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Gravity

* General Relativity appears to be one heck of a theory



Gravity

 An example:
 Two black holes collide®

* General Relativity predicts** a signal
« We measure the signal™*

-0.26s

*where’d they come from?
*Many contributors, this analysis from Simulating Extreme Space-time (not me)

*LIGO: Phys. Rev. Lett. 116, 061102 (absolutely not me)




Unfortunately

* No one seemed to tell the Universe



According to Concordance Cosmology here’s
what happened (mathematically speaking)

Dark Energy Dominated Universe (expansion
of the universes seems to be accelerating)

The Universe today is a combination of Matter and
PLUS Dark matter Radiation (mostly matter)

The Universe cools enough to be transparent

Because matter dilutes slower than radiation, the
earlier Universe was more radiation than matter

In the distant past, the Universe was very very
dense

Inflation? Ekpyrosis? Bubbles? Ghomes?



The Main Point:
Gravity is Non-Linear

 Being “non-linear” is more that just “not being small”

 We like to separate scales when doing physics
problems (e.g. what happens here, stays here)

* Non-linear physics can mix up scales - power
transferred between scales through cascades or
inverse-cascades



The Main Question:
For the Universe,

does it matter?



Averaging

 Generally a Hubble Volume is taken to be the region
over which we do averaging — we all agree that
different Hubble patches could have different
expansion rates (causality, right?)

H3 ~ (4000 Mpc)®

* Yet there is structure at (just) smaller scales
* Galaxy Clusters ~ 1 —10Mpc
* Inter-Cluster Distances ~ 50 Mpc
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Scales at Reheating

 Generally a Hubble Volume is taken to be the region
over which we do averaging — we all agree that
different Hubble patches could have different
expansion rates (causality, right?)
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 YET: we talk about things at scales around this

e Oscillons
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Can non-linear physics help
explain the great mysteries
of the Universe?



Preheating

o | The Inflationary field
IS coupled to a
second “matter” field
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The End of Inflation

 most inflationary models are driven by a classical

degree of freedom

e and have an associated potential (we’d also like to
know where this comes from)

V(9) = 5m?s?




The End of Inflation

 There is a phase transition at the end of inflation which
might tell us something about the properties of the inflaton




The End of Inflation

 What | normally worry about is whether inflationary
models can create a radiation dominated final state

* In order to protect the inflation potential, direct
couplings to other degrees of freedom have to be
small

* Perturbative decay (the ‘old theory of reheating’)
can sometimes take too long

* This is/was a problem for fans of extremely low-
scale inflation




A simple coupling
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What can we see from this?

. : o= A%
P+ 3Hok + 50k = 36
g° (¢°) x

time dependent mass

parametric resonance
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What about gravity?



What you would like to do

* Write down the most general form of the metric,

goo 9goi1 Go2 Jos
JorrgiTargiaT 713
go2 G122 @G22 923
go3 913 G23 933

Juv

* Plug it into Einstein’s Equations

Gy =8nG T,

* Solve the system of second order differential equations
(subject to your gauge-constraints)
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ins)= SetDirectory[NotebookDirectory([]];

Inf10}= << GREAT.m

GREAT functions are: IMetric, Christoffel,
Riemann, Ricci, SCurvature, EinsteinTensor, SgRicci, SgRiemann.

Enter 'helpGREAT' for this list of functions

Inf11)= (metric = {{g00[x0, x1, x2, x3], g01[x0, x1, x2, x3], g02[x0, x1, x2, x3],
g03[x0, x1, x2, x3]}, {(g01[x0, x1, x2, x3], gll[x0, x1, x2, x3],
gl2[x0, x1, x2, x3), g03[x0, x1, x2, x3]},

{g02[x0, x1, x2, x3], gl2[x0, x1, x2, x3], g22[x0, x1, x2, x3],
g23[x0, x1, x2, x3]}, {903[x0, x1, x2, x3], gl3[x0, x1, x2, x3],
g23[x0, x1, x2, x3], g33[x0, x1, x2, x3]})}) // MatrixForm
Out(11)/MatrixForms=
g00/x0, x1, x2, x3 g01/x0, x1, %2, x3 g02 x0, x1, x2, x3 g03 x0, x1, x2, x3
g0l x0, x1, x2, x3 gll x0, x1, x2, x3 gl2 x0, x1, x2, x3 g03 x0, x1, x2, %3
g02(x0, x1, x2, x3| gl2(x0, x1, x2, x3  ¢g22 x0, x1, x2, x3| g23(x0, x1, %2, X3
g03(x0, x1, x2, x3 gl3(x0, x1, x2, x3  ¢g23 x0, x1, x2, x3| g33[x0, x1, x2, x3

Inf12)= cooxrds = {x0, x1, x2, x3}
Ou12)- (x0, x1, x2, x3}

Inf12)= EinsteinTensor [metric, coords])




What can we do?

Numerical Relativity and Compact Binaries

* You can do a little better by
making gauge choices that
reduce the number of | b Departnend of Phpsics, Unisersity .-{:.:r..::l\].n, ot Urbana-Chesgeign, Urtana, /L

" Dipartmend of Astronowy and NCSA, Unsversily of Jllsoois at

parameters or ..’ Urbens-Champaign, Urbsna, IL 61390
(re)parameterize so that you prover
have nice equations for.. prppree. g pine e STy by g

among the most promesmg mources of grovitational radsati ot fatare detection
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341 decomposition of Eustein's oguations, we discess impoctant componetits of
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the initis] data problem, refoemulatices of Einstein's
%, and strategies for locating and handling blak

holes on vamerical grids, We foows om those approaches whoch carrently seem moet

o Even then th ey are extremely b redevant for the compoct binary problemn. We then outline how these methods are

used to model blsary neutrom stars and black holes, and review the cwrrent status
of mpiral and cosdescisce simulstions.

difficult to numerically
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What we have to do...

* Luckily there are a set of new approaches. We use the
most common of these: the BSSN formalism.

* |tis based on the ADM metric decomposition

g ( —a? +vkB'B*  Bi )
#° B; Yij

 We we introduce more parameters than (minimally)
necessary so that the equations are easier to solve




In Cosmology

 We can fix the gauge (we will give up being able to
create black holes, as well as some other concessions)
to focus on spatial slices

 We can then track the spatial 3-metric

e

« as well as the extrinsic curvature

2 1
K,;j = 64¢Aij -+ g’szK




In Cosmology

 We can fix the gauge (we will give up being able to
create black holes, as well as some other concessions)
to focus on spatial slices

 We can then track the spatial 3-metric

Tii = € Vi

« as well as the extrinsic curvature

= |
K,,;j = 64¢Aij -+ g’)’”K




In Cosmology

 We can fix the gauge (we will give up being able to
create black holes, as well as some other concessions)
to focus on spatial slices

o - dleasn b . - i -
We e of thie as .Ne spatial 3-metric

keeping track of DI A =%
the size oflocal 14 — € 7is o
volumes J
 as well as the extrinsic curvature @
Think of this as 1 "

measuring the local  K;; = e*?A;; + —v;; K
expansion rate 3




These variables have well-behaved

|mp0 rta ntly differential equations and are a

complete description of GR without
dimensional reductions or

simplifications
R ~ ko= il i k 2 k
at")'ij = —ZaA,-j + ,B ak"yij “r ’Y,,JaJ,B <~ 72381,3 — g’y,;jak,@

27 - 1 .
O K = 'y”DjD,-a -+ a(AijA” -+ §K2) -1 47ra(p + S) + B'O; K
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The POWER is in the redundancy
of the equations of motion
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Black = FLRW, Grey = Perturbative, Blue = BSSN




For the big box

Red: inflaton Perturbative
Blue: inflaton BSSN

Green: decay field Perturbative
Black: decay field BSSN
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The variance of the lapse does
not show departures from
homogeneity that indicate

back hole formation




How do they look

4 Perfurbative

~ BSSN




So there’s no need to panic

* In these cases: non-linear physics seems to be a
friend, not a foe

* But there’s still much left in parameter space: e.g. we
know that collapse will happen



Gauge-Preheating

* There is a history of incorporating couplings of the inflation
to gauge fields, generally with charged inflation fields
(often in the context of Higgs inflation)

* Coupling to U(1) fields by A. Rajantie, E. J. Copeland,
and S. Pascal

 Coupling to SU(2) fields by J. Garcia-Bellido et. al., Saffin
et al.

 However using uncharged scalar (or pseudo-scalar)
degrees of freedom were technically a bit more challenging



Gauge-Preheating

1 1 W (o) 2

X
L= g np0 o — §m2¢2 s i¢)

AT 17 I

* The “normal” Maxwell Stress-
F. = 0,4, o0y Tensor

e (but not for “normal” E/M)




Gauge-Preheating

L = _% ugba“(,b ' %m2¢2 Wiqs) F/.LVF“V Xfl¢) Fuuﬁ"#u

« Wis a dilatonic coupling that vanishes

— ¢ / M  as the inflation decays to zero
W(p) =e ) .
* Possible generation of long-
X s O wavelength magnetic fields during
(¢ ) e inflation, e.g. Caldwell, Motta,
Kamionkowski Phys. Rev. D 84,
123525 (2011).




Gauge-Preheating

L = _% uqﬁal—"gb i %m2¢2 Wi¢) F[,LVF“V Xfl¢) F;,LVF“V

 Xis a Chern Simons coupling that

W(qﬁ) = | couples. the inflation to the curl of the
vector field

0 * A coupling consistent with a shift-
g e
_X — qb symmetric inflaton

f * Also possible generation of polarized
magnetic fields during inflation, e.g.
Garretson, Field and Carroll, Phys.
Rev. D 46 5346 (1992)




A Chern-Simons Coupling

 The form of the interaction begs for X () e
a decomposition of the gauge field Ling = — iR FLF
onto its two helicity states,

Ac =)  Ape?

A==

schwe:see the two polarizations couple (with
oppositk;sigh))to-the v&ldtjty 6kthe inflation)),

ey (k (a sz\eif\@‘) e

17 dalar




A Chern-Simons Coupling

* For large values of the velocity of the inflation (relative
to small momenta), there is a clear tachyonic instability

* This instability should be polarized and present during
each oscillation of the fie&d ¢ L
f ) AR =

Do CURI
U il




A Small Chern-Simons
Coupling




NO
back-
reaction

WITH
back-
reaction

The Final State
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A Chern-Simons Coupling




A Chern-Slmons Coupllng
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Up here you start to run into
Neff constraints

Maximum pgwm/Pror




But... we get structure




The BSSN version

We can write down a set of evolution equations,
O E™ = B°0,E™ — E°0,™ + a(KE™ + €™"°D,B, — J™)
+e™°D,,aB,
Ot Am = B°0,Am + AoOmB° — a (Ep + D A) — ADp
OhA=p°D, A+ a(KA—D"A,;,) — A" D«

with...

Ve —ﬁp) (W (9)E™ Dy — X' (9) B™ D)
™m 1 / ™m mno / ™m mno
T =W (W(p) ILE™ — e™™*°D,9oB,] — X () [IIB™ + €™’ D, oE,]

B™ — EmnoDnAo — emnoanAo, S e—6¢8mnoanAo




We see very BIG density
contrasts!




For exciting couplings




For exciting couplings




But ... there are no PBH

0.00 025 050 05 1.00 1.25 1.50

mT

The minimum value of the lapse
throughout the grid doesn’t approach
Zero



What does it look like?




What does it look like?




Next Steps

Alpha-attractors are a possibility (a la 2311.17237):

2¢/p 2,2 2
L= (09) = (002 = T (1- o)

2 2




Next Steps

Primordial black hole formation with

full numerical relativity

(o] - ’,
What are they saylng > Eloy de Jong, Josu C. Aurrekoetxea and Eugene A. Lim

osmology Group, Physics Department

Abstract. We study the formation of black holes from subhorizon and superhorizon pertur- _ “"C o0 'c

bations in a matter dominated universe with 341D numerical relativity simulations. We find
that there are two primary mechanisms of formation depending on the initial perturbation's

wirrekoet xeafigmail com,

mass and geometry — via direct collapse of the initial overdensity and via post-collapse ac-
cretion of the ambient dark matter. In particular, for the latter case, the initial perturbation
does not have to satisfy the hoop conjecture for a black hole to form. In both cases, the
duration of the formation the process is around a Hubble time, and the initial mass of the
black hole is My ~ 107?H "' M{,. Post formation, we find that the PBH undergoes rapid

mass growth beyond the self-similar limit Mgy o« H ™', at least initially. We argue that this

implies that most of the final mass of the PBH is accreted from its ambient surroundings
post formation.

Meanwhile, the massless scalar field £ provides the energy density perturbation that
will trigger BH formation. In this paper, we exclusively consider initially static spherically
symmetric perturbations and we leave the generalisation to fewer degrees of symmetry for
future work. We choose the initial configuration of £ to be space dependent as

£(t =0,r) = A€ tanh (1.9)

r—Ro]

where Af, o and R, are the amplitude, width and the initial size of the perturbation respec-
tively. We comment further on this perturbation shape in appendix A.2. The mass of the




Next Steps

DT — P —
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High density perturbation

PDM

Low density perturbation

Direct Collapse
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LIVEelY. wWe COmment murtner on tnis perturDation snape in appendaix A4, LNe mass or tne




Next Steps

« What are we saying?

Starting from a (violent)
cosmological process does not (yet)
seem to produce black holes



Next Steps

» Let’s forget about physical mechanisms and focus on
when cosmological messiness ruins everything!

ot (po — )U"U” + pgt”

. 4 .
E, = /72 [ng = g] P = \/7'3“W2Povj

AAAAA

IN
PROGRESS




My Thoughts

* Gravity is important when
studying black holes

* Gravity is nonlinear

 We need to do the problem
before we write down the
answer

* Black hole formation does
not occur when
perturbation theory breaks
down




