
Valentina Danieli

  SISSA, Trieste GC2024, 20/02/2024

Anharmonic Effects on the Squeezing 
of Axion Perturbations

Collaborators: 
Takeshi Kobayashi 
Sabino Matarrese 

Nicola Bartolo 
Matteo Viel



Introduction
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✓ The history of the Universe undergoes a period of exponential expansion, inflation.

✓ Quantum fluctuations provide the seeds for structure formation.

✓ The CMB sky we see today is classical.

✓ Inflation itself provides an explanation to the “classicalization”: squeezing.

Quantum to classical transition

✓ First source of classicalization: reheating.

D.D. Polarski and A. A. Starobinsky Class. Quant. Grav. 13 (1996), 377-392
L. P. Grishchuk and Y. V. Sidoro Phys. Rev. D 42 (1990), 3413-3421



What is squeezing?
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A squeezed state is a special quantum state for which one variable has an 
arbitrarily small uncertainty, while its conjugate counterpart has a huge 
uncertainty, correspondingly.

J.-T. Hsiang and B.-L. Hu Universe 8 (2022), no. 1 27, [arXiv:2112.04092]
J. Martin and V. Vennin Phys. Rev. D 93 (2016), no. 2 023505, [arXiv:1510.04038]

✓     tells of which angle it is rotated in phase spaceφk

✓     tells how much the ellipse is squeezedrk
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✓     tells of which angle it is rotated in phase spaceφk
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✓     tells of which angle the whole state is rotated 
in phase space
ϑk
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✓     tells of which angle it is rotated in phase spaceφk

✓     tells how much the ellipse is squeezedrk

Squeezed states are highly 
quantum mechanical states.



Why squeezing is “classical”?
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From an observational point of view, a squeezed state is indistinguishable from a 
classical phase-space distribution, if one considers a Gaussian state.

J.-T. Hsiang and B.-L. Hu Universe 8 (2022), no. 1 27, [arXiv:2112.04092]
J. Martin and V. Vennin Phys. Rev. D 93 (2016), no. 2 023505, [arXiv:1510.04038]

⟨Ô⟩ = ⟨O⟩stoch

In an effective classical stochastic description, 
quantum averages are given by:

⟨O⟩stoch = ∫ Õ(qi, pi)W(qi, pi)dqidpi

Probability density function

1. W is positive everywhere 

2. W obeys the classical equation of motion 

3. The quantum average is given by the 
stochastic average
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⟨Ô⟩ = ⟨O⟩stoch

In an effective classical stochastic description, 
quantum averages are given by:

⟨O⟩stoch = ∫ Õ(qi, pi)W(qi, pi)dqidpi

Probability density function

Wigner function = Weyl 
transform of the density operator



Why squeezing is “classical”?
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From an observational point of view, a squeezed state is indistinguishable from a 
classical phase-space distribution, if one considers a Gaussian state.
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W(R) = 1
π2 det γ

e−RTγ−1R

For a Gaussian state:

R = (qi, pi)

Covariance matrix

✓As far as the two-point correlators are concerned, the quantum and stochastic 
descriptions cannot be observationally distinguished, independently on the amount 
of squeezing

✓Higher order correlators depend on squeezing but in the large squeezing limit, the 
stochastic description gives accurate results for these correlators too.



✓ Axions produced via misalignment mechanism with 

Framework
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✓ De Sitter (DS) inflation followed by a Radiation Domination (RD) phase

f > max(Trh, Hinf )

✓ Axion is a spectator field

✓ Instantaneous reheating
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Hinf = 108GeV

J.J. L. J. Kuß and D. J. E. Marsh Open J. Astrophys. 4 (6, 2021) 2021, [arXiv: 2106.03528]



Framework
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What about the axion potential?

V(ϕ) = f 2 m2
ϕ [1 − cos ( ϕ

f )]
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What about the axion potential?

V(ϕ) = f 2 m2
ϕ [1 − cos ( ϕ

f )]

Taylor expanding: V(ϕ) = 1
2 m2

ϕϕ2

δ ··ϕ + 3Hδ ·ϕ + [ k2

a2 + m2
ϕ] δϕ = 0

··̄
ϕ + 3H

·̄
ϕ + m2

ϕϕ̄ = 0



Framework
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What about the axion potential?

V(ϕ) = f 2 m2
ϕ [1 − cos ( ϕ

f )]

··̄
ϕ + 3H

·̄
ϕ + fm2

ϕ sin ( ϕ̄
f ) = 0

δ ··ϕ + 3Hδ ·ϕ + k2

a2 + m2
ϕ cos ( ϕ̄

f ) δϕ = 0



Background Field: Equation of Motion
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··̄
ϕ + 3H

·̄
ϕ + fm2

ϕ sin ( ϕ̄
f ) = 0
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··θ + 3H ·θ + m2
ϕ sin θ = 0

θ = ϕ̄
f



Axion Perturbations
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The action to consider is:

S = ∫ d4x −g − 1
2 ∂μϕ∂μϕ − 1

2 m2
ϕ cos ( ϕ̄

f ) ϕ2

= ∫ d3xdτ a2 1
2 ϕ′ 2 − 1

2 (∂iϕ)2 − 1
2 m2

ϕ a2 cos ( ϕ̄
f ) ϕ2

Define:
χ(τ) = a(τ)ϕ(τ)

We can compute the corresponding Hamiltonian (in Fourier space):

ℋ = 1
2(2π)3 ∫ d3k [pk p*k + (k2 + m2

eff a2 − a′ ′ 

a ) χk χ*k ]

m2
eff = m2

ϕ cos ( ϕ̄
f )̂pk = ̂χ′ k



Axion Perturbations
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We quantize the fields introducing time-dependent ladder operators:

Respecting canonical commutation relations:

Time-dependent ladder operators are linked with time-independent ladder operators via 
Bogoliubov transformation:

ω2
k = k2 + m2

eff − a′ ′ 

a

{ak(τ) = αk(τ) ak(τ0) + βk(τ)a†
−k(τ0)

a†
−k(τ) = α̃k(τ) a†

−k(τ0) + β̃k(τ)ak(τ0)

χk = 1
2 |ωk | (ak(τ) + a†

−k(τ))

[χk(τ), p†
k′ (τ)] = iδ(3)(k − k′ ) , [ak(τ), a †

k′ (τ)] = δ(3)(k − k′ )

pk = − i
|ωk |

2 (ak(τ) − a†
−k(τ))



Axion Perturbations
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Comparing:

|βk |2 = |ωk |
2 |uk |2 + 1

2 |ωk |
|u′ k |2 − 1

2

αk = |ωk |
2 uk(τ) − i

2 |ωk |
u′ k(τ)

βk = |ωk |
2 u*k (τ) − i

2 |ωk |
u* ′ k (τ)

χk = uk(τ) a0
k + u*k (τ) a0 †

−k

pk = u′ k(τ) a0
k + u* ′ k (τ) a0 †

−k

The fields     and     can be written alternatively in terms of the time-independent 
ladder operators directly:

χk pk



Analysis of the Beta Coefficient
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|βk |2 = |ωk |
2 |uk |2 + 1

2 |ωk |
|u′ k |2 − 1

2
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Analysis of the Beta Coefficient
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✓ The behavior of        changes with the initial misalignment angle|βk |2

✓        approaches zero in the far past and a constant after the onset of the oscillations|βk |2

✓ The spikes, as well as the discontinuous jump at reheating, can be understood in 
terms of the frequency ωk

m = 102GeV

Hinf = 108GeV

k = 102GeV



Cosmological framework: the instantaneous vacuum defined by the time-dependent 
ladder operators           is filled with particles associated with the initial time-
independent operators             .

Particle Creation in Curved Spacetime
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(ak(η), a †
k(η))

What is the correct choice for the initial ladder operators?

In Minkowski spacetime 
there is a unique choice for 
the vacuum state.

(a0
k, a 0 †

k )

On an arbitrary spacetime, there are in 
general no isometries that allow to define 
uniquely the vacuum state.



These ambiguities can be solved assuming Minkowski in the asymptotic past and 
future.

Particle Creation in Curved Spacetime

14

ak(η)
η→−∞

ain
k , ak(η)

η→+∞
aout

k

Linked via time-independent Bogoliubov coefficients     and     .Ak Bk

αk(η)
η→+∞

Ak , βk(η)
η→+∞

Bk

Time-dependent Bogoliubov coefficients are their late time limit:

When the background felt by the fields can be approximated as constant in time?

Adiabaticity condition



Hence when            and          , the adiabaticity conditions are given by the second 
lines, which are smaller than unity.

Adiabaticity Condition
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ω′ k

ω2
k

, ω′ ′ k

ω3
k

≪ 1

The adiabaticity condition is defined as:

If the adiabaticity condition holds: u(τ) = Ak

2k
e+i ∫τ ωk(τ′ )dτ′ + Bk

2k
e−i ∫τ ωk(τ′ )dτ′ 

ω′ k

ω2
k

→
a3H m2

k3 k ≫ a m

H
m

k ≪ a m

ω′ ′ k

ω3
k

→

m2a4H2

k4 k ≫ a m

k2H2

a2m4 k ≪ a m

It can be proved that in radiation domination:

We restrict ourselves to wave modes that are outside the horizon at the onset of the 
oscillations, i.e.              .k < aoscm

a > aosc H < m



Analysis of the Beta Coefficient

16

|βk |2 = |ωk |
2 |uk |2 + 1

2 |ωk |
|u′ k |2 − 1

2
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⟨δρ⟩ ≃ ⟨ℋ⟩
a4V

= m
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(2π)3 ( |βk |2 + 1
2 )



Analysis of the Beta Coefficient
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✓ The rolling down of the field is delayed increasing the initial field value.

✓ If we consider the field perturbation near the minimum, the delay in the onset of the 
oscillation is too tiny to affect the evolution in time of      .δϕk

✓ Close to the hilltop even a small difference in the initial position leads to a huge delay. 
Hence patches of the Universe that differ by a tiny variation of the initial misalignment 
angle will start to oscillate at very different times, sourcing huge fluctuations.
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{
αk(τ) = e−iϑk(τ) cosh rk(τ)
βk(τ) = ei[ϑk(τ) + 2φk(τ)] sinh rk(τ)

The Bogoliubov coefficients can be parameterised by the squeezing parameters:

Inverting these relations:

rk = sinh−1 |βk | , ϑk = − arg (αk) , φk = 1
2 arg (αkβk)

These parameters are linked to the squeezing introduced before.

Squeezing Parameters



Analysis of the Squeezing Parameters
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θ0 = 0.1π θ0 = 0.4π

θ0 = 0.8π θ0 = 0.999999π
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θ0 = 0.999999π
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Analysis of the Squeezing Parameters
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θ0 = 0.1π
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✓ Approaching the hilltop of the potential,    increases, as        did

✓ Anharmonic effects give extra squeezing at the onset of the oscillations

✓     , linked with the rotation of the ellipse, oscillate among      and    after the onset 
of the oscillations

rk |βk |2

π−πφk
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More Realistic Models of Inflation

Our results in the late time limit are not affected:
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Quasi - de Sitter Inflation

Smoothed Reheating

H(η) =
mφ

1
3 − 2

3 η inflation

mφ

3
e−2η radiation

H(η) = Hinf
e−2η

e−2η + 1



Conclusions and Future Directions
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✓ Anharmonic effects produce an enhancement in the number of particles created due 
to the expansion

✓ Anharmonic effects increase also the amount of squeezing of the perturbations

✓ Compute the bispectrum of the axion perturbations

Conclusions

Future Directions

✓ The ellipse in phase space keeps rotating

✓ A cosmological Bell experiment could be designed
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