

Entropy Bounds for Rotating AdS Black Holes

Masaya Amo (YITP)

Based on Amo-Frassino-Hennigar, Phys. Rev. Lett. 131, 241401 (2023) [2307.03011].

Extended BH Thermodynamics

Sekiwa (2006) Kastor, Ray, Trashen (2009) Cvetic, Gibbons, Kubznak, Pope (2011)

Smarr formula in AdS :
$$\frac{D-3}{D-2}M = TS + \sum_{i} \Omega^{i} J^{i} - \frac{2}{D-2}PV + \frac{D-3}{D-2} \sum_{j} \Phi^{j} Q^{j}$$
absent in asymptotically flat
First law :
$$\delta M = T\delta S + \sum_{i}^{N} \Omega^{i} \delta J^{i} + V\delta P + \sum_{j} \Phi^{j} \delta Q^{j}$$
where $P := -\frac{\Lambda}{8\pi}$ $V := -\frac{1}{2} \int_{\mathcal{H}} dS_{\alpha\beta} \omega^{\alpha\beta} \left(= \left(\frac{\partial M}{\partial P}\right)_{A,J^{i},Q^{j}} \right) \quad \omega^{\alpha\beta}$:Killing potential

Extended BH thermodynamics is natural framework for AdS BH.

Extended BH Thermodynamics

Sekiwa (2006) Kastor, Ray, Trashen (2009) Cvetic, Gibbons, Kubznak, Pope (2011)

Smarr formula in AdS :
$$\frac{D-3}{D-2}M = TS + \sum_{i} \Omega^{i} J^{i} - \frac{2}{D-2}PV + \frac{D-3}{D-2} \sum_{j} \Phi^{j} Q^{j}$$
absent in asymptotically flat
First law :
$$\delta M = T\delta S + \sum_{i}^{N} \Omega^{i} \delta J^{i} + V\delta P + \sum_{j} \Phi^{j} \delta Q^{j}$$
where $P := -\frac{\Lambda}{8\pi}$ $V := -\frac{1}{2} \int_{\mathcal{H}} dS_{\alpha\beta} \omega^{\alpha\beta} \left(= \left(\frac{\partial M}{\partial P}\right)_{A,J^{i},Q^{j}} \right) \quad \omega^{\alpha\beta}$:Killing potential

Extended BH thermodynamics is natural framework for AdS BH.

Reverse Isoperimetric Inequality

[Reverse Isoperimetric Inequality (Cvetic et al., 2011)]

In GR, for stationary AdS BHs ($D \ge 4$), it was conjectured that

$$\mathcal{R} := \left(\frac{V}{\mathcal{V}_0}\right)^{1/(D-1)} \left(\frac{\mathcal{A}_0}{A}\right)^{1/(D-2)} \ge 1$$

A:BH area, V: thermodynamic volume, A_0 : area of unit sphere, V_0 : volume of unit ball

Checked for several solutions: • Kerr-AdS $(D \ge 4)$ • Charged static AdS (D = 4,5,7)• Kerr-Newman-AdS (D = 4)• Charged rotating BH gauged SUGRA (D = 4,5)• Charged rotating AdS-C (D = 4)• Thin Black Ring $(D \ge 5)$

Another view of Reverse Isoperimetric Inequality:

$$A(V) \leq A_{\text{Schw}}(V)$$

cf.) Isoperimetric Inequality states $\mathcal{R} < 1$.

Let us check our conjecture with AdS BH solutions!

1. Introduction & Conjecture 2. Check with solutions 3. Conclusion

Example 1 : Kerr-Newman-AdS (D = 4**)**

Kerr-Newman-AdS :
$$36\pi M^2 V^2 - M^2 A^3 - 64\pi^3 J^4 = 16\pi^2 Q^2 J^2 A \ge 0$$

Kerr-AdS :
$$36\pi M^2 V^2 - M^2 A^3 - 64\pi^3 J^4 = 0$$

$$A_{\mathrm{KN}}(M, J, V) \leq A_{\mathrm{Kerr}}(M, J, V)$$
 holds.

Example 2, 3

- ✓ Pairwise-Equal Charge gauged supergravity BH (*D* = 4, with rotation & charge)
- ✓ AdS-C (D = 4, with rotation & charge)

Both of above solutions : $36\pi M^2V^2 - M^2A^3 - 64\pi^3J^4 \geq 0$

Kerr-AdS:
$$36\pi M^2 V^2 - M^2 A^3 - 64\pi^3 J^4 = 0$$

$$A(M, J, V) \leq A_{\operatorname{Kerr}}(M, J, V)$$
 holds.

Other examples

• AdS Thin Black Ring $(D \ge 5)$

Checked for all parameters analytically

• Charged rotating BH in gauged SUGRA (D = 5)

- Could not check for all parameter analytically
- Checked for 10⁶ parameters

• Charged Rotating BH in gauged SUGRA (D = 7)

- Calculated thermodynamic volume for the first time
- Could not check for all parameters analytically
- 200 parameters

Summary

- Conjectured that area (entropy) is maximum for Kerr-AdS with fixed M, J, V.
- Checked for several examples, all of which supported our conjecture.

Future work

- Towards flat spacetimes: ex.) $V \ge \frac{A^{(2-\varepsilon)/(D-2)}}{(D-1)(D-2)} \left[(D-2)A^2 + 64\pi^2 \sum_i J_i^2 \right] \left[\omega_{D=2} \prod_j \left(A^2 + 64\pi^2 J_j^2 \right) \right]^{-1/(D-2)}$
- Towards D = 3