Gravitational wave background anisotropies as a probe of the early universe

Ema Dimastrogiovanni

The University of Groningen

Gravity and Cosmology 2024 - YITP - February 2nd 2024

GW background from the early universe

Inflation

Preheating

• Phase transitions

Cosmic strings

Alternatives to inflation...

Multiple potential GW production mechanisms within inflation alone:

- GW from the amplification of vacuum fluctuations
- Generation of GW from additional fields during inflation
- GW generated at second order from scalar fluctuations

Scales — Experiments

Scales — Experiments

There is more: astrophysical background

expected from the superposition of signals from mergers (black holes, neutron stars)

A puzzle to unravel ...

Already the case for the observed gravitational wave background by PTA!

- How does it look like?
- What info does it provide on inflation?
- How do we characterise it (and distinguish it from other GWB)?

Outline

 Anisotropies as a probe of squeezed non-Gaussianity (part I)

 Anisotropies as a probe of primordial black holes (part II) physics

 Anisotropies as a probe of (part III) isocurvature perturbations

Anisotropies in the stochastic GW background

Next step: <u>angular information</u>:

looking for spatial variations in the contributions to the energy density spectrum

Anisotropies in the stochastic GW background

Angular power spectrum for the anisotropies:

$$\delta_{\rm GW}(k,\hat{n}) = \sum_{\ell m} \delta_{\ell m}^{\rm GW} Y_{\ell m}(\hat{n})$$

$$\langle \delta^{\rm GW}_{\ell m} \delta^{\rm GW*}_{\ell m} \rangle \equiv \delta_{\ell \ell'} \delta_{m m'} \mathcal{C}^{\rm GW}_{\ell}$$

Origin of the anisotropies

GW propagate through the perturbed universe

subject to Sachs-Wolfe / integrated Sachs-Wolfe ..., similarly to CMB photons

• Gravitational redshift:

GW background = collection of <u>massless particles</u> emitted at early times

$$ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (1+2\zeta)\delta_{ij}dx^{i}dx^{j} - \frac{4}{5aH}\partial_{i}\zeta d\eta dx^{i} \right]$$

Geodesic equation for the graviton

graviton's 4-momentum:
$$P^{\mu} = \frac{dx^{\mu}}{d\lambda}$$

$$\frac{d^2 x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda} = 0$$

affine parameter along the graviton's geodesic

$$P_0(\eta) = P_0(\eta_i) \left[1 + \frac{1}{5} \left(\zeta(\eta, \mathbf{x}) - \zeta(\eta_i, \mathbf{x}_i) \right) \right]$$

value at <u>observer's location</u> (common to emissions from all directions) -> <u>it drops out</u> value at "<u>emission</u>" (direction dependent)

$$\hat{n}_1$$
 \hat{n}_3 ζ_L ζ_L

(uniform density gauge

in matter domination)

[Alba - Maldacena, 2015]

Origin of the anisotropies: original calculation (adiabatic perturbations)

Hierarchy of scales between GW frequency and scale of the perturbations

GW background = collection of <u>massless particles</u> emitted at early times

$$ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (1+2\zeta)\delta_{ij}dx^{i}dx^{j} - \frac{4}{5aH}\partial_{i}\zeta d\eta dx^{i} \right]$$

(<u>uniform density gauge</u> in <u>matter domination</u>)

• Field theory derivation:

Massless scalar field h in a perturbed universe:

$$S = \frac{1}{2} \int d^3x \, d\eta \, a^2 \left(1 + 3\zeta\right) \left[\left(-\partial_\eta h\right)^2 + \left(1 - 2\zeta\right) \left(\vec{\partial}h\right)^2 - \frac{4(\partial_\eta h)}{5aH} \vec{\partial}\zeta \cdot \vec{\partial}h \right]$$
$$\mathcal{L}_{\text{int}} \propto a^2 \zeta \left[3 \left(\partial_\eta h\right)^2 - \left(\vec{\partial}h\right)^2 \right] + \frac{4a(\partial_\eta h)}{5H} \vec{\partial}\zeta \cdot \vec{\partial}h$$

correction to the two point function of h proportional to ζ

[Alba - Maldacena, 2015]

Origin of the anisotropies: Boltzmann formalism

<u>Hierarchy of scales</u> between GW frequency and scale of the perturbations GW background = collection of <u>massless particles</u> emitted at early times and described by a <u>distribution function</u> $f(x^{\mu}, p^{\mu})$

$$ds^{2} = a^{2}(\eta) \left[-(1+2\Phi)d\eta^{2} + (1-2\Psi)\delta_{ij}dx^{i}dx^{j} \right]$$

$$\frac{df}{d\lambda} = C[f(\lambda)] + I[f(\lambda)] \simeq 0 \longrightarrow \frac{df}{d\eta} = \frac{\partial f}{\partial \eta} + \frac{\partial f}{\partial x^{i}}\frac{dx^{i}}{d\eta} + \frac{\partial f}{\partial q}\frac{dq}{d\eta} = 0$$

$$\underset{\substack{\text{collision injection term term \\ = 0 \\ [gravitons \\ basically \\ as an initial}} \int (focusing on free-streaming, free-streaming, streaming, streaming$$

graviton's 4-momentum:

$$p^{\mu} = \frac{dx^{\mu}}{d\lambda} \qquad q \equiv \|\vec{p}\|a$$

decoupled

below Mp]

condition for f]

Origin of the anisotropies: Boltzmann formalism

$$\begin{aligned} \frac{\partial f}{\partial \eta} + \frac{\partial f}{\partial x^{i}}n^{i} + q\frac{\partial f}{\partial q}\left[\frac{\partial \Psi}{\partial \eta} - \frac{\partial \Phi}{\partial x^{i}}n^{i}\right] &= 0 \\ f(\eta_{0}, \vec{x}_{0}, \hat{n}, q) &= \bar{f}(q) - q\frac{\partial \bar{f}}{\partial q}\Gamma(\eta_{0}, \vec{x}_{0}, \hat{n}, q) \end{aligned}$$

(linear expansion for the distribution function)

$$\rho_{\rm GW}(\underline{\eta_0, \vec{x}_0}) = \int d^3p \, pf(\eta_0, \vec{x}_0, q, \hat{n}) = \rho_{cr} \int d\ln q \, \Omega_{\rm GW}(\eta_0, \vec{x}_0, q)$$
observer's
$$\Omega_{\rm GW}(\eta_0, \vec{x}_0, q) = \bar{\Omega}_{\rm GW}(\eta_0, \vec{x}_0, q) \left[1 + \frac{1}{4\pi} \int d^2n \, \delta_{\rm GW}(\hat{n}, q)\right] (\text{our previous definition for } \delta)$$

$$\delta_{\rm GW}(\eta_0, \vec{x}_0, \hat{n}, q) = \left[4 - \frac{\partial \ln \bar{\Omega}_{\rm GW}(\eta_0, q)}{\partial \ln q}\right] \Gamma(\eta_0, \vec{x}_0, \hat{n}, q)$$

$$\Gamma(\eta_0, \vec{x}_0, \hat{n}, q) = \Gamma(\eta_{\rm i}, \vec{x}_i, q) + \Phi(\eta_{\rm i}, \vec{x}_i) + \int_{\eta_{\rm i}}^{\eta_0} d\eta(\Phi' + \Psi')$$
initial SW
$${}_{18} \text{ iSW} \qquad \text{[Contaldi, 2017- Bartolo et al 2019]}$$
see also: Pitrou et al, 2020]

Origin of the anisotropies: Boltzmann formalism

 $\Gamma(\eta_0, \vec{x}_0, \hat{n}, q) = \underbrace{\Gamma(\eta_i, \vec{x}_i, q)}_{\Gamma_I} + \Phi(\eta_i, \vec{x}_i) + \int_{\eta_i}^{\eta_0} d\eta (\Phi' + \Psi')$ For <u>adiabatic</u> primordial perturbations: $\frac{\delta \rho_i}{(1 + w_i)\bar{\rho}_i} = \frac{\delta \rho_j}{(1 + w_j)\bar{\rho}_j}$ (for any two species "i" and "j")

applying this to photons and gravitons fluids:

Anisotropies from squeezed non-Gaussianity ("intrinsic" type)

(part I)

Primordial non-Gaussianity

Non-Gaussianity at interferometers

Measuring $\langle \gamma^3 \rangle$ directly is not possible: phase decorrelation from propagation in an inhomogeneous universe

Non-Gaussianity at interferometers

Measuring $\langle \gamma^3 \rangle$ directly is not possible: phase decorrelation from propagation in an inhomogeneous universe

Shapiro time delay:

$$\gamma'' + 2\mathcal{H}\gamma' - [1 + (12/5)\zeta]\gamma_{,kk} = 0$$

$$\gamma_{ij} = A_{ij} e^{ik\tau + ik \cdot 2\int^{\tau} d\tau' \, \zeta[\tau', (\tau' - \tau_0)\hat{k}]} >$$

GW propagating in FRW background + long-wavelength perturbations

GW from different directions undergo different phase shifts due to intervening structure

initial non-Gaussianity wiped out by propagation

[Bartolo et al. 2018]

CLT: signal measured by an interferometer arises from the superposition of signals from a large number of Hubble patches at production

[Adshead, Lim 2009 – Caprini, Figueroa 2018 – Bartolo et al 2018]

Non-Gaussianity at interferometers

Correlation among two short-wavelength modes (e.g. interferometer scale) and 1 very long-wavelength mode: signals originate from the same patch!

Based on: PRL 124(2020)6 061302

with

Matteo Fasiello (IFT Madrid)

Gianmassimo Tasinato (Swansea)

Soft limits and 'fossils'

long wavelength modes introduces a modulation in the primordial power spectrum of the short wavelength modes

$$B^{F\gamma\gamma} \equiv \langle F_L\gamma_S\gamma_S \rangle' \sim F_L \cdot \langle \gamma_S\gamma_S \rangle'_{F_L} \qquad f_{\rm NL}^{F\gamma\gamma}$$
$$\delta \langle \gamma_S\gamma_S \rangle \equiv \langle \gamma_S\gamma_S \rangle_{F_L} \sim \frac{B^{F\gamma\gamma}}{P_F(k_3)} \cdot F_L^* = P_\gamma(k_1) \cdot \frac{B^{F\gamma\gamma}}{P_F(k_3)P_\gamma(k_1)} \cdot F_L^*$$
$$\langle \gamma_S\gamma_S \rangle'_{\rm total} = P_\gamma(k_1) \left(1 + f_{\rm NL}^{F\gamma\gamma} \cdot F_L^*\right)$$

[ED, Fasiello, Jeong, Kamionkowski - 2014, ED, Fasiello, Kamionkowski - 2015, ...]

Soft limits and fossils

large scale variation in the energy density of GW

29

$$\mathbf{d} = -(\eta_0 - \eta_{\rm in})\hat{n}$$
$$\Omega_{\rm GW}(k) = \bar{\Omega}_{\rm GW}(k) \left[1 + \frac{1}{4\pi} \int d^2 \hat{n} \,\delta_{\rm GW}(k, \hat{n})\right]$$

[ED, Fasiello, Tasinato, PRL 124(2020)6 061302]

Soft limits and fossils

[ED, Fasiello, Tasinato, PRL 124(2020)6 061302]

for derivation with in-in formalism and applications: see: **[ED, Fasiello, Pinol, 2022]**

Soft limits in inflation

• Extra fields / superhorizon evolution

[Maldacena 2003, Creminelli - Zaldarriaga 2004, Chen - Wang 2009, Baumann - Green 2011, Chen et al 2013, Pajer et al. 2013, ED - Fasiello - Kamionkowski 2015, ...]

Soft limits in inflation

• Extra fields

Soft limits reveal (extra) fields mediating inflaton or graviton interactions

squeezed bispectrum delivers info on mass spectrum!!!

Soft limits in inflation

• *Extra fields* / superhorizon *evolution*

[Maldacena 2003, Creminelli - Zaldarriaga 2004, Chen - Wang 2009, Baumann - Green 2011, Chen et al 2013, Pajer et al. 2013, ED - Fasiello - Kamionkowski 2015, ...]

• Non-Bunch Davies initial states

[Holman - Tolley 2007, Ganc - Komatsu 2012, Brahma - Nelson - Shandera 2013, ...]

Broken space diffs

(e.g. space-dependent background)

[Endlich et al. 2013, ED - Fasiello - Jeong - Kamionkowski 2014, Celoria - Comelli - Pilo - Rollo 2021...]

Ideal probe for (extra) fields, pre-inflationary dynamics, (non-standard) symmetry patterns

Based on work with:

Matteo Fasiello (IFT Madrid)

Ameek Malhotra (UNSW→Swansea)

JCAP 03 (2021) 088

JCAP 02 (2022) 02,040

Maresuke Shiraishi (Suwa University)

Daan Meerburg (Groningen)

Giorgio Orlando (Jagiellonian University)

GW anisotropies from squeezed non-Gaussianity

• Typical amplitude of these anisotropies:

<u>Based on</u>: Phys.Rev.D 103 (2021) 2, 023532

with

Peter Adshead (UIUC)

Niayesh Afshordi (Waterloo/PI)

Matteo Fasiello (IFT Madrid)

Eugene Lim (UCL)

Gianmassimo Tasinato (Swansea)

Cross-correlations of GW and CMB anisotropies

[Adshead, Afshordi, ED, Fasiello, Lim, Tasinato 2020]

For forecasts (combining auto- and cross-correlations) and applications to specific models see: [Malhotra, ED, Fasiello, Shiraishi 2020] [ED, Fasiello, Malhotra, Meerburg, Orlando 2021]

On large scales, anisotropies in the astrophysical GW background do not correlate strongly with CMB (cross-correlations with LSS observables much more effective) [Ricciardone et al, 2021]

There is great potential in GW-CMB correlations as a probe of cosmological GW background!

Cross-correlations of GW and CMB anisotropies

[ED, Fasiello, Malhotra, Meerburg, Orlando 2021]

Projected constraints on $F_{\rm NL}^{\rm tss}$

$$F_{ij} = \sum_{XY} \sum_{\ell=\ell_{\min}}^{\ell_{\max}} \frac{\partial C_{\ell}^{X}}{\partial \theta_{i}} \left(\mathcal{C}_{\ell}^{XY} \right)^{-1} \frac{\partial C_{\ell}^{Y}}{\partial \theta_{j}} \qquad X, Y = \{\text{TT,GW,GW-T}\}$$

$$\mathscr{C}_{\ell} = \frac{2}{2\ell+1} \begin{bmatrix} (C_{\ell}^{\mathrm{TT}})^2 & (C_{\ell}^{\mathrm{GW}-\mathrm{T}})^2 & C_{\ell}^{\mathrm{TT}}C_{\ell}^{\mathrm{GW}-\mathrm{T}} \\ (C_{\ell}^{\mathrm{GW}-\mathrm{T}})^2 & (C_{\ell}^{\mathrm{GW}})^2 & C_{\ell}^{\mathrm{GW}}C_{\ell}^{\mathrm{GW}-\mathrm{T}} \\ C_{\ell}^{\mathrm{TT}}C_{\ell}^{\mathrm{GW}-\mathrm{T}} & C_{\ell}^{\mathrm{GW}}C_{\ell}^{\mathrm{GW}-\mathrm{T}} & \frac{1}{2}(C_{\ell}^{\mathrm{GW}-\mathrm{T}})^2 + \frac{1}{2}C_{\ell}^{\mathrm{TT}}C_{\ell}^{\mathrm{GW}} \end{bmatrix}$$

39

BBO: 4 LISA-like constellations
 LISA+Taiji
 ET + CE

• SKA (assumed 50 identical pulsars)

$$\begin{split} C_{\ell}^{\mathrm{TT}} &\simeq \frac{2\pi A_S}{25\ell(\ell+1)} \\ C_{\ell}^{\mathrm{GW}} &= C_{\ell}^{\mathrm{GW,tts}} + C_{\ell}^{\mathrm{GW,ind}} + N_{\ell}^{\mathrm{GW}} \\ C_{\ell}^{\mathrm{GW-T}} &= C_{\ell}^{\mathrm{GW-T,tts}} + C_{\ell}^{\mathrm{GW-T,ind}} \end{split}$$

Noise angular power spectra computations based on

[Alonso et al. 2020]

[Malhotra, ED, Fasiello, Shiraishi 2020] [ED, Fasiello, Malhotra, Meerburg, Orlando 2021]

Projected constraints on $F_{\rm NL}^{\rm tss}$

40 [ED, Fasiello, Malhotra, Meerburg, Orlando 2021]

Conclusions (Part I)

• Tensor non-Gaussianity not directly observable with interferometers due to propagation of GW through the inhomogeneous universe

- (Tensor and mixed) primordial non-Gaussianity of the squeezed type induces anisotropies in the GW background
- Inflationary models with detectable GW background and significant squeezed non-Gaussianity can be tested at interferometer scales thanks to these anisotropies
 GW anisotropies as a probe of inflationary fields and interactions

Anisotropies from **peaked spectra** ("propagation" type)

(part II)

<u>Based on</u>: JCAP 01 (2023) 018

with

Matteo Fasiello (IFT Madrid)

Ameek Malhotra (Swansea)

Gianmassimo Tasinato (Swansea)

Anisotropies from propagation: amplitude proportional to the slope of the spectrum

$$\delta_{\rm GW} \sim \left(\frac{\partial \ln \Omega_{\rm GW}}{\partial \ln k}\right) \, \zeta_{\rm L}$$

pronounced slope — — — enhanced anisotropies

Models with sharp peaks in the scalar power spectrum (e.g. PBH production)

a large GW background with sharp peaks induced at second order from scalar perturbations [Ananda - Clarkson - Wands 2006, Baumann et al. 2007]

Models with sharp peaks in the scalar power spectrum (e.g. PBH production)

$$\mathcal{P}_{\mathcal{R}}(k)|_{k\gg k_{\text{CMB}}} = \frac{A_{\mathcal{R}}}{\sqrt{2\pi}\Delta} \exp\left[-\frac{\ln^2(k/k_*)}{2\Delta^2}\right]$$

Δ	10^{-2}
f_*	$5 imes 10^{-3} \mathrm{Hz}$
k_*	$3\times 10^{12}\rm Mpc^{-1}$
$A_{\mathcal{R}}$	$7.5 imes 10^{-3}$

 the anisotropies can be typically enhanced by O(10-100)

$$\delta_{\rm GW} \sim \left(\frac{\partial \ln \Omega_{\rm GW}}{\partial \ln k}\right) \, \zeta_{\rm L}$$

• the angular power spectrum of the GW anisotropies inherits the frequency dependence

[ED, Fasiello, Malhotra, Tasinato 2022]

Considering a flat spectrum with the same SNR for monopole as peaked spectrum:

Signal to noise ratio for the individual multipoles:

anisotropies are easier to detect compared to those of a flat spectrum!

[ED, Fasiello, Malhotra, Tasinato 2022]

Cross-correlations

$$SNR^{2} = \sum_{\ell=2}^{\ell_{max}} \sum_{X=T,E} (2\ell+1) \frac{(C^{X\Gamma})^{2}}{(C^{X\Gamma})^{2} + (C_{\ell}^{\Gamma} + N_{\ell}^{\Gamma}) C_{\ell}^{X}}$$

(assuming full sky maps for both CMB and GW anisotropies)

[ED, Fasiello, Malhotra, Tasinato 2022]

Conclusions (Part II)

- For sharply peaked GW spectra (e.g. common to PBH formation scenarios), GW background anisotropies are enhanced w.r.t. power-law GW spectra
- In spite of enhancement being limited to a small range of scales, anisotropies easier to detect relative to those of power-law spectra.
- For a representative case, a LISA-Taiji network would be able to detect quadrupole, BBO would detect GW-CMB cross-correlations
- The distinct frequency dependence of these GW anisotropies potentially useful to separate these anisotropies from those associated with other (cosmological or astrophysical) GW backgrounds

Anisotropies from isocurvature perturbations

(part III)

Based on: Phys.Rev.D 107 (2023) 10, 103502

Guillem Domenech (Hannover)

with

Ameek Malhotra (Swansea)

Matteo Fasiello (IFT Madrid)

Gianmassimo Tasinato (Swansea)

Our initial question:

The observed GW background is in general determined both by:

- (1) the specific source
- (2) the evolution of the universe after production

In particular, an early non-standard cosmic history (e.g. early matter domination) could affect the frequency profile of Ω_{GW} in ways that are fully degenerate w.r.t. the imprints of the GW source.

Can GW background anisotropies break this degeneracy?

How do propagation anisotropies respond to a modified cosmic evolution?

Our findings:

universality of behaviour of anisotropies for adiabatic modes

Anisotropies unaffected by an early non-standard phase of cosmic evolution so long as the primordial fluctuations are adiabatic

unsurprinsing: conservation of superhorizon curvature perturbation in turn:

A <u>departure from adiabaticity</u> would break universality condition <u>Anisotropies as a probe of isocurvature modes</u>

Discussed earlier: for <u>adiabatic</u> primordial perturbations:

$$\Gamma_I = -\frac{1}{2}\Phi = \frac{\zeta}{3}$$

If there is an isocurvature perturbation of GW w.r.t. another component (e.g. radiation):

$$S_{\rm GW,r} = 3 \left(\zeta_{\rm GW} - \zeta_r \right) = \frac{3}{4} \left(\delta_{\rm GW} - \delta_r \right)$$

$$\zeta = \sum_i f_i \zeta_i$$

$$f_i \equiv \frac{\rho_i}{\rho_{\rm tot}} \quad \text{(fractional density for the "i" component)}$$

$$\zeta_{\rm GW} = -\Psi - \mathcal{H} \frac{\delta \rho_{\rm GW}}{\rho'_{\rm GW}}$$

$$(curvature perturbation of GW)$$

$$\Gamma_I = \frac{1}{4} \frac{\delta \rho_{\rm GW}}{\bar{\rho}_{\rm GW}} \quad \text{(Initial condition for GW anisotropies)}$$

Case I:

- Curvaton dominates ρ_{tot} then decays *entirely* into radiation
- Fluctuation amplitude *fixed* by CMB normalisation

$$C_{\ell} \propto \left[-\frac{4}{3} \zeta_r j_{\ell}(k\eta_0) \right]^2 + \text{standard ISW}$$

4× adiabatic term

* Expect the GW background anisotropy map to be fully correlated with CMB

[Ameek Malhotra, ED, Guillem Domènech, Matteo Fasiello, Gianmassimo Tasinato 2023]

Case II:

- Curvaton remains subdominant and decays *entirely* into GW
- Fluctuation amplitude *not fixed*

• $f_{\nu}^{b}\zeta_{\nu \text{ ini}} \ll \zeta_{r} \quad \zeta_{\nu \text{ ini}} \gg \zeta_{r}$

$$C_{\ell} \propto \left\{ \left[\frac{(1+w_{\chi})}{(1+w_{r})} \zeta_{\chi,\text{ini}} - \frac{1}{3} \zeta_{r} \right] j_{\ell}(k\eta_{0}) \right\}^{2} + \text{standard ISW}$$

* Expect little correlations between GW background and CMB anisotropies

[Ameek Malhotra, ED, Guillem Domènech, Matteo Fasiello, Gianmassimo Tasinato 2023]

[Ameek Malhotra, ED, Guillem Domènech, Matteo Fasiello, Gianmassimo Tasinato 2023]

Conclusions (Part III)

- For adiabatic primordial fluctuations, GW anisotropies are insensitive to the EoS of the early universe → universal behaviour
- Deviations from this universal behaviour is an indication of the presence of isocurvature fluctuations
- Isocurvature fluctuation can a sizeable enhancement of the GW anisotropies w.r.t. the adiabatic case
- GW-CMB cross-correlations can also be an effective probe for curvaton models

Outline

 Anisotropies as a probe of squeezed non-Gaussianity

 Anisotropies as a probe of primordial black holes physics

 Anisotropies as a probe of isocurvature perturbations

