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Introduction

Primordial black holes (PBHs) are black holes formed in the early
Universe (Zeldovich & Novikov (1967), Hawking (1971)).

▶ Fossils of the early Universe
▶ Dark matter candidate
▶ Hawking evaporation
▶ High-energy physics
▶ GW sources
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Observational constraints

Observational constraints on the abundance of PBHs
▶ Dark matter mass windows: ∼ 1016 − 1023 g for all CDM and

∼ 1027 − 1028 g and ∼ 1 − 103M⊙ for a large fraction of CDM

Figure: f(M) = ΩPBH/ΩCDM (Carr et al. (2021))
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Positive evidence for PBHs ?

Many BBHs of ∼ 30M⊙ discovered by GW observation
▶ Those BHs may be of cosmological origin. (Sasaki et al. (2016), Bird et

al. (2016), Clesse & Garcia-Bellido (2017)).
▶ Search for PBH population in LIGO-Virgo BBHs (Franciolini et al.

(2022))

Evidence for nHz GWs by NANOGrav (Agazie et al. (2023), ...) and
other PTAs may be consistent with the secondary GWs of scalar
perturbations that may have produced PBHs of solar mass or subsolar
masses (Kohri & Terada (2021), Inomata et al. (2023), ...).

Positive observational evidence for PBHs including subsolar triggers in
O2 and O3 of LIGO/Virgo (Carr et al. (2023)).
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Inflationary cosmology

Figure: The time evolution of the Hubble length and the fluctuation scale

The fluctuations get stretched to super-horizon in an inflationary era.

After the inflation, the fluctuations are described by long-wavelength
solutions.

Once they enter the Hubble horizon, the long-wavelength scheme
breaks down.
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Long-wavelength limit

A smoothing length is L = a/k, below which it is described by the
FLRW, while the Hubble length is ℓH := H−1, where H = ȧ/a.

Expansion parameter ϵ ≪ 1

ϵ :=
ℓH

L
=

k

aH
with

∂i lnΨ

aH
= O(ϵ)

In the decelerated expansion, the limit ϵ → 0 realises as t → 0.

The term ‘long-wavelength’ is a bit misleading because we don’t take
the limit k → 0 but aH → ∞.
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Cosmological conformal 3+1 decomposition
Metric

ds2 = −α2dt2 + ψ4a2(t)γ̃ij(dx
i + βidt)(dxj + βjdt),

where γ̃ = η with ηij being the flat 3D metric.

ζ := 2 lnψ is called curvature perturbation in cosmology:

Flat FLRW: α = 1, βi = 0, ψ = 1 and γ̃ij = ηij

Figure: Slicing and threading with γij = ψ4a2(t)γ̃ij
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Long-wavelength solutions
Additional assumption

▶ Tµν = (ρ+ p)uµuν + pgµν

▶ p = (Γ − 1)ρ, where Γ = 1 + w

We write ψ = Ψ(x)(1 + ξ), α = 1 + χ and γ̃ij = ηij + hij .
ϵ expansion. The Einstein eqs imply the following:

▶ Metric ψ, α, γ̃ij : ψ can be nonlinearly large.

Ψ(x) = O(ϵ0), ξ = O(ϵ2), βi = O(ϵ),

χ = O(ϵ2), hij = O(ϵ2)

▶ Matter ρ, p, uµ

δ :=
ρ− ρb

ρb
= O(ϵ2), vi :=

ui

ut
= O(ϵ)

▶ Extrinsic curvature Kij = Aij + γijK/3

K = −3H(1 + κ), κ = O(ϵ2), Ãij = ψ−4a−2Aij = O(ϵ2)

Tomita (1972), Shibata & Sasaki (1999), Lyth, Malik & Sasaki (2005), Polnarev &

Musco (2007)
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Gauge issues

We require the Einstein eqs and the EOM order by order in power of
ϵ and solve them to obtain LWL solutions.
Shibata & Sasaki (1999), Harada, Yoo, Nakama & Koga (2015)

Gauge issues
▶ Slicing: lapse function α

⋆ Constant-Mean-Curvature slice: κ = 0
⋆ Comoving slice: ui = 0
⋆ ...

▶ Threading: shift vector βi

⋆ Conformally Flat coordinates: hij = 0
⋆ Normal coordinates: βi = 0
⋆ ...

▶ Caveat: The conformal Newtonian gauge is inconsistent with the
ansatz of the LWL solns.
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LWL solns: next-to-leading order

Ψ(x) generate the LWL solutions. The explicit expressions to O(ϵ2)
are obtained in different gauges (Harada, Yoo, Nakama, Koga (2015)).

CMC slice

δCMC ≈ f

(
1

aH

)2

, uCMCj ≈
2

3Γ(3Γ + 2)H
δCMC,j,

where

f = f(x) := −
4

3

∆̄Ψ

Ψ5

with ∆̄ being the flat Laplacian.

Comoving slice

δcom ≈
3Γ

3Γ + 2
f

(
1

aH

)2

, ucomj = 0.

The above do not depend on the threading condition.
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Quasi-local mass in spherical symmetry

We focus on spherically symmetric spacetimes.

ds2 = gAB(xC)dxAdxB +R2(xC)dΩ2,

where R is the areal radius and A, B and C run over 0 and 1.

Misner-Sharp mass as total energy enclosed within a sphere of xC

M :=
1

2
R(1 −DARD

AR)

with DA being the covariant derivative compatible with gAB.

The Misner-Sharp mass has an integral form (or Kodama mass):

M := −
∫
Σ
SµdΣµ,

where Σ is a 3-ball bounded by the 2-sphere of xA.
▶ Kodama current: Sµ := −Tµ

νK
ν

▶ Kodama vector: Kµ := −ϵAB∂BR
(
∂/∂xA

)µ
.

Misner & Sharp (1964), Kodama (1980), Hayward (1996), Yoo (2022)
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Shibata-Sasaki compaction function

Shibata and Sasaki (1999) used the conformally flat coordinates

ds2 = −α2dt2 + ψ4a2[(dr + βrdt)2 + r2dΩ2],

with the CMC slice in spherical symmetry.

Gave the expressions of the mass excess and the compaction function

δMSS := 4πa3ρ0

∫ r

0
x2dxδCMC · ψ6

(
1 +

2x

ψ

∂ψ

∂x

)
CSS :=

δMSS(t, r)

R(t, r)
=
δMSS(t, r)

rψ2(t, r)a
.

CSS becomes time-independent in the limit ϵ → 0 or t → 0, so that

CSS(t, r) ≈ CSS(r) ≈
∫
dΣδρ

R
≈

1

2
δ̄CMC,H(r),

where δ̄CMC,H is the density perturbation averaged over the horizon patch
at the horizon entry aΨ2r = H−1 to the next-leading order of O(ϵ).
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CSS in terms of Ψ

δCMC(t, r) and CSS(r)

(a) (b)

Figure: (a) δCMC(t, r), CSS(r), (b) CSS for the critical cases

Empirically, the maximum of CSS(r) (or its volume average) gives a
good indicator for PBH formation. The threshold value is ≃ 0.4 for
radiation Γ = 4/3.

Shibata & Sasaki (1999), Escriva et al. (2019)
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CSS in terms of Ψ

LWL soln in the CMC slice in spherical symmetry

δCMC ≈ f

(
1

aH

)2

, uCMCr ≈
2

3Γ(3Γ + 2)H
δCMC,r,

Ψ = Ψ(r), f = f(r) = −
4

3

1

r2Ψ5

(
r2Ψ′)′

CSS in the LWL soln can be rewritten as

CSS ≈
1

2

[
1 −

(
1 + 2

d lnΨ

d ln r

)2
]

This does not contain Ψ′′.

Harada, Yoo, Nakama & Koga (2015)
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Mass and mass excess

Mass in the spatially conformally flat coordinates

M = 4π

∫ r

0
x2dxa3αψ6T t

µK
µ

= 4πa3
∫ r

0
dx(ψ2x)2

{
−[(ρ+ p)utut + p](ψ2x)′

+(ρ+ p)utur
x

a
(ψ2a),t

}
.

Mass excess
▶ The mass excess from the flat FLRW spacetime is naturally defined as

δM(t, r) = M(t, r) −MFF(t, ψ
2(t, r)r),

i.e., the difference between masses enclosed by two spheres of the same
areal radius.
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Mass excess in the CMC slice

Mass excess

δMCMC ≈ 4πa3ρb

∫ r

0
dx(Ψ2x)2

[
δCMC(Ψ

2x)′

+
2

3(3Γ + 2)
δ′CMC(Ψ

2x)

]
= 4πa3ρb

[
3Γ

3Γ + 2

∫ r

0
dx(Ψ2x)2(Ψ2x)′δCMC

+
2

3(3Γ + 2)
δCMC(t, r)(Ψ

2(r)r)3
]
,

where integration by parts is implemented. This reduces to

CCMC(r) ≈
3Γ

3Γ + 2
CSS(r) +

1

3Γ + 2
f(r)(Ψ2(r)r)2,

where CCMC :=
δMCMC

R
is the ‘legitimate’ compaction function.
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CSS and CCMC

δMCMC is different from δMSS due to the nonvanishing uCMC r!
There is no direct relation between CCMC and CSS.

CSS does not contain Ψ′′. This is why CSS is empirically robust.

If δ(t, r) has a spiky density shell, CCMC(r) has a large maximum of
O(∆−1/2) at r1, whereas both CSS(r) and Ψ(r) are kept small.

Figure: Density spike
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CSS and Ccom

In the comoving slice, we have

δcom ≈
3Γ

3Γ + 2
f

(
1

aH

)2

, ucomj = 0,

so that

δMcom(t, r) ≈
3Γ

3Γ + 2
δMSS(t, r)

The compaction function in the comoving slice is thus directly related
to CSS as

Ccom(r) :=
δMcom

R
≈

3Γ

3Γ + 2
CSS(r).

The threshold value for the maximum of Ccom(r) is therefore
≃ 0.27 for Γ = 4/3.
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Summary

Despite the initial intention, CSS is not directly related to δM/R in
the CMC slice but happens to that in the comoving slice up to a
constant factor depending on w.

CSS and Ccom are unique for not containing Ψ′′. This is why they
are very robust to give a threshold for PBH formation.
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Reconstruction to the next-to-leading order

The Shibata-Sasaki gauge choice (the CMC slice and the Conformally
Flat coordinates) gives the following LWL solutions:

δ ≈ f

(
1

aH

)2

, uj ≈
2

3Γ(3Γ + 2)a3H2
f ′(r)δrj ,

χ ≈ −
3Γ − 2

3Γ
f

1

(aH)2
,

β ≈
{
−

6

3Γ + 2

∫ r

∞
dr̃

1

r̃3

[
1

Ψ4(r̃)
CSS(r̃) −

1

2
r̃2f(r̃)

]
+β̃∞

} 1

a2H
=: β̃(r)

1

a2H
,

ξ ≈
1

2(3Γ − 2)

{
−

2

3Γ + 2

CSS

r2Ψ4
−

9Γ2 − 3Γ − 4

3Γ(3Γ + 2)
f

+

(
1 +

2rΨ′

Ψ

)
β̃(r)

}
1

a2H2
=: ξ̃(r)

1

a2H2
,

where β̃∞ is a constant of integration.
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Mass in terms of the boundary

The compaction function is originally given in terms of the spatial
integral but can also be written in terms of the metric functions at
the boundary.

Shibata and Sasaki used the conformally flat coordinates

ds2 = −α2dt2 + ψ4a2[(dr + βrdt)2 + r2dΩ2],

with the CMC slice in spherical symmetry.

We use the definition of the Misner-Sharp mass

2M

R
= 1 −DARD

AR,

where R = ψ2(t, r)a(t)r. This is an expression in terms of the
boundary.
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Consistency check

This expression implies

2δMCMC

R
≈ 1 −

(
1 +

2rΨ′

Ψ

)2

+ 2

[
2ξ̇ −Hχ− β

(
1 +

2rΨ′

Ψ

)]
(Ψ2r)2(a2H),

where we have used 2MFF/R = H2R2.

Now that we have the full set of the LWL solution, let us check
consistency about the compaction function.

Using the obtained solution for χ, β and ξ, we can show

CCMC(r) ≈
3Γ

3Γ + 2
CSS(r) +

1

3Γ + 2
f(r)(Ψ2(r)r)2.

This coincides with the expression obtained using the spatial integral.
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Calculation 1

For the LWL soln, this reduces to

2M

R
≈ H2R2 + 1 −

(
1 +

2rΨ′

Ψ

)2

+2

[
2ξ̇ −Hχ− β

(
1 +

2rΨ′

Ψ

)]
(Ψ2r)2(a2H),

where we have used α = 1 + χ and ψ = Ψ(r)(1 + ξ).

2δM/R is then written as

2δM

R
≈ 1 −

(
1 +

2rΨ′

Ψ

)2

+2

[
2ξ̇ −Hχ− β

(
1 +

2rΨ′

Ψ

)]
(Ψ2r)2(a2H)

because
2MFF

R
= H2R2

for the corresponding FLRW solns.
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Calculation 2

The evolution equations for ψ and hij in Einstein equations imply

2ξ̇ −Hχ− β

(
1 +

2rΨ′

Ψ

)
−

1

3
rβ′ ≈ 0, (1)

rβ′ ≈ −
3

r2
Ã22, (2)

where

Ãij := ψ−4a−2

(
Kij −

γij

3
K

)
,

and we have imposed κ = 0 and hij = 0.
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Calculation 3

Using (1), we can eliminate ξ̇, χ and β, while Ãij is given in the
LWL soln by

Ã22 ≈
{

1

2Ψ4

[
1 −

(
1 +

2rΨ′

Ψ

)2
]
+

2

3
r2

∆̄Ψ

Ψ5

}
2

3Γ + 2

1

a2H
.

Therefore, eliminating β′ using (2), we obtain

δM

R
≈

3Γ

2(3Γ + 2)

[
1 −

(
1 +

2rΨ′

Ψ

)2
]
+

1

3Γ + 2
f(Ψ2r)2,

or

C(r) ≈
3Γ

3Γ + 2
CSS(r) +

1

3Γ + 2
f(r)(Ψ2r)2,

where we have used

f = −
4

3

1

r2Ψ5

(
r2Ψ′)′ .
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Alternative choice of the background mass

We can alternatively choose MFF(t,Ψ
2(r)r) rather than

MFF(t, ψ
2(t, r)r) for the background mass.

This implies an alternative mass excess and a compaction function:

∆M(t, r) := M(t, r) −MFF(t,Ψ
2(r)r),

CCMC(t, r) :=
∆M(t, r)

R(t, r)
≈ CCMC(r).

This definition implies

CCMC − CSS =

(
3Hξ +

1

3
rβ′

)
(Ψ2r)2a2H

in the Shibata-Sasaki gauge conditions.

In general, CSS does not coincide with CCMC either.
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