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Overview
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Introduction
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What are massive black holes (MBHs)?

We currently believe that MBHs are hosted at the center of 
galaxies with masses up to  10∼ 10 9 − 1010 M☉

For today talk, let’s focus on the interval

MBH ~ 104-107M☉ 
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From galaxy mergers to MBH mergers

When two galaxies merge, the MBHs in their center form a binary and merge 
emitting gravitational waves (GWs) and electromagnetic (EM)/particles radiation

Large uncertainties in the 
formation and evolution 
processes :
➤ Seed mechanisms ?

 ➤ Accretion ?
 ➤ Time delays ?
(For reviews : Volonteri+10, 

Mayer+13, De Rosa+19, 
arXiv:2203.06016)

Courtesy of Elisa Bortolas
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Observing the entire Universe with GWs

In late-2030s LISA (Laser Interferometer Space Antenna) will observe the GWs from the 
coalescence of MBHBs in the entire Universe 

And there is more...
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Observing the entire Universe with GWs

In late-2030s LISA (Laser Interferometer Space Antenna) will observe the GWs from the 
coalescence of MBHBs in the entire Universe 

And there is more...

2402.07571
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Observing the entire Universe with GWs

ESA (European Space Agency) adopted LISA on January 25th 2024 with 
a budget of €1.7 billion

LISA is under construction and will soon be a fundamental asset for GW physics
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Massive Black Hole Binaries
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Testing cosmology with MBHBs

How many multimessenger 
(GW+EM) MBHB events do 

we expect ?

What constraints we can put on 
the expansion of the Universe at 

2 ≤ z ≤ 6  ?
ArXiv:2207.10678 ArXiv:2312.04632

➤               → h∝
1
d L

 ➤ Independent estimates  from CMB/SNIa

No calibration errors 
and no intrinsic scatter

 ➤ Redshift from the EM counterpart      
                     (‘bright sirens’)

 ➤ Interactions between the MBHB 
and the circumbinary disk 
before&after the merger 

What do we need :

Catalogues of MBHBs
(GW+EM infos)

Parameter estimation of
GW signal 

(sky localization)

Model the EM counterpart
(radio, optical, X-ray)

Rates of multimessenger
MBHBs
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Catalogues of MBHBs

Light

Three astrophysical models

Heavy-no-delays

Remnants of  PopIII stars
BHs ~ 103 M⊙

BHs ~ 104-6 M⊙

Collapse of hydrogen clouds

Same as Q3d but 
without delay times

Blue : Light model
Red : Heavy model

Contour: 

(Barausse+12 and updates)

Heavy
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Parameter estimation of the GW signal with fisher

Sky localisation is a crucial quantity for multimessenger and 
GW observatories must tell to EM telescopes were to point in the sky.

(Marsat,..., AM+ in 
prep.)

0.4deg2

10deg2
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Parameter estimation of the GW signal with MCMC

We simulate 90 yr of data for each astrophysical model and perform the parameter 
estimation with a Bayesian code (lisabeta, Marsat+20)

Technical part:
 ➤ PhenomHM
 ➤ 2.5yr resolved 

galactic background
 ➤ Fisher                         

 inizialitazion
 ➤ Only MBHBs (i.e.      

 no global fit)
 ➤ SciRDv1
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Parameter estimation of the GW signal with MCMC

We simulate 90 yr of data for each astrophysical model and perform the parameter 
estimation with a Bayesian code (lisabeta, Marsat+20)

Multimodal events

Degeneracies can be broken with :
➤ Orbital motion of the detector for f~10-4 Hz
➤ High frequency response of the detector for f~10-3 -10-2 Hz

Technical part:
 ➤ PhenomHM
 ➤ 2.5yr resolved 

galactic background
 ➤ Fisher                         

 inizialitazion
 ➤ Only MBHBs (i.e.      

 no global fit)
 ➤ SciRDv1

(see also 
Marsat+20,Baibhav+20)
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EM counterpart to MBHB mergers
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What type of EM emission do we expect from MBHBs ?

 ➤ No transient AGN-like emission has been associated unambiguously to a MBHBs
 ➤ Uncertainties on BH of 104−107 M⊙ concerning bolometric correction, obscuration, spectra ...

Before the merger

( Bowen+18, Haiman+17, 
Tang+18, Nobel+21,Combi+22, 
Cattorini+22, Gutiérrez+22 … )
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What type of EM emission do we expect from MBHBs ?

 ➤ No transient AGN-like emission has been associated unambiguously to a MBHBs
 ➤ Uncertainties on BH of 104−107 M⊙ concerning bolometric correction, obscuration, spectra ...

Before the merger

Both modulation and drop are unique hints of 
the presence of an underlying MBHB

(Dal Canton, AM+19)

Krauth+23

Main caveats:
 ➤ Sky localization is strongly multimodal     

     during the inspiral

 ➤ Periodicity requires long exposure time
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What type of EM emission do we expect from MBHBs ?

 ➤ No transient AGN-like emission has been associated unambiguously to a MBHBs
 ➤ Uncertainties on BH of 105−107 M⊙ concerning bolometric correction, obscuration, spectra ...

After the merger

Rossi+10

BH kick in the circumbinary disk
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What type of EM emission do we expect from MBHBs ?

 ➤ No transient AGN-like emission has been associated unambiguously to a MBHBs
 ➤ Uncertainties on BH of 105−107 M⊙ concerning bolometric correction, obscuration, spectra ...

After the merger

BH kick in the circumbinary disk

Rossi+10

Afterglow emission

Yuhan+21

Main caveats:
 ➤ EM emerges weeks/months after the          

     merger
 ➤ Identification: ≥ 102 potential hosts in        

     LISA error box
Detection ≠ Identification 

Mtot=3x106M⊙ 
z=2
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Constructing the population of MBHBs with EM counterpart

In AM+2207.10678 we estimate the rate of MBHBs with a detecatable EM counterpart

Observing strategies

Optical Radio X-Ray
LSST, Rubin Obs. SKALSST, Rubin Obs. Athena
➤ FOV ~ 10 deg2

 ➤ Identification+redshift
➤ FOV ~ 10 deg2

 ➤ Redshift with ELT
➤ FOV ~ 0.4 deg2

 ➤ Redshift with ELT

We also explored the possibility of AGN obscuration and collimated radio emission

Number of EMcp in 4 yr
➤ Strong decrease with
obscuaration and radio jet
➤ Parameter estimation selects
preferentially heavy
➤ Multimodal events do not 
contribute Here we focus on the ‘Standard’ case
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Testing cosmology with MBHBs 
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MBHBs can go up to high redshift

See also ArXiv:2201.07241
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 Luminosity distance and redshift estimates

Luminosity distance

 ➤ Accurate estimate of luminosity 
distance → ∆d/dL < 10%

 ➤ Lensing relevant for z > 2-3
 ➤ Peculiar velocities are

negligible

Redshift measurements

LSST/Rubin Obs.

➤Photometric measurements with
∆z = 0.03(1 + z) (Laigle + 19)

ELT
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Tested cosmological models in ArXiv:2312.04632

ΛCDM UniverseCDM Universe
 ➤ ΛCDM parametrizationCDM parametrization

    2-parameters model: (H0, Ωm)

Dark energy/modified gravity
 ➤ CPL parametrization for ω(z)

    4-parameters model: (H0, Ωm, ω0, ωa
)

 ➤ Phenomen. modified gravity (Belgacem+19)
    2-parameters model: (Ξ

0
, n)

At high redshift
 ➤ Redshift bins approach

    Model-independent
    2-parameter models: d

C
(z

p
), H(z

p
)

 ➤ Matter-only approximation
    2-parameter models: d

C
(z

p
), H(z

p
)

 ➤ Splines interpolation
    Model-independent
    Constrain at any redshift ≤ 6Modified matter

 ➤ Matter deviation with ωm = β
    3-parameters model: (H0, Ωm, β)
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Matter-only approximation

Fit: 
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Matter-only approximation

H(z=2) constrained to few percent 
and H(z=3) ~10 %

Fit: 
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Splines interpolation

Fit: Luminosity distance at 6 fixed knots 
redshifts  at  [0, 0.2, 0.7, 2, 4, 6] 

 with 10yr of LISA observations
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Splines interpolation

Fit: Luminosity distance at 6 fixed knots 
redshifts  at  [0, 0.2, 0.7, 2, 4, 6] 

 with 10yr of LISA observations
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Conclusion

Cosmology with bright sirens will be challenging

From the current results
 ➤ Potential to constrain H(z) at high redshifts

➤ Information also on the comoving distance
➤ Strong dependence from the EM counterpart

Prospects for the future
 ➤ Need better modeling for the EM 

counterpart and planning of observing 
campaigns

 ➤ Combine MBHBs with other LISA sources 
as SOBHBs and EMRIs

(Laghi+in prep.)
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Conclusion

Cosmology with bright sirens will be challenging

From the current results
 ➤ Potential to constrain H(z) at high redshifts

➤ Information also on the comoving distance
➤ Strong dependence from the EM counterpart

Prospects for the future
 ➤ Need better modeling for the EM 

counterpart and planning of observing 
campaigns

 ➤ Combine MBHBs with other LISA sources 
as SOBHBs and EMRIs

Cosmology with bright sirens will be challenging

(Laghi+in prep.)

Any questions ?
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Backup slides
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 Prospects for H
0
 and Ω

m
 

Fit: 

H
0
 can be constrained to few percent

Larger uncertainties on Ω
m

For CPL parametrization → Poor constrains on ω
0
 and no constrain on ω

a

(in 4 yr)
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Matter-only approximation and redshift bins

 ➤ Matter-only approximation

We also remove EMcps at z
 
≤ 1-1.5

with z
p
 = 2-3

 ➤ Redshift bins

Trade-off between:
➤ Bin size

 ➤ Number of EMcps in each bin
Requirement: D(z) accuracy ≤ 5%

Not all the redshift bins are informative
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Redshift bins

Fit: 
with 10yr of LISA observations
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 What to do with uninformative realisations?

No or few events in a 
redshift bin 

→ The realisation is not 
informative

The posterior 
distribution concides 

with the prior

→

Jensen-Shannon (JS) test

We compare the 
posterior and the prior 

distributions

➤ JS=0 if posterior == prior
➤ JS=1 if posterior != prior

In this case, uniform prior 
for h(z=3) in [0.1,50]
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Multimodality in the parameter space 

Two systems with the same chirp mass and redshift might present different 
behaviour : multimodality depends also on extrinsic parameters !
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 Constructing the population of MBHBs with EM counterpart
Observing strategies

Optical

Radio

X-Ray
Rubin Observatory

SKA

Athena

➤ ΔΩ <  10 deg2

 ➤ mlim, opt  27.5∼ 10

➤ ΔΩ <  10 deg2

 ➤ Flim, radio  1∼ 10 μJy
➤ ΔΩ <  0.4 deg2

 ➤ Flim, X  3x10∼ 10 -17 erg/s/cm2

(Shen+20)
(Meier01)

ArXiv:2207.10678

We focus on two scenarios

➤ No AGN obscuration
 ➤ Isotropic radio emission

Maximising Minimising

➤ AGN obscuration included
 ➤ Collimated radio emission

(Ueda+14, 
Gnedin+07)

(Cohen+06)
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Redshift and total mass distributions
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Redshift and total mass distributions
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Redshift and total mass distributions
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EMcps in optical, X-ray and radio

 LISA sources are intrinsically faint ! 
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EMcps in 4 yr

➤ Dramatic decrease with
obscuaration and radio jet

 ➤ Parameter estimation selects
preferentially heavy
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