- William Coulton (CCA), HSC WLWG & ACT Collaboration

The sigma8 tension in light of the cross-correlation between HSC weak lensing and ACT thermal Sunyaev-Zel'dovich effect

> Feb 9, 2024 Gravity and Cosmology 2024 @ YITP, Kyoto

> > Ken Osato (Chiba University)

In collaboration with

Masato Shirasaki (NAOJ), Hironao Miyatake (Nagoya), Daisuke Nagai (Yale), Naoki Yoshida (UTokyo/IPMU), Mathew Madhavacheril (UPenn),

σ_8 (or S_8) tension

Ken Osato (Chiba University)

Cross-correlation of WL and tSZ

Telescopes

Ken Osato (Chiba University)

True image

Cross-correlation of WL and tSZ

Telescopes

Hot electrons in galaxy clusters

Compton-y $y(\boldsymbol{\theta})$

Ken Osato (Chiba University)

True image

Sensitivity of tSZ Statistics to Matter Fluctuations

The power spectrum of tSZ effect is sensitive to σ_8 . (c.f., Komatsu & Seljak, 2002; Shaw+, 2010)

But degenerate with other cosmological parameters and mass bias.

$$C_{\ell}^{\text{tSZ}} \propto \sigma_8^{8.1} \Omega_{\text{m}}^{3.2} B^{-3.2} h^{-1.7} \text{ for } \ell \lesssim 10^3.$$

 $B \equiv (1-b)^{-1}, \ \frac{M_{\text{HSE}}}{M_{\text{true}}} = 1-b$

b ~ 0.2 according to hydro simulations.

Sensitivity of tSZ Statistics to Matter Fluctuations

The power spectrum of tSZ effect is sensitive to σ_8 .

(c.f., Komatsu & Seljak, 2002; Shaw+, 2010)

But degenerate with other cosmological

pa **Cross-correlation with WL helps** $B \equiv (1-b)^{-1}, \quad \frac{11512}{M_{\text{true}}} = 1-b$

In addition to thermal pressure, turbulence and magnetic fields support galaxy clusters. *b* ~ 0.2 according to hydro simulations.

break degeneracy of σ_8 and mass bias parameter.

····			
10^{1}	10^{2}	10^{3}	10^{4}
		ℓ	Bolliet+ (2

HSC WL Y1 x Planck tSZ

•HSC WL Y1

Ken Osato (Chiba University)

HSC WL Y1 x Planck tSZ

Cross-correlation function

Ken Osato (Chiba University)

Constraints on S₈ and mass bias

\rightarrow More areas with higher angular resolution are required to tightly constrain S_8 .

HSCY3 and ACT DR6

Ken Osato (Chiba University)

Cross-Power Spectrum of HSC Y3 WL and ACT DR6

Cross-power spectrum of ACT DR6 Compton-y and HSC shear E-mode

The pseudo- C_l power spectra are estimated with NaMaster (Alonso+; 2019) algorithm.

- Covariance matrix is estimated from all-sky N-body simulation
- mocks (Takahashi+, 2017).

Shirasaki+, 2019 for HSC mock shapes; KO & Nagai, 2023 for SZ mocks

Full galaxy sample

Tomographic analysis

•Tomography:

Ken Osato (Chiba University)

Tomographic Cross-Power Spectra

z = [0.3, 0.6)

Ken Osato (Chiba University)

z = [0.6, 0.9)

z = [1.2, 1.5)

KO+ (in prep.)

Summary

•Weak lensing and the thermal Sunyaev-Zel'dovich effect are the sensitive probe into the matter fluctuation, i.e. σ_8 .

•Cross-correlation is a powerful statistic with high S/N significance provides additional information useful for breaking degeneracy.

 The cross-correlation of HSC Y1 and Planck can put constraints on S₈ and mass bias parameter. However, the significance is not strong enough to break the parameter degeneracy.

•The large overlapping area and higher resolution of ACT will tighten the constraint on S_8 and mass bias parameter. The cross-correlation of HSC Y3 WL and ACT DR6 will provide more insights into S_8 tension.

