqrt{2\epsilon}M_{
m pl}^2\Big) - \frac{9}{4}$

from evaluation at horizon crossing

Observational Signals

cf. const. mass

$$S \sim \left(\frac{k_3}{k_1}\right)^{1/2} e^{-\pi\mu} \cos\left(\mu \log \frac{k_3}{k_1}\right) \qquad \mu = \sqrt{\left(\frac{m_0}{H}\right)^2 - \frac{9}{4}}$$

Scale dependence: mass of short mode at the time of horizon crossing

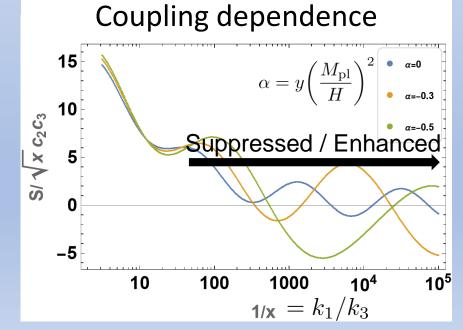
$$S \sim \left(\frac{k_3}{k_1}\right)^{1/2} e^{-\pi\mu \left(\underbrace{v\frac{k_3}{k_1}}\right)} \cos\left[\mu \left(v\frac{k_3}{k_1}\right) \log\frac{k_3}{k_1}\right] \quad \text{in} \quad k_3 \ll k_1 \simeq k_2$$

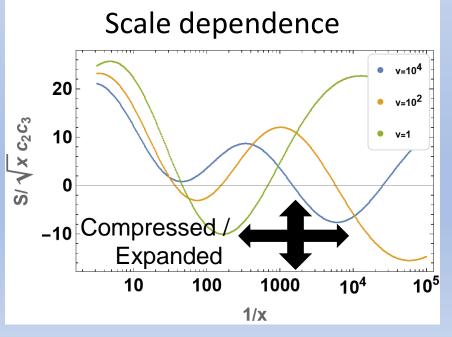
$$v = k_1/k_0 = 10^4 k_1, \quad \mu^2 = \frac{1}{H^2} \left(m_0^2 + 2y\sqrt{2\epsilon}M_{\rm pl}^2 \log\left(\underbrace{v\frac{k_3}{k_1}}\right) \mp 2y\sqrt{2\epsilon}M_{\rm pl}^2\right) - \frac{9}{4}$$

$$(vk_3/k_1 = k_3/k_0)$$

$$\Delta \phi \sim N \sqrt{\epsilon} M_{
m pl}$$
 [Lyth '96]

Not slow-roll suppressed thanks to the hierarchy $M_{
m pl}/H\gtrsim 10^5$ in case of non-der. ints.





Probing Ints. 1: Der. vs Non-Der. Ints.

Scale dependence: mass at horizon crossing

(1) Non-derivative coupling, e.g., $\frac{\alpha}{M_{\rm pl}^{n-2}}\phi^n\sigma^2$

$$\frac{\Delta m_{\rm eff}^2}{H^2} \simeq \alpha \left(\frac{M_{\rm pl}}{H}\right)^2 \epsilon^{n/2} \left(\log\left(v\frac{k_3}{k_1}\right)\right)^n$$

Large scale dependence

(2) Derivative coupling, e.g., $\frac{\beta}{M_{\rm pl}^{n(m+1)-2}} (\partial^m \phi)^n \sigma^2$ nm: even $\frac{\Delta m_{\rm eff}^2}{H^2} \simeq \beta \left(\frac{H}{M_{\rm pl}}\right)^{nm-2} \epsilon^{nm-n/2} \left(\log\left(v\frac{k_3}{k_1}\right)\right)^n$

$$\frac{\Delta m_{\rm eff}^2}{H^2} \simeq \beta \left(\frac{H}{M_{\rm pl}}\right)^{nm-2} \epsilon^{nm-n/2} \left(\log\left(v\frac{k_3}{k_1}\right)\right)^r$$

Stronger suppression because of slowroll $\partial_t^m \phi \sim \epsilon^{m-1/2} H^m M_{\rm pl}$

Probing Ints. 2: Among Non-Der. Ints.

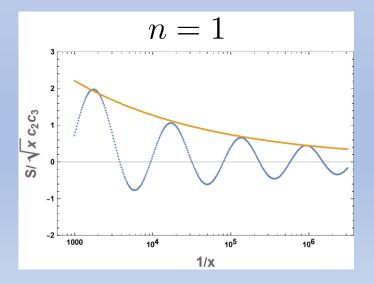
Boltzmann suppression of the signal $S \sim \left(\frac{k_3}{k_1}\right)^{1/2} e^{-\pi\mu} \cos\left(\mu \log \frac{k_3}{k_1}\right)$

E.g., power function
$$\frac{\alpha}{\Lambda^{n-2}}\phi^n\sigma^2$$
 \Longrightarrow $\frac{\Delta m_{\mathrm{eff}}^2}{H^2}\simeq \alpha \left(\frac{M_{\mathrm{pl}}}{\Lambda}\right)^{n-2}\left(\frac{M_{\mathrm{pl}}}{H}\right)^2\epsilon^{n/2}\left(\log\left(v\frac{k_3}{k_1}\right)\right)^n$

Determination of n from the suppression

More generally, $\mathcal{L}_{int} = g(\phi)\sigma^2$

Suppression / enhancement rate is uniquely characterized by $g(\phi)$

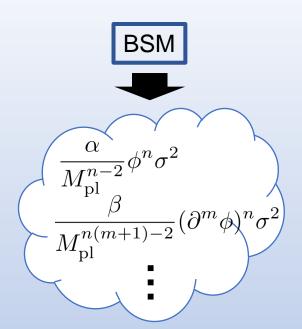


Summary

Cosmological collider project:

- Dictionary for particles
$$S \sim \left(\frac{k_3}{k_1}\right)^{1/2} e^{-\pi\mu}\cos\left(\mu\log\frac{k_3}{k_1}\right)$$
 - Scale dependence: types of interactions \circ

Signals: horizon crossing (e.g., $\mu \to \mu(vk_3/k_1)$)



Distinguishing ints. by scale dependence in $\Delta m_{ m eff}$:

O Derivative vs. Non-derivative interactions

Derivative ints.

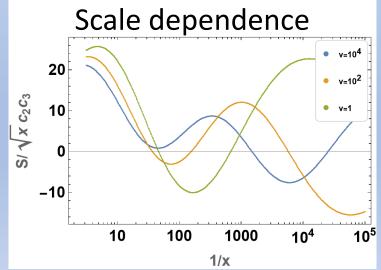
Non-derivative ints.

$$\left(\frac{H}{M_{\rm pl}}\right)^{nm-2} \epsilon^{nm-n/2} \left(\log\left(v\frac{k_3}{k_1}\right)\right)^n < \left(\frac{M_{\rm pl}}{H}\right)^2 \epsilon^{n/2} \left(\log\left(v\frac{k_3}{k_1}\right)\right)^n$$

Observably large thanks to $M_{\rm pl}/H \gtrsim 10^5$

O Determining a non-der int. $g(\phi)\sigma^2$

$$e^{-\pi\mu} \sim \exp\left[-\frac{\pi}{H}\sqrt{g\left(M_{\rm pl}\sqrt{2\epsilon}\log\left(v\frac{k_3}{k_1}\right)\right)}\right]$$



Appendices

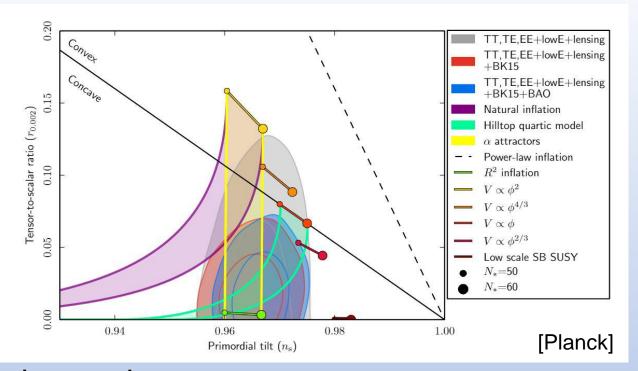
Planck 2018

Linear perturbations:

$$P_{\zeta} \simeq 2 \times 10^{-9}$$
, $n_s \simeq 0.0965$

Tensor: not yet detected

$$r = \frac{P_{\gamma}}{P_{\zeta}} < 0.056$$



Isocurvature perturbation: not detected

Single field inflation is preferred.

Non-Gaussianities:

Squeezed: $f_{
m NL}^{
m local}=-0.9\pm5.1$, Equilateral: $f_{
m NL}^{
m equil}=-26+47$

Form factor: insufficient resolution

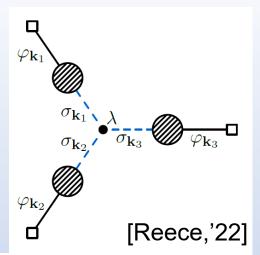
Future experiment: 21 cm line resolution $\mathcal{O}(10^{-2})$

Non-derivative Ints., Numerical

[Reece et al. '22]

Setup

Effective mass of the heavy particle: $m_{\rm eff} = e^{\alpha\phi/M_{\rm pl}} m_0^2$



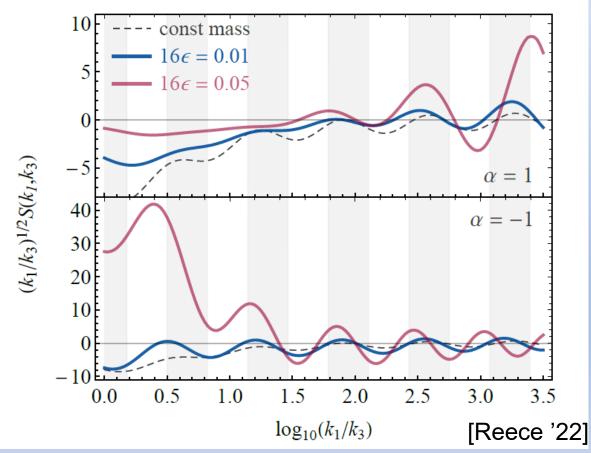
Oscillatory feature

Wavelength or Amplitude amplified or dumped

Things not clear in numerical work:

- -physical interpretation
- -model dependence
- -scale dependence

Breaking down of de Sitter



Mode Functions of the Heavy Field

Mode expansion

$$\sigma(x) = \int \frac{d^3 \mathbf{k}}{(2\pi)^3} (v_k(\tau) a_{\mathbf{k}} + v_k^*(\tau) a_{-\mathbf{k}}^{\dagger}) e^{i\mathbf{k}\cdot\mathbf{x}} ,$$

$$[a_{m k},a^{\dagger}_{m k'}]=(2\pi)^3\delta(m k-m k')$$
 v_k : Mode function

Equation of motion for σ

$$v_k'' - \frac{2}{\tau}v_k' + \left(k^2 + \frac{m_{\rm eff}^2}{H^2\tau^2}\right)v_k = 0 \quad , \qquad m_{\rm eff}^2 = m_0^2 + 2yM_{\rm pl}^2 \left[\frac{\phi_{*0}}{M_{\rm pl}} \mp \sqrt{2\epsilon} \left(1 - \frac{\tau}{\tau_*}\right)\right]$$

Mode functions for σ (Bunch-Davies vacuum)

$$v_k = \frac{e^{\pi \gamma/2}}{\sqrt{2k}} (-H\tau) W_{-i\gamma,i\mu}(2ik\tau)$$

$$\mu^{2} = \frac{1}{H^{2}} \left(m_{0}^{2} + 2y M_{\text{pl}} \phi_{*0} \mp 2y \sqrt{2\epsilon} M_{\text{pl}}^{2} \right) - \frac{9}{4}$$

$$\gamma = \pm \frac{y \sqrt{2\epsilon} M_{\text{pl}}^{2}}{H^{2}}$$

 $y \rightarrow 0$: const. mass mode function

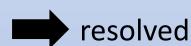
$$v_k = e^{-\pi\mu/2} \frac{\sqrt{\pi}}{2} H(-\tau)^{3/2} H_{i\mu}^{(1)}(-k\tau)$$

Soft Limit to Obtain Bispectrum

Bispectrum:
$$\langle \zeta^3 \rangle \propto \frac{c_2 c_3}{8k_1 k_2 k_3^4} \lim_{k_4 \to 0} \sum_{\text{a,b}=\pm} \mathcal{I}_{\text{ab}}^{0,-2} + (k_3 \to k_1, k_2)$$

$$u_1 = \frac{2k_s}{k_{12} + k_s} \to \frac{2k_3}{k_{123}} \quad u_2 = \frac{2k_s}{k_{34} + k_s} \to 1$$

Only n=0 contributes



Divergences in $\mathcal{V}^p_{a|c}$

$$_{2}\mathcal{F}_{1}\left[\begin{array}{c} \frac{5}{2}+p+iac\mu,\frac{1}{2}-ia\gamma+iac\mu\\ 1+2iac\mu \end{array}\right]v$$

$$u_{1} = \frac{2k_{s}}{k_{12} + k_{s}} \rightarrow \frac{2k_{3}}{k_{123}} \quad u_{2} = \frac{2k_{s}}{k_{34} + k_{s}} \rightarrow 1$$

$$Infinite sum. in \mathcal{G}_{ab}^{p_{1}p_{2}}$$

$$Only \quad n = 0 \text{ contributes}$$

$$\mathcal{G}_{ab}^{p_{1}p_{2}}$$

$$resolved$$

$$v_{a|c}^{p_{1}p_{2}} = \sum_{c,d=\pm} A_{ab|cd} V_{a|c}^{p_{1}}(u_{1}) V_{b|d}^{p_{2}}(u_{2}) + \mathcal{G}_{ab}^{p_{1}p_{2}}(u_{1}, u_{2})$$

$$V_{a|c}^{p_{1}p_{2}} = \delta_{ab} \frac{H^{2}e^{-a\frac{\pi}{2}ip_{12}}\Gamma(p_{12} + 5)}{2^{p_{12} + 5}} \sum_{n=0}^{\infty} u_{1}^{n+p_{12} + 5} \left(1 - \frac{1}{u_{2}}\right)^{n} \binom{n + p_{12} + 4}{n}$$

$$\times \frac{1}{u^{2} + (\frac{5}{2} + n + p_{2})^{2}} {}_{3}F_{2} \left[\frac{1}{\frac{7}{2} + n + p_{2} - i\mu, \frac{7}{2} + n + p_{2} + i\mu} \middle| u_{1}\right]$$

$${}_{2}\mathcal{F}_{1}\left[\begin{array}{c|c} \frac{5}{2}+p+iac\mu, \frac{1}{2}-ia\gamma+iac\mu\\ 1+2iac\mu \end{array}\middle| u\right] \xrightarrow[u\to 1-0]{} (1-u)^{-2+ia\gamma}\Gamma(-2+ia\gamma)+\cdots\longrightarrow\infty$$

is canceled after the summation $\sum A_{ab|cd} \mathcal{V}_{a|c}^{p_1}(u_1) \mathcal{V}_{b|d}^{p_2}(u_2)$

Equilateral limit $k_1 = k_2 = k_3$

 $v = k_1/k_0$ dependence

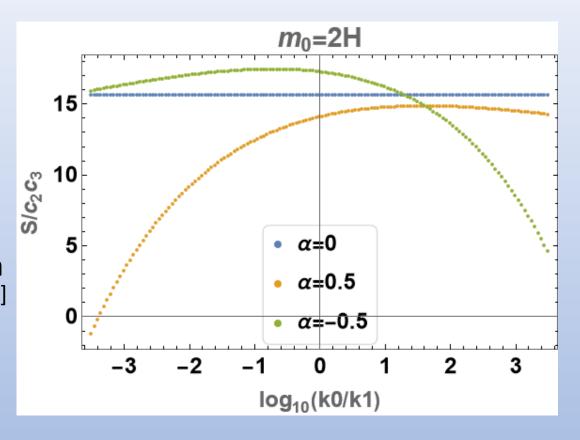
$$\frac{\partial S}{\partial v} = f(m_0) \frac{\sqrt{\epsilon}\alpha}{v} + \mathcal{O}(\epsilon)$$

The same scale dependence as

the general single field inflation [Chen, '07]

(Consistent to EFT description

integrating out heavy field)



Amplitude

$$S_{\rm eq} (\approx f_{\rm NL}^{\rm eq}) \sim c_2 c_3 \mathcal{O}(10)$$

 c_2c_3 : dim. less $\mathcal{O}(1)$? $\mathcal{O}(\epsilon)$?

