yrip long tem workshop

 Gravity and Cósmology 2024

 Gravity and Cósmology 2024}

Termination of Superradiance from a Binary Companion

Huiyu ZHU（朱慧宇）
Department of Physics，HKUST

In collaboration with Yi Wang，Xi Tong and Kaiyuan Fan
arXiv： 2205.10527
2311.17013

Superradiance and the G-atom

- Superradiant instability

Kerr BH grows a ultralight boson cloud
[Press \& Teukolsky, 1972]
[Damour et al. 1976]

$$
\left(g^{a b} \nabla_{a} \nabla_{b}-\mu^{2}\right) \Phi=0
$$

Schrodinger Equation Form
at leading order.

Superradiance and the G-atom

[Press \& Teukolsky, 1972]
[Damour et al., 1976]
[Detweiler, 1980]
[Baumann et al, 2019, 2020]
Solutions:

$$
\begin{aligned}
& \left|\psi_{n l m}\right\rangle \text { with } \omega_{n l m}=E_{n l m}+i \Gamma_{n l m}, \quad \alpha \ll 1
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{n l m} \propto\left(m \Omega_{H}-\mu\right) \alpha^{4 l+5} \begin{cases}>0 & \text { Superradiance } \\
<0 & \text { Absorption }\end{cases} \\
& \uparrow \\
& \psi_{n l m} \sim e^{-i \omega_{n l m} t} \sim e^{\Gamma_{n l m} t}
\end{aligned}
$$

Q: What phenomena does Gravitational Atom have?

For an isolated gravitational atom:

- Bosonic cloud emits monochromatic GW.
- Cloud extracts the BH spin.

For binary systems:

- Resonant transition triggered by orbital motion (GCP resonance transition), which can be detected by GW and Pulsar Timing.

G-atom in a binary

$$
\begin{aligned}
H & =\left(\begin{array}{cc}
E_{1}+i \Gamma_{1} & 0 \\
0 & E_{2}+i \Gamma_{2}
\end{array}\right)+\left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\bar{E}_{1}+i \Gamma_{1} & \eta^{*} \\
\eta & \bar{E}_{2}+i \Gamma_{2}
\end{array}\right)
\end{aligned}
$$

$$
\tilde{\Gamma}_{1}=\Gamma_{1}+\Delta \Gamma_{1}
$$

$$
\Delta \Gamma_{1} \simeq \sum_{i=n^{\prime} l^{\prime} m^{\prime}} \frac{\Gamma_{1}-\Gamma_{i}}{\left[\bar{E}_{1}-\bar{E}_{i}-\left(m_{1}-m_{i}\right) \dot{\phi}_{*}\left(R_{*}\right)\right]^{2}}\left|\eta_{1 i}\left(R_{*}\right)\right|^{2}
$$

With $\eta_{i j} \equiv V_{i j}=\langle i| V_{*}|j\rangle$

Critical Distance

Mass ratio: $q=M_{*} / M$
Fine structure const: $\alpha=G M \mu$

- The critical distance $R_{*, c}$ of $\left|\psi_{n l m}\right\rangle$ is defined as

$$
\tilde{\Gamma}_{n l m}\left(R_{*, c}\right)=\Gamma_{n l m}+\Delta \Gamma_{n l m}\left(R_{*, c}\right) \equiv 0
$$

- $R_{*, c}(n l m)$ is the distance below which no superradiance can happen

$$
R_{*, c}(322) \simeq 10^{6} \mathrm{~km}\left(\frac{\alpha}{0.1}\right)^{-23 / 6}\left(\frac{q}{0.2}\right)^{1 / 3} \frac{M}{10 M_{\odot}}
$$

So ... what?

Consequences of ST: Impacts on GCP

- Successful GCP transition

$$
R_{*, r}\left(n l m \rightarrow n^{\prime} l^{\prime} m^{\prime}\right)>R_{*, c}(n l m)
$$

ST backreaction: Orbital flow of EMRIs ($q \ll 1$

- General binary orbits: $\quad\{p(t), e(t), \iota(t)\} \cup\left\{S_{c}(t)\right\}$
[Fan, Tong, Wang \& Zhu, 2023]
Cloud angular momentum
\rightarrow Inclination angle
\rightarrow Eccentricity
Semi-latus rectum

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[L(t) \cos \iota_{*}(t)\right]=\tau_{\mathrm{c}}+\tau_{\mathrm{bGW}} \cos \iota_{*}(t) \\
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[L(t) \sin \iota_{*}(t)\right]=\tau_{\mathrm{bGW}} \sin \iota_{*}(t) \\
& \frac{\mathrm{d} E(t)}{\mathrm{d} t}=P_{\mathrm{c}}+P_{\mathrm{bGW}} \\
& \frac{\mathrm{~d} S_{\mathrm{c}}(t)}{\mathrm{d} t}=\left(\frac{\mathrm{d} S_{\mathrm{c}}(t)}{\mathrm{d} t}\right)_{\mathrm{ST}}+\left(\frac{\mathrm{d} S_{\mathrm{c}}(t)}{\mathrm{d} t}\right)_{\mathrm{cGW}}
\end{aligned}
$$

ST backreaction: Orbital flow of EMRIs

- Orbital evolution

Consequences of ST: Pulsar Timing

- Observable: Periastron time shift

$$
\Delta_{P} \equiv t-P(0) \int_{0}^{t} \frac{\mathrm{~d} t^{\prime}}{P\left(t^{\prime}\right)} \approx \frac{1}{2} \frac{\dot{P}}{P} t^{2}
$$

Rømer delay + pulse counting

GR: $\quad(\dot{P})_{G R}=-\frac{96}{5}(2 \pi)^{8 / 3} \frac{q}{(1+q)^{1 / 3}} M^{5 / 3} P^{-5 / 3}$

- We expect a backreaction-induced deviation

$$
(\dot{P})_{C}=-3(2 \pi)^{1 / 3}(1+q)^{-2 / 3} \frac{S_{c, 0} m_{1}}{M^{2}} \frac{\mathrm{~d}\left|c_{1}(t)\right|^{2}}{\mathrm{~d} t} M^{1 / 3} P^{2 / 3}
$$

Summary and outlook

\checkmark BH superradiance instability
\checkmark GA enjoys a rich phenomenology
\checkmark Yet a binary companion can destabilize the cloud
\checkmark This leads to ST at a critical distance
\checkmark ST poses tight constraints on possible GCP transitions
\checkmark Orbital backreactions observable from pulsar timing
\square Alleviate the boson mass bound (To what extent)?

- High Spin? Fully relativistic treatment?
- Self gravity?

Thank you for listening!

Backup slides

Appendix: Pulsar Timing Accuracy

- Suppose we observe the pulsar for $t_{o b s}$ every day, and the pulse period τ.
- We can measure $t_{o b s} / P$ periods every day.
- The error for every single continuous measurement is $\tau /\left[\min \left(t_{o b s}, t\right) / P\right]$.
- If we observe for $0<t \leq T_{o b s}$, where $T_{o b s}$ is the longest observation time. Then the uncertainty for Periastron time shift is

$$
\sigma_{\Delta P}=\frac{1}{\sqrt{\left[\frac{t}{1 d a y}\right]}} \frac{\tau}{\min \left(t_{o b s}, t\right) / P}
$$

GA phenomenology in isolation

- Near-monochromatic GW

[Brito et al., 2017]

GA phenomenology in isolation

- Spin cutoff by superradiance

[Brito et al., 2017]

GA phenomenology in binaries

- Atomic transitions a.k.a. "Gravitational Collider Physics" (GCP)

GA in a nutshell

[Press \& Teukolsky, 1972] [Damour et al., 1976] [Detweiler, 1980]
[Baumann et al, 2019, 2020]
time

ST backreaction: Orbital flow of EMRIs ($q \ll 1$

- General binary orbits: $\{p(t), e(t), \iota(t)\} \cup\left\{S_{c}(t)\right\}$
[Fan, Tong, Wang \& Zhu, 2023]
Cloud angular momentum

$\xrightarrow{\longrightarrow}$ Cloud angular momentum

ST backreaction: Orbital flow of EMRIs

[Fan, Tong, Wang \& Zhu, 2023]

- Flow of orbital parameters

|322〉

$$
\begin{gathered}
M=10^{3} M_{\odot} \\
q=1.4 \times 10^{-3} \\
\alpha=0.2 \\
\tilde{a}=\frac{2 \alpha}{1+\alpha^{2}}
\end{gathered}
$$

