

Testing cosmology with massive black hole binaries

Alberto Mangiagli Marie Curie Fellow

Astroparticule et Cosmologie (APC), Paris

Collaborators: Chiara Caprini, Sylvain Marsat, Nicola Tamanini, Marta Volonteri, Susanna Vergani, Lorenzo Speri, Henri Inchauspé

Gravity and Cosmology 2024, Yukawa Institute for Theoretical Physics, Kyoto University

Overview

Introduction

What are massive black holes (MBHs)?

We currently believe that MBHs are hosted at the center of galaxies with masses up to $\sim 10^9 - 10^{10} M_{\odot}$

For today talk, let's focus on the interval

$$M_{BH} \sim 10^4\text{--}10^7 M_{\odot}$$

From galaxy mergers to MBH mergers

When two galaxies merge, the MBHs in their center form a binary and merge emitting gravitational waves (GWs) and electromagnetic (EM)/particles radiation

Large uncertainties in the formation and evolution processes :

- Seed mechanisms ?
- > Accretion ?
- ➤ Time delays ?

(For reviews : Volonteri+10, Mayer+13, De Rosa+19, arXiv:2203.06016)

5

Observing the entire Universe with GWs

In late-2030s LISA (Laser Interferometer Space Antenna) will observe the GWs from the coalescence of MBHBs in the entire Universe

And there is more...

Observing the entire Universe with GWs

In late-2030s LISA (Laser Interferometer Space Antenna) will observe the GWs from the coalescence of MBHBs in the entire Universe

And there is more...

Observing the entire Universe with GWs

ESA (European Space Agency) adopted LISA on January 25th 2024 with a budget of €1.7 billion

$\equiv \mathbb{Q} \rightarrow$ the European SF	ACE AGENCY	eesa
	Capturing the ripples of spacetime: LISA gets go-ahead	
	25/01/2024 35917 VIEWS 178 LIKES	
	ESA / Science & Exploration / Space Science	
	Today, ESA's Science Programme Committee approved the Laser Interferometer Space Antenna (<u>LISA</u>) mission, the first scientific endeavour to detect and study gravitational waves from space.	

Massive Black Hole Binaries

Testing cosmology with MBHBs

How many multimessenger (GW+EM) MBHB events do we expect ?

ArXiv:2207.10678

Interactions between the MBHB and the circumbinary disk before&after the merger What constraints we can put on the expansion of the Universe at $2 \le z \le 6$?

ArXiv:2312.04632

 h∝ 1/d_L → No calibration errors and no intrinsic scatter
 Independent estimates from CMB/SNIa
 Redshift from the EM counterpart ('bright sirens')

What do we need :

Catalogues of MBHBs

Three astrophysical models (Barausse+12 and updates)

Heavy Collapse of hydrogen clouds BHs ~ 10⁴⁻⁶ M_☉

> Heavy-no-delays Same as Q3d but

without delay times

	Total catalogue	SNR > 10
Light	690.9	129.3
Heavy	30.7	30.4
Heavy-no-delays	475.5	471.1

11

Parameter estimation of the GW signal with fisher

Sky localisation is a crucial quantity for multimessenger and GW observatories must tell to EM telescopes were to point in the sky.

Parameter estimation of the GW signal with MCMC

We simulate 90 yr of data for each astrophysical model and perform the parameter estimation with a Bayesian code (*lisabeta*, Marsat+20)

Technical part:
PhenomHM
2.5yr resolved
galactic background
Fisher
inizialitazion
Only MBHBs (i.e. no global fit)
SciRDv1

Parameter estimation of the GW signal with MCMC

We simulate 90 yr of data for each astrophysical model and perform the parameter estimation with a Bayesian code (*lisabeta*, Marsat+20)

EM counterpart to MBHB mergers

No transient AGN-like emission has been associated unambiguously to a MBHBs
 ▶ Uncertainties on BH of 10⁴−10⁷ M_☉ concerning bolometric correction, obscuration, spectra ...
 <u>Before the merger</u>

(Bowen+18, Haiman+17, Tang+18, Nobel+21,Combi+22, Cattorini+22, Gutiérrez+22 ...)

No transient AGN-like emission has been associated unambiguously to a MBHBs
 Uncertainties on BH of 10⁴-10⁷ M_o concerning bolometric correction, obscuration, spectra ...
 Before the merger

the presence of an underlying MBHB (Dal Canton, AM+19)

No transient AGN-like emission has been associated unambiguously to a MBHBs
 ▶ Uncertainties on BH of 10⁵-10⁷ M_☉ concerning bolometric correction, obscuration, spectra ...
 <u>After the merger</u>

No transient AGN-like emission has been associated unambiguously to a MBHBs
 Uncertainties on BH of 10⁵-10⁷ M_o concerning bolometric correction, obscuration, spectra ...
 <u>After the merger</u>

Constructing the population of MBHBs with EM counterpart

In AM+2207.10678 we estimate the rate of MBHBs with a detecatable EM counterpart **Observing strategies**

Optical	Radio	X-Ray
LSST, Rubin Obs.	SKA	Athena
\succ FOV ~ 10 deg ²	\succ FOV ~ 10 deg ²	\succ FOV ~ 0.4 deg ²
► Identification+redshift	Redshift with ELT	► Redshift with ELT

We also explored the possibility of AGN obscuration and collimated radio emission

Number of EMcp in 4 yr

Strong decrease with obscuaration and radio jet

Parameter estimation selects preferentially heavy

 Multimodal events do not contribute

(In 4 yr)	Standard	w Obsc./Colli. radio	
Light	6.4	1.6	
Heavy	14.8	3.3	
Heavy-no-delays	20.7	3.5	

Here we focus on the 'Standard' case

Testing cosmology with MBHBs

MBHBs can go up to high redshift

Luminosity distance and redshift estimates

Luminosity distance

Accurate estimate of luminosity distance → ∆d/d_L < 10%
 Lensing relevant for z > 2-3
 Peculiar velocities are negligible

Redshift measurements

LSST/Rubin Obs.

> Photometric measurements with $\Delta z = 0.03(1 + z)$ (Laigle + 19)

ACDM Universe

> Λ CDM parametrization 2-parameters model: (H₀, Ω_m)

Dark energy/modified gravity

> CPL parametrization for $\omega(z)$ 4-parameters model: $(H_0, \Omega_m, \omega_0, \omega_a)$

Phenomen. modified gravity (Belgacem+19)
 2-parameters model: (Ξ₀, n)

Modified matter

Matter deviation with $ω_m = β$ 3-parameters model: (H₀, Ω_m, β)

At high redshift

- Redshift bins approach Model-independent
 2-parameter models: d_C(z_p), H(z_p)
- > Matter-only approximation 2-parameter models: $d_{C}(z_{p})$, $H(z_{p})$
- ➤ Splines interpolation Model-independent Constrain at any redshift ≤ 6

ACDM Universe

> Λ CDM parametrization 2-parameters model: (H₀, Ω_m)

Dark energy/modified gravity

> CPL parametrization for $\omega(z)$ 4-parameters model: $(H_0, \Omega_m, \omega_0, \omega_a)$

Phenomen. modified gravity (Belgacem+19)
 2-parameters model: (Ξ₀, n)

Modified matter

Matter deviation with $ω_m = β$ 3-parameters model: (H₀, Ω_m, β)

At high redshift

- Redshift bins approach
 Model-independent
 A server star medalar d (=
 - 2-parameter models: $d_{C}(z_{p})$, $H(z_{p})$
- > Matter-only approximation 2-parameter models: $d_{C}(z_{p})$, $H(z_{p})$
- Splines interpolation Model-independent Constrain at any redshift ≤ 6

Matter-only approximation

Fit:
$$d_C(z) = d_C(z_p) + 2(1+z_p) H^{-1}(z_p) \left(1 - \frac{\sqrt{1+z_p}}{\sqrt{1+z}}\right)$$

(in 4yr)	$z_p = 2, \ z > 1$	$z_p = 3, z > 1.5$
Light	5.3	4.4
Heavy	12.5	10.9
Heavy-no-delays	17.3	14.5

Matter-only approximation

Fit:
$$d_C(z) = d_C(z_p) + 2(1+z_p) H^{-1}(z_p) \left(1 - \frac{\sqrt{1+z_p}}{\sqrt{1+z}}\right)$$

(in 4yr)	$z_p = 2, \ z > 1$	$z_p = 3, z > 1.5$
Light	5.3	4.4
Heavy	12.5	10.9
Heavy-no-delays	17.3	14.5

Splines interpolation

Fit: Luminosity distance at 6 fixed knots redshifts at [0, 0.2, 0.7, 2, 4, 6] with 10yr of LISA observations

Light	Heavy	Heavy-no-delays
16.0	37.0	51.7

Splines interpolation

Fit: Luminosity distance at 6 fixed knots redshifts at [0, 0.2, 0.7, 2, 4, 6] with 10yr of LISA observations

Light	Heavy	Heavy-no-delays
16.0	37.0	51.7

Conclusion

Cosmology with bright sirens will be challenging

From the current results

- \succ Potential to constrain H(z) at high redshifts
- Information also on the comoving distance
- > Strong dependence from the EM counterpart

Prospects for the future

Need better modeling for the EM counterpart and planning of observing campaigns

Combine MBHBs with other LISA sources as SOBHBs and EMRIs

Conclusion

Cosmology with bright sirens will be challenging

From the current results

- > Potential to constrain H(z) at high redshifts
- Information also on the comoving distance
- > Strong dependence from the EM counterpart

Prospects for the future

► Need better modeling for the EM counterpart and planning of observing campaigns

Combine MBHBs with other LISA sources as SOBHBs and EMRIs

Backup slides

Prospects for H_0 and Ω_m

Fit: $H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)}$

 H_0 can be constrained to few percent Larger uncertainties on Ω_m

For CPL parametrization \rightarrow Poor constrains on ω_0 and no constrain on ω_a^{33}

Matter-only approximation and redshift bins

Matter-only approximation

$$d_C(z) = d_C(z_p) + 2(1+z_p) H^{-1}(z_p) \left(1 - \frac{\sqrt{1+z_p}}{\sqrt{1+z}}\right)$$

with $z_p = 2-3$

We also remove EMcps at $z \le 1-1.5$

► Redshift bins

$$d_C(z) = c \int_0^z \frac{dz'}{H(z')} \quad H(z) = \left(\frac{d d_C}{dz}\right)^{-1}$$

Trade-off between:

► Bin size

> Number of EMcps in each bin Requirement: D(z) accuracy $\leq 5\%$

Not all the redshift bins are informative

Redshift bins

Fit: $D(z) = D(z_p) + H(z_p)^{-1}(z - z_p)$ with 10yr of LISA observations

$z_{ ho}=3$	Light	Heavy	Heavy-no-delays
2< <i>z</i> <4	6.1	14.6	20.7

What to do with uninformative realisations?

No or few events in a redshift bin

Jensen-Shannon (JS) test

We compare the posterior and the prior distributions

JS=0 if posterior == prior
JS=1 if posterior != prior

In this case, uniform prior for h(z=3) in [0.1,50]

The posterior distribution concides with the prior

36

Multimodality in the parameter space

Two systems with the same chirp mass and redshift might present different behaviour : <u>multimodality depends also on extrinsic parameters</u> !

Constructing the population of MBHBs with EM counterpart

We focus on two scenarios

Maximising

No AGN obscurationIsotropic radio emission

 Minimising

 ► AGN obscuration included

 (Ueda+14, Gnedin+07)

 ► Collimated radio emission

 (Cohen+06)

Redshift and total mass distributions

Redshift and total mass distributions

40

Redshift and total mass distributions

EMcps in optical, X-ray and radio

LISA sources are intrinsically faint !

EMcps in 4 yr

(In 4 yr)	LSST, VRO	SKA+ELT		Athena	a+ELT					
		lectropio	0 20 °	060	Catalog	Eddington				
		Isotropic	$\theta \sim 30$	$v \sim 30$	$v\sim 30$	$0 \sim 30$	$0 \sim 0$	$F_{\rm X,lim}$ = 4e-17	$F_{\rm X, lim} = 4e-17$	
		$\Delta\Omega = 10$	deg ²		$\Delta\Omega=0.4\text{deg}^2$	$\Delta\Omega=0.4\text{deg}^2$				
	0.84	6.4	1.51	0.04	0.49	1.02	Light			
No-obsc.	3.07	14.8	2.71	0.04	2.67	3.87	Heavy			
	0.53	20.3	3.2	0.04	0.58	4.4	Heavy-no-delays			
	0.13	6.4	1.51	0.04	0.04	0.13	Light			
Obsc.	0.75	14.8	2.71	0.04	0.22	0.18	Heavy			
	0.35	20.3	3.2	0.04	0.18	0.27	Heavy-no-delays			

 Dramatic decrease with obscuaration and radio jet
 Parameter estimation selects preferentially heavy

(In 4 yr)	Maximising	Minimising	
Light	6.4	1.6	
Heavy	14.8	3.3	
Heavy-no-delays	20.7	3.5	