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BNS coalescences are valuable laboratories for nuclear 
astrophysics
Mass-Radius relation for neutron star (NS)

QCD

Nuclear physics

NS EOS

BNS-GWs

BNS-GWs can provide complementary information on the 
macroscopic properties of neutron stars and the dense matter.
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Review [Lattimer&Prakash2016; Baiotti2019; Dietrich, Hinderer, Samajdar 2021; 
Chatziioannou2020]

Science targets of data analyzing BNS-GWs

639解説　宇宙観測で見えてきた中性子星の状態方程式

©2021 日本物理学会

しての“固さ”から決まる量であるが，上式からわかるよ
うにそれが重力，つまり時空の曲がり具合を決めているこ
とがわかる．具体的な観測に関しては第 4章で述べ，ここ
では中性子星内部の構造と，それを形成する物質について
解説する．
中性子星の内部構造は，図 2に示すように，大きく 3つ
に分類され，密度が小さい順に外皮（outer envelopeもしく
は単に envelope），殻（crust），コア（core），から構成される．
そして，これらを1～10 cm程度の大気（atmosphere）が覆っ
ている．このうち，先ほどの質量‒半径関係において重要
な役割を担うのは，内部の高密度な殻とコアである．また，
殻を外殻と内殻，コアを外コアと内コア，というようにさ
らに細かく分類すると物質状態との対応がつけやすい．*2

まず大気と外皮は，原子核イオンと電子から成り立って
いる．外皮で原子核は液体状であり，そのため外皮のこと
を海（ocean）とよぶ教科書もある．大気や外皮の組成が何
であれ質量‒半径関係に影響を与えないが，観測では重要
な役割を担う．例えば，大気の組成によっては光の透過率
が変わるために，明るさやスペクトルが影響を受ける．ま
た，外皮はせいぜい 100 m程度であるが，組成や磁場の強
度に応じて表面温度分布に少なからず影響を与える．
次に殻は，典型的な中性子星のサイズである 10 kmのう
ち，1 km程度を占めている．つまり，質量‒半径関係を考
えるうえでも無視はできなくなる．外殻では原子核が結晶
格子を組んで固体状態にある．さらに内殻は，原子核とし
て存在する限界密度を超え原子核から中性子が漏れ出し
（中性子ドリップ），やがて主に中性子の海で満たされるよ
うなハドロン状態に相転移する領域である．この相転移で
は密度に応じて原子核とハドロン物質が様々な非一様構造
を形成していると考えられている．この非一様構造は，天

文業界では“パスタ構造”*3という馴染み深い名前で知ら
れている．
最後に星のコアである．この物質状態は，質量‒半径を
決定づけるうえで最も重要でありながら，最もわかってい
ない領域と言ってよい．前述したように，ここでは外コア
と内コアに便宜的に分けて説明する．まず外コアは，先ほ
どの内殻での非一様相転移後の一様ハドロン物質状態であ
る．一般的にはほぼ中性子で占められていると考えられて
おり，これが中性子星という名前の由来になっている．外
コアと内コアの明確な違いはなく，解説書によっては意見
の分かれるところであるが，本記事では核子以外のエキゾ
チックな粒子が現れてくる密度以上を内コアとよぶことに
する．これまでの理論研究で示唆されてきたエキゾチック
な粒子の候補としては，ハイペロンを含むハドロン物質状

図 2　中性子星の内部構造を示す断面図．上から密度が低い順に各層を示
した．ǻrは各層の領域幅を表す．磁力線（赤線）も描かれている．（目次口
絵も参照）

 
*2 構造の分類は実は曖昧であり，教科書や論文によってまちまちであ
る．本稿は，文献 7に準拠している．

図 3　中性子星の状態方程式（エネルギー密度と圧力の関係）の理論モデル
（上）とそれに対応した質量‒半径の関係（下）．データは欧州科学技術研究
協力機構に属する高密度天体に関する共同研究プロジェクトCompStarによ
る状態方程式共有データベース，CompOSE（https://compstar.unifrankfurt.de/
compose/）に基づく．上図で，PSR J0030＋0451，の中心部の推定（赤塗の
68%と点線の 95%信頼区間）と，他の測定を組み合わせた推定結果（緑）は
文献 8の PP model/ST＋PSTを参考にした．下図で，同文献 8（緑）に加え，
独立した別論文 9）から PSR J0030＋0451の質量‒半径の推定値（赤）を示す．
さらに，電波で独立に質量が測定された連星中のミリ秒パルサー PSR 
J0740＋6620のNICER観測（赤）も示した．

 
*3 パスタにも様々な種類がある．日本では棒状がよく知られているが，
板状や貝殻状など形状は様々である．中性子星内部の相転移でも，
様々な形状をした非一様構造が現れ，パスタ構造とよばれる．
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Fig. 3 Cartoon depicting the definition of tidal deformability. The tidal field E due to the
spacetime curvature of the companion causes the NS to deform as the matter adjusts to a
new equilibrium configuration. The relevant quantity influencing the GWs is the induced
change in the multipole structure of the NS’s exterior spacetime Q. The multipoles are also
impacted by spin effects, and dynamical tidal effects.

the presence of a companion is small, with a description of the interaction
zone where the NSs behave almost as point masses with small corrections due
to their finite size [213,442], see also [184,513,281,303,302,535]. For weakly
self-gravitating bodies described by PN gravity see also the seminal series of
papers by Damour, Soffel, Xu [164]. As will be discussed in detail in Sec. 4, the
multipole moments defined for the spacetime in the vicinity of the NSs play
a key role for communicating information about NS matter between these
descriptions. The multipole structure is affected by a variety of tidal effects,
spins, and more complicated spin-tidal interactions. In addition to affecting
the dynamics, the NS’ multipole moments also give rise to additional imprints
on the asymptotic gravitational radiation. The radiation can be described by
double perturbation expansion around flat spacetime and an infinite series of
radiative multipole moments, as explained in detail in the review article [86].
The radiative moments are related in a complicated way, i.e., nonlinearly and
non-locally in retarded time, to the total multipole moments of the binary
system, which comprise contributions from the orbital motion and the NSs’
multipoles. Problems such as the relativistic two-body problem that involve
different scales can also efficiently be treated with effective-field-theory meth-
ods, see [335,436,466,219] for comprehensive reviews and references.

2.2.1 Dominant tidal effects

In Newtonian gravity, tidal effects arise from the response of the NS to the
gradient of the companion’s gravitational field across its matter distribution.
From the perspective of the NS, the companion is orbiting and produces a time-
varying tidal field that slowly sweeps up in frequency. This quasi-periodic tidal
forcing can excite characteristic oscillation modes in the NS that depend on
the properties of matter in its interior. These concepts carry over to a General
Relativistic description, where the modes are the NS’s quasi-normal modes. A
NS has a broad spectrum of modes [300], several of which have sufficiently low
frequencies to be relevant for the inspiral. The tidal excitation can either be a

[Dietrich, Hinderer, Samajdar, ’20]

When binary orbital separations are 
small, each neutron star is tidally 
distorted by its companion.
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: individual onesΛA,B = λA,B/m5
A,B

[Flanagan, Hinderer, ’07; 
Hinderer ’08;  
Vines, Flanagan, Hinderer ’11]

Binary tidal deformability

Λ: mass ratio

Λ̃ = 16
13 [(1 + 11XB)X4

AΛA + (A ↔ B)]

XA,B = mA,B/(mA + mB)

(Tidal-induced)  
Quadrupole moment

Tidal deformability

Companion’s tidal field

Note on the multipole tidal phases in terms of component tidal deformabilities

Tatsuya Narikawa⇤
1Institute for Cosmic Ray Research,

The University of Tokyo, Chiba 277-8582, Japan

(Dated: November 3, 2023)

Qij = ��Eij (1)

We present the component form of the multipole tidal phases (MultipoleTidal), including the
mass quadrupole, the current quadrupole, and the mass octupole. By using the component form,
we demonstrate the phase evolution and the phase di↵erence between the MultipoleTidal and the
mass quadrupole (PNTidal). We compare the match between the MultipoleTidal and the numerical-
relativity calibrated model for the tidal part (NRTidalv2) and the match between the PNTidal and
the NRTidalv2 model. We find that the former is better than the latter, in particular, for large
masses and the tidal deformabilities.

I. INTRODUCTION

PN tidal waveform for the mass quadrupole (hereafter
we call it PNTidal) have been derived up to 2.5PN (rel-
ative 5+2.5PN) order for phase [21–23] and have used in
analyses of the BNS signals detected by the Advanced
LIGO and Advanced Virgo detectors, GW170817 and/or
GW190425 [1–9, 11, 27, 30] (see also Refs. [13–16]).

Recently, the complete and correct PN tidal phase up
to 5+2.5PN order for mass quadrupole, mass octupole,
and current quadrupole interactions have been derived
by the PN-matched multiplolar-post-Minkowskian for-
malism [10]. In our previous study [12, 30], we rewrite the
the complete and correct form for the mass quadrupole
interactions as a function of the dimensionless tidal de-
formability for the individual stars, ⇤, in a convenient
way for data analyses. And we have reanalyzed the data
around low-mass events identified as binary black holes
by using the corrected version of the PNTidal model to
test the exotic compact object hypothesis. The corrected
PNTidal model has also been used in analyses of binary
neutron star (BNS) signals [11, 30] In Ref. [16], the im-
pact of the EOS-insensitive relations focusing on the cur-
rent quadrupole, mass octupole, and f-mode dynamical
tidal correction for BNS signals have been studied.

In this study, we present the component form of
the multipole tidal phases (MultipoleTidal), including
the mass quadrupole, the current quadrupole, and the
mass octupole. By using the component form, we com-
pare the match between the multipole tidal phase and
the numerical relativity (NR) calibrated model for the
tidal part (NRTidalv2) and the match between the mass
quadrupole and the NRTidalv2 model. We find that the
match between the multipole tidal and NRTidalv2 model
is better than the match between the mass quadrupole
and NRTidalv2 model, in particular, for large masses and

⇤
narikawa@icrr.u-tokyo.ac.jp

the tidal deformabilities.
The outline of the paper is as follows. In Section II,

we present the component form of the multipole tidal
phases. In Section III B, we demonstrate the impact of
the multipole tidal contributions by comparing the phase
evolution with the NRTidalv2, the phase di↵erence be-
tween the MultipleTidal and the PNTidal. We also com-
pare the match between the MultipoleTidal and the NR-
Tidalv2 and the match between the PNTidal and the
NRTidalv2. Section IV is devoted to a conclusion. In
Section A, we summarize the EOS-insensitive relations
for the multipole moments.
We employ the units c = G = 1, where c and G are

the speed of light and the gravitational constant, respec-
tively.

II. WAVEFORM MODELS FOR INSPIRALING
BINARY NEUTRON STARS

A. Multipole tidal interactions

The mass quadrupole, the current quadrupole, and the
mass octupole tidal interactions are defined as [10]

Gµ(2)
A ⌘

✓
GmA

c2

◆5

⇤A =
2

3
k(2)A R5

A, (2)

G�(2)
A ⌘

✓
GmA

c2

◆5

⌃A =
1

48
j(2)A R5

A, (3)

Gµ(3)
A ⌘

✓
GmA

c2
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⇤(3)
A =

2

15
k(3)A R7

A, (4)

where k(2)A , j(2)A , and k(3)A are Love numbers for the mass
quadrupole, the current quadrupole, and the mass oc-
tupole moments of the body, with a radius RA, and ⇤A,

Tidal deformability 
1) characterizes NS EOS , 2) affects GW phase

“Mass”-type quadrupole
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Tidal deformability characterizes NS EOS

Less compact 
(stiff EOS)

More compact 
(soft EOS)

Λ ∼ m −5
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Point-particle (Binary BH) (Λ=0) -> slowest evolution ・                   　        ・

Frequency-domain BNS waveforms (TaylorF2_PNTidal)

More compact NSs (small Λ)       -> slow evolution

Less compact NSs (large Λ)        -> fast evolution

Binary evolution depends on neutron star (NS) EOSs.

Tidal effects on waveform

Tidal effects appear above 300 Hz.



∼ ℳ−5/3f −5/3 [1 + a1PNx + a1.5PNx3/2

x = (πMf )2/3 = v2
v: orbital velocity 

+a2PNx2 + . . . + a5PNx5 + . . . ]
:chirp massℳ

η: symmetric mass ratio
χeff: spin

6

Post-Newtonian GW phase

Λ: tidal deformability

PN phase can efficiently describe the GW emission in the inspiral regime.

ΨBNS( f ) = ΨBBH( f ) + ΨTidal( f )
0-3.5PN (4.5PN) 5-7.5PN

Newton gravity + GR correction: 𝒪((v/c)0) + 𝒪((v/c)2) + 𝒪((v/c)3) + ⋯ .
Energy balance

Phase
·Ebinary = − ·EGW

·ϕ(t) = v3

M
·v(t) = −

·EGW(v)
dEbinary/dv

Energy loss vs GW energy rad. rate

PN is theoretically rigid and base of Numerical 
Relativity calibrated models.

κ: spin-induced quad.

[Luc Blanchet’s talk in symposium]
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Measurability of binary parameters with GWs

Chirp mass: γ(f)f/x(f)5  
low frequency band <100 Hz

SNR: γ(f)f, middle frequency band
BNS signal, Adv LIGO design sensitivityused in [Damour+ 2012]

Tidal effects: γ(f)fx(f)5, high frequency band

γ( f ) ∝ f −7/3S−1
n



GW inference on GW170817 [LVC 2017, 2018a]

From M and q, we obtain a measure of the component
masses m1 ∈ ð1.36; 2.26ÞM⊙ and m2 ∈ ð0.86; 1.36ÞM⊙,
shown in Fig. 4. As discussed in Sec. I, these values are
within the range of known neutron-star masses and below
those of known black holes. In combination with electro-
magnetic observations, we regard this as evidence of the
BNS nature of GW170817.
The fastest-spinning known neutron star has a dimension-

less spin≲0.4 [153], and the possible BNS J1807-2500B has
spin≲0.2 [154], after allowing for a broad range of equations
of state. However, among BNS that will merge within a
Hubble time, PSR J0737-3039A [155] has the most extreme
spin, less than ∼0.04 after spin-down is extrapolated to
merger. If we restrict the spin magnitude in our analysis to
jχj ≤ 0.05, consistent with the observed population, we
recover the mass ratio q ∈ ð0.7; 1.0Þ and component masses
m1 ∈ ð1.36;1.60ÞM⊙ andm2 ∈ ð1.17; 1.36ÞM⊙ (see Fig. 4).
We also recover χeff ∈ ð−0.01; 0.02Þ, where the upper limit
is consistent with the low-spin prior.
Our first analysis allows the tidal deformabilities of the

high-mass and low-mass component, Λ1 and Λ2, to vary
independently. Figure 5 shows the resulting 90% and
50% contours on the posterior distribution with the
post-Newtonian waveform model for the high-spin and

low-spin priors. As a comparison, we show predictions
coming from a set of candidate equations of state for
neutron-star matter [156–160], generated using fits from
[161]. All EOS support masses of 2.01# 0.04M⊙.
Assuming that both components are neutron stars described
by the same equation of state, a single function ΛðmÞ is
computed from the static l ¼ 2 perturbation of a Tolman-
Oppenheimer-Volkoff solution [103]. The shaded regions in
Fig. 5 represent the values of the tidal deformabilitiesΛ1 and
Λ2 generated using an equation of state from the 90% most
probable fraction of the values ofm1 andm2, consistent with
the posterior shown in Fig. 4. We find that our constraints on
Λ1 and Λ2 disfavor equations of state that predict less
compact stars, since the mass range we recover generates
Λ values outside the 90% probability region. This is con-
sistent with radius constraints from x-ray observations of
neutron stars [162–166]. Analysis methods, in development,
that a priori assume the same EOS governs both stars should
improve our constraints [167].
To leading order in Λ1 and Λ2, the gravitational-wave

phase is determined by the parameter

~Λ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
ð1Þ

[101,117]. Assuming a uniform prior on ~Λ, we place a 90%
upper limit of ~Λ ≤ 800 in the low-spin case and ~Λ ≤ 700 in
the high-spin case. We can also constrain the functionΛðmÞ
more directly by expanding ΛðmÞ linearly about m ¼
1.4M⊙ (as in [112,115]), which gives Λð1.4M⊙Þ ≤ 1400
for the high-spin prior and Λð1.4M⊙Þ ≤ 800 for the low-
spin prior. A 95% upper bound inferred with the low-spin
prior, Λð1.4M⊙Þ ≤ 970, begins to compete with the 95%
upper bound of 1000 derived from x-ray observations
in [168].
Since the energy emitted in gravitational waves depends

critically on the EOS of neutron-star matter, with a wide
range consistent with constraints above, we are only able to
place a lower bound on the energy emitted before the onset
of strong tidal effects at fGW∼600Hz asErad > 0.025M⊙c2.
This is consistent with Erad obtained from numerical
simulations and fits for BNS systems consistent with
GW170817 [114,169–171].
We estimate systematic errors from waveform modeling

by comparing the post-Newtonian results with parameters
recovered using an effective-one-body model [124] aug-
mented with tidal effects extracted from numerical relativity
with hydrodynamics [172]. This does not change the
90% credible intervals for component masses and effective
spin under low-spin priors, but in the case of high-spin priors,
we obtain the more restrictive m1 ∈ ð1.36; 1.93ÞM⊙, m2 ∈
ð0.99; 1.36ÞM⊙, and χeff ∈ ð0.0; 0.09Þ. Recovered tidal
deformabilities indicate shifts in the posterior distributions
towards smaller values, with upper bounds for ~Λ and
Λð1.4M⊙Þ reduced by a factor of roughly (0.8, 0.8) in the

FIG. 4. Two-dimensional posterior distribution for the compo-
nent massesm1 andm2 in the rest frame of the source for the low-
spin scenario (jχj < 0.05, blue) and the high-spin scenario
(jχj < 0.89, red). The colored contours enclose 90% of the
probability from the joint posterior probability density function
for m1 and m2. The shape of the two dimensional posterior is
determined by a line of constant M and its width is determined
by the uncertainty inM. The widths of the marginal distributions
(shown on axes, dashed lines enclose 90% probability away from
equal mass of 1.36M⊙) is strongly affected by the choice of spin
priors. The result using the low-spin prior (blue) is consistent with
the masses of all known binary neutron star systems.

PRL 119, 161101 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
20 OCTOBER 2017

161101-6

Spin priors
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For reference, we also show Λ1–Λ2 contours for a repre-
sentative subset of theoretical EOSmodels that span the range
of plausible tidal parameters using piecewise-polytrope
fits from Refs. [136,137]. The values of Λ1 and Λ2 are
calculated using the samples for the source-frame masses
m1 and m2 contained in the 90% credible region for
PhenomPNRT. The widths of these bands are determined
by the small uncertainty in chirp mass. The lengths of these
bands are determined by the uncertainty in mass ratio. Most
of their support is near the Λ1 ¼ Λ2 line corresponding to
the equal-mass case and ends at the 90% lower limit for the
mass ratio. The predicted values of the tidal parameters for
the EOSs MS1, MS1b, and H4 lie well outside of the 90%
credible region for both the low-spin and high-spin priors,
and for all waveform models. This can be compared to
Fig. 5 of Ref. [3], where H4 was still marginally consistent
with the 90% credible region.
The leading tidal contribution to the GW phase evolution

is a mass-weighted linear combination of the two tidal
parameters Λ̃ [138]. It first appears at 5PN order and is
defined such that Λ̃ ¼ Λ1 ¼ Λ2 when m1 ¼ m2:

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
: ð5Þ

In Fig. 11, we show marginalized posteriors of Λ̃ for the
two spin priors and four waveformmodels. Because there is
only one combination of the component tidal deformabil-
ities that gives Λ̃ ¼ 0, namely, Λ1 ¼ Λ2 ¼ 0, when using
flat priors in Λ1 and Λ2, the prior distribution for Λ̃ falls to
zero as Λ̃ → 0. This means that the posterior for Λ̃ must
also fall to zero as Λ̃ → 0. To avoid the misinterpretation
that there is no evidence for Λ̃ ¼ 0, we reweight the
posterior for Λ̃ by dividing by the prior used, effectively
imposing a flat prior in Λ̃. In practice, this is done by
dividing a histogram of the posterior by a histogram of the
prior. The resulting histogram is then resampled and
smoothed with kernel density estimation. We have verified
the validity of the reweighting procedure by comparing the
results to runs where we fixΛ2 ¼ 0 and use a flat prior in Λ̃.
This differs from the reweighting procedure only in the
small, next-to-leading-order tidal effect.
After reweighting, there is still some support at Λ̃ ¼ 0.

For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed in
Tables II and IV. For the TaylorF2 model, this 90% upper
limit can be directly compared to the value reported in
Ref. [3]. We note, however, that due to a bookkeeping error,
the value reported in Ref. [3] should have been 800 instead
of 700. Our improved value of 730 is about 10% less than
this corrected value. As with the Λ1–Λ2 posterior (Fig. 10),
the three models with the NRTidal prescription predict 90%
upper limits that are consistent with each other and less than
the TaylorF2 results by about 10%. For the low-spin prior,

we can now place a two-sided 90% HPD credible interval
on Λ̃ that does not contain Λ̃ ¼ 0. This 90% HPD interval
is the smallest interval that contains 90% of the probability.
The PDFs for the NRTidal waveform models are

bimodal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific noise
realization, as similar results have been seen with injected
waveforms with simulated Gaussian noise (see Fig. 4 of
Ref. [138]).
In Fig. 11, we also show posteriors of Λ̃ (gray PDFs)

predicted by the same (EOSs) as in Fig. 10, evaluated using
the masses m1 and m2 sampled from the posterior. The
sharp cutoff to the right of each EOS posterior corresponds
to the equal-mass-ratio boundary. Again, as in Fig. 10, the

FIG. 11. PDFs of the combined tidal parameter Λ̃ for the high-
spin (top panel) and low-spin (bottom panel) priors. Unlike in
Fig. 6, the PDFs have been reweighted by dividing by the original
prior for Λ̃ (also shown). The 90% HPD credible intervals are
represented by vertical lines for each of the four wave-
form models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on the
credible interval is Λ̃ ¼ 0. The seven gray PDFs are those for the
seven representative EOSs using the masses estimated with
the PhenomPNRT model. Their normalization constants have
been rescaled to fit in the figure. For these EOSs, a 1.36 M⊙ NS
has a radius of 10.4 km (WFF1), 11.3 km (APR4), 11.7 km (SLy),
12.4 km (MPA1), 14.0 km (H4), 14.5 km (MS1b), and
14.9 km (MS1).

B. P. ABBOTT et al. PHYS. REV. X 9, 011001 (2019)

011001-12

For reference, we also show Λ1–Λ2 contours for a repre-
sentative subset of theoretical EOSmodels that span the range
of plausible tidal parameters using piecewise-polytrope
fits from Refs. [136,137]. The values of Λ1 and Λ2 are
calculated using the samples for the source-frame masses
m1 and m2 contained in the 90% credible region for
PhenomPNRT. The widths of these bands are determined
by the small uncertainty in chirp mass. The lengths of these
bands are determined by the uncertainty in mass ratio. Most
of their support is near the Λ1 ¼ Λ2 line corresponding to
the equal-mass case and ends at the 90% lower limit for the
mass ratio. The predicted values of the tidal parameters for
the EOSs MS1, MS1b, and H4 lie well outside of the 90%
credible region for both the low-spin and high-spin priors,
and for all waveform models. This can be compared to
Fig. 5 of Ref. [3], where H4 was still marginally consistent
with the 90% credible region.
The leading tidal contribution to the GW phase evolution

is a mass-weighted linear combination of the two tidal
parameters Λ̃ [138]. It first appears at 5PN order and is
defined such that Λ̃ ¼ Λ1 ¼ Λ2 when m1 ¼ m2:

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
: ð5Þ

In Fig. 11, we show marginalized posteriors of Λ̃ for the
two spin priors and four waveformmodels. Because there is
only one combination of the component tidal deformabil-
ities that gives Λ̃ ¼ 0, namely, Λ1 ¼ Λ2 ¼ 0, when using
flat priors in Λ1 and Λ2, the prior distribution for Λ̃ falls to
zero as Λ̃ → 0. This means that the posterior for Λ̃ must
also fall to zero as Λ̃ → 0. To avoid the misinterpretation
that there is no evidence for Λ̃ ¼ 0, we reweight the
posterior for Λ̃ by dividing by the prior used, effectively
imposing a flat prior in Λ̃. In practice, this is done by
dividing a histogram of the posterior by a histogram of the
prior. The resulting histogram is then resampled and
smoothed with kernel density estimation. We have verified
the validity of the reweighting procedure by comparing the
results to runs where we fixΛ2 ¼ 0 and use a flat prior in Λ̃.
This differs from the reweighting procedure only in the
small, next-to-leading-order tidal effect.
After reweighting, there is still some support at Λ̃ ¼ 0.

For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed in
Tables II and IV. For the TaylorF2 model, this 90% upper
limit can be directly compared to the value reported in
Ref. [3]. We note, however, that due to a bookkeeping error,
the value reported in Ref. [3] should have been 800 instead
of 700. Our improved value of 730 is about 10% less than
this corrected value. As with the Λ1–Λ2 posterior (Fig. 10),
the three models with the NRTidal prescription predict 90%
upper limits that are consistent with each other and less than
the TaylorF2 results by about 10%. For the low-spin prior,

we can now place a two-sided 90% HPD credible interval
on Λ̃ that does not contain Λ̃ ¼ 0. This 90% HPD interval
is the smallest interval that contains 90% of the probability.
The PDFs for the NRTidal waveform models are

bimodal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific noise
realization, as similar results have been seen with injected
waveforms with simulated Gaussian noise (see Fig. 4 of
Ref. [138]).
In Fig. 11, we also show posteriors of Λ̃ (gray PDFs)

predicted by the same (EOSs) as in Fig. 10, evaluated using
the masses m1 and m2 sampled from the posterior. The
sharp cutoff to the right of each EOS posterior corresponds
to the equal-mass-ratio boundary. Again, as in Fig. 10, the

FIG. 11. PDFs of the combined tidal parameter Λ̃ for the high-
spin (top panel) and low-spin (bottom panel) priors. Unlike in
Fig. 6, the PDFs have been reweighted by dividing by the original
prior for Λ̃ (also shown). The 90% HPD credible intervals are
represented by vertical lines for each of the four wave-
form models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on the
credible interval is Λ̃ ¼ 0. The seven gray PDFs are those for the
seven representative EOSs using the masses estimated with
the PhenomPNRT model. Their normalization constants have
been rescaled to fit in the figure. For these EOSs, a 1.36 M⊙ NS
has a radius of 10.4 km (WFF1), 11.3 km (APR4), 11.7 km (SLy),
12.4 km (MPA1), 14.0 km (H4), 14.5 km (MS1b), and
14.9 km (MS1).

B. P. ABBOTT et al. PHYS. REV. X 9, 011001 (2019)

011001-12

[De+’18; Dai+’18; LVC’17’18a’18b’19; 
Landry+’18’19; Capano+’19; Narikawa+’19; 

Chatziioannou’20, …]

: measured, less compact EOS 
models are disfavored.
Λ̃

Δℳ

: measured well.ℳ

Δη

η: not measured well.
η-χeff correlation (fhigh=2 kHz [LVC ’18])
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(fhigh=2 kHz [LVC ’18])

KyotoTidal and NRTidalv2 give smaller estimates of  for GW170817 than  
PNTidal (and TEOBResumS) (within statistical uncertainties).

Λ̃

[LVC’19; Narikawa+’20; Gamba+’21; Ashton&Dietrich’21; …]
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Inspiral-only analyses, with fhigh=1 
kHz, give less  waveform biases and  
larger  than the IMR analyses, with 

fhigh=2 kHz. 
[Dai+’18; Narikawa+’19; Gamba+’21]

Λ̃

GW170817: Waveform systematics, high-freq noise

High-freq noise issues in 
Livingston data 
[Narikawa+ ’18]

Reanalyses with fhigh=1 kHz focusing on inspiral regime



Current estimated BNS merger rate 320+490
−240 Gpc−3yr−1 [LVC 2021]

2

FIG. 1. Radius 90% uncertainty as a function of the un-
certainty in the combined tidal deformability for di↵erent
NS masses and radii. The top axis gives the corresponding
SNR, achieved with either a single source or a combination
of sources. Estimates are based on GW170817’s �⇤̃ ⇠ 650
at SNR 32. Solid (dot-dashed) vertical lines are projected re-
sults from a GW170817-like event (a catalog of BNSs) with
di↵erent detectors and observing durations.

cally weaker binary tidal interactions. An SNR of 1000,
achieved either by observing a GW170817-like event with
3G detectors or with 4 years of Voyager operation, would
result in a measurement of ⇤̃ to 20 and R to 50 � 200m
for di↵erent NS masses. A more moderate total SNR of
200 from ⇠100 sources would lead to a ⇤̃ (R) uncertainty
of 100 (1km) at 1.6M�, consistent with the more detailed
simulations of [23]. The final constraint achieved on NS
radii will be a combination of these per-mass estimates
depending on the astrophysical NS mass distribution.

The above are not detailed predictions about the ex-
pected NS constraints from future detectors; such es-
timates would require a precise treatment of -among
others- the BNS merger rate, its redshift distribution,
the NS mass distribution, the broadband detector per-
formance, the network duty cycle, etc. However, they
provide a projection that GWs could result in a ⇠100m
radius measurement within the decade with Voyager and
beyond with 3G detectors. This radius constraint would
also improve if e↵ects such as dynamical tides [61–63] are
detected as they are qualitatively di↵erent than the stan-
dard adiabatic tides considered here and not captured by
the ⇢�1 scaling. Reaching this projected precision relies
on ascertaining that every aspect of the GW analysis in-
duces potential systematic errors that are fully quantified
and brought below statistical uncertainties.

GRAVITATIONAL WAVE ANALYSIS

Analysis of GW data d to extract source parameters ✓
relies on modeling the signal with a waveform template

h(✓) under some model for the detector noise. The like-
lihood function in the frequency domain is [64, 65]

logL ⇠ �
1

2
(d � h(✓)|d � h(✓)), (1)

with the noise-weighted inner product

(a|b) ⌘ 2

Z
a⇤(f)b(f) + b⇤(f)a(f)

Sn(f)
df, (2)

where an asterisk denotes complex conjugation and Sn(f)
is the power spectral density (PSD) of the noise. The
likelihood and a prior for ✓ give the posterior probability.
The above allows us to identify the ingredients of pa-

rameter estimation:

(i) the data d,

(ii) the noise PSD Sn(f),

(iii) the waveform model h(✓),

as well as the main assumptions:

(iv) the detector noise is stationary, leading to a diag-
onal noise covariance matrix and an inner product
that is a one-dimensional frequency integral, and

(v) the detector noise is gaussian, which leads to the
gaussian functional form of the likelihood.

Each of the above introduces systematic uncertainties
that will a↵ect inference at some level.

ASSUMPTION: GAUSSIAN NOISE

The functional form of the likelihood is dictated by the
assumption of gaussian detector noise. Gaussianity can
be violated by instrumental artifacts, known as glitches,
or multiple GW signals temporally overlapping. Glitches
are a common occurrence, with a rate of . 1 per minute
in the LIGO detectors in O3a [44] and already coinciding
with signals, notably GW170817 [8, 66]. Overlapping
signals are expected to be rare in advanced LIGO but a
possibility for 3G detectors [67–70].
The temporal coincidence of glitches and signals has

led to the development of mitigation techniques that si-
multaneously model the signal and the glitch [71] or use
auxiliary channel information [72–75]. In the context of
tidal inference, glitches are relevant when overlapping
with the signal at frequencies &400Hz. Though O3a
was dominated by glitches with peak frequencies below
100Hz [44], improved detector sensitivity could bring new
glitch families. A prominent glitch will be modeled to-
gether with the signal [71], leading to unbiased signal pa-
rameters. However, this does not preclude the possibility
of a stealth bias [76], where the glitch is not loud enough
to be identified but could still a↵ect tidal inference.

10

Projected EOS constraints from expected BNS coalescences
For GW170817,  at SNR 32. 
For GW170817-like BNS, for A+,  and  at SNR~200, 
for 3G,  and  at SNR~1000.

σΛ̃ ∼ 650
σΛ̃ ∼ 100 ΔR ∼ 500 m

σΛ̃ ∼ 20 ΔR ∼ 100 m [Landry+’20; Chatziioannou’22;…]

[Gamba+’21]
Systematic bias  vs statistical uncertainty  with 3G detectorsΔΛ̃ σΛ̃

→ Further improve waveform 
model to avoid bias.

Sec. IV that large ΔΛ̃ are to be expected when employing
TaylorF2 and IMRPhenomPv2NRTidal, we take a
step further and qualitatively estimate the bias ΔΛ̃ ¼ Λ̃E −
Λ̃ through Eq. (24) for two additional state-of-the-art
approximants, IMRPhenomPv2NRTidalv2 [93] and
SEOBNRv4Tsurrogate [90]. We thus compare the
latter and TEOBResumS in pairs and report the
differences with respect to two baselines (TEOBResumS
and SEOBNRv4Tsurrogate). Following the procedure
described in Sec. IV D, we consider values of Λ̃ equal to
400, 800, and 1000, place the sources in GW170817’s
location, and employ the EinsteinTelescope-
P1600143 PSD [131]. We compute waveforms from
30 to 2048 Hz (left panel) or 1024 Hz (right panel).
Results are again displayed in Fig. 10.
We find that both SEOBNRv4Tsurrogate and

IMRPhenomPv2NRTidalv2 “underestimate” the
values of Λ̃ at the TEOBResumS baseline (right panel),
and that the jΔΛj values found are always below ≈100.
This indicates that tides are stronger in the SEOBNRv4T-
surrogate and IMRPhenomPv2NRTidalv2 models
than in TEOBResumS. When restricting below 1 kHz
(large Λ̃), the systematic bias in Λ̃ due to the
differences between IMRPhenomPv2NRTidalV2 and
TEOBResumS is ≲2σ, corresponding to ΔΛ̃" 50, while
it varies ∼2σ–4σ when considering differences with respect
to SEOBNRv4Tsurrogate. This indicates that the
differences between IMRPhenomPv2NRTidalv2 and
TEOBResumS are mostly related to the modeling of tides
at high frequencies, while the tides in the EOB models
differ from each other already at lower frequencies.
Some caution is needed when interpreting the results

obtained for the different waveform approximants: in

Sec. IV D, we have seen that at times the estimated Λ̃E

would overestimate Λ̃median by up to 100. This difference
was acceptable at the injected SNRs, but it indicates that
our estimate might not be precise enough at the SNRs
which characterize 3G detectors. Nonetheless, we expect
the behavior of the approximants (i.e., their being more/less
attractive) to be correctly captured.
Overall, our findings indicate that above SNR≈

100–200, σΛ̃ will be small enough that the models will
appear to be fully inconsistent with each other. The
estimated systematic biases reflect differences in the tidal
modeling at frequencies corresponding to the very last
orbits and thus accessible to NR. We stress that at
frequencies ω̂≳ 0.06, the NSs are in contact, and the
waveform modeling based on tidal interactions can only be
considered an effective description, since the dynamics are
dominated by hydrodynamics [97]. We demonstrate in
Appendix C that current NR simulations are not sufficiently
accurate to produce faithful waveforms. New, more precise
NR simulations appear crucial to further develop tidal
waveform models for future detectors.

VII. CONCLUSIONS

In this paper, we discussed a possible approach for the
analysis of waveform systematics in the estimation of tidal
effects in BNS. We demonstrated the effectiveness of our
method in a mock experiment using a large set of injected
signals and applied the method to GW170817. We rec-
ommend using this method for future analysis and point
out that the approximants used for the main analysis of
GW170817 should be significantly improved for future
robust analysis at SNR ∼ 80 and beyond. We expand on
these conclusions here below.

FIG. 10. The ratio between systematic effects ΔΛ̃ and statistical uncertainties σΛ̃, shown as a function of the SNR ρ for a range of
different ΔΛ̃ ∈ ½−100;þ100%. Colored lines refer to values of ΔΛ̃=σΛ̃ estimated between a baseline approximant Y and a recovery
approximant X, labelled as “X-Y” in the bottom-left legend, and computed for two different frequency cutoffs (left and right panels) and
three different values of Λ̃ (dashed, dotted, and dash-dotted lines). We find that ΔΛ̃=σΛ̃ ≈ 1 at SNRs ranging from 175 to 200 for all Λ̃
values. Therefore, with 3G detectors, all the current approximants will appear to be statistically inconsistent.

WAVEFORM SYSTEMATICS IN THE GRAVITATIONAL-WAVE … PHYS. REV. D 103, 124015 (2021)

124015-19

 at SNR~175-200  
for all  values.
ΔΛ̃ /σΛ̃ ∼ 1

Λ̃

Therefore, in 3G detectors era,  
systematic bias will be larger than 
statistical uncertainty for BNS GW 
waveform models. 
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Qij = ��Eij (1)

We present the component form of the multipole tidal phases (MultipoleTidal), including the
mass quadrupole, the current quadrupole, and the mass octupole. By using the component form,
we demonstrate the phase evolution and the phase di↵erence between the MultipoleTidal and the
mass quadrupole (PNTidal). We compare the match between the MultipoleTidal and the numerical-
relativity calibrated model for the tidal part (NRTidalv2) and the match between the PNTidal and
the NRTidalv2 model. We find that the former is better than the latter, in particular, for large
masses and the tidal deformabilities.

I. INTRODUCTION

PN tidal waveform for the mass quadrupole (hereafter
we call it PNTidal) have been derived up to 2.5PN (rel-
ative 5+2.5PN) order for phase [21–23] and have used in
analyses of the BNS signals detected by the Advanced
LIGO and Advanced Virgo detectors, GW170817 and/or
GW190425 [1–9, 11, 27, 30] (see also Refs. [13–16]).

Recently, the complete and correct PN tidal phase up
to 5+2.5PN order for mass quadrupole, mass octupole,
and current quadrupole interactions have been derived
by the PN-matched multiplolar-post-Minkowskian for-
malism [10]. In our previous study [12, 30], we rewrite the
the complete and correct form for the mass quadrupole
interactions as a function of the dimensionless tidal de-
formability for the individual stars, ⇤, in a convenient
way for data analyses. And we have reanalyzed the data
around low-mass events identified as binary black holes
by using the corrected version of the PNTidal model to
test the exotic compact object hypothesis. The corrected
PNTidal model has also been used in analyses of binary
neutron star (BNS) signals [11, 30] In Ref. [16], the im-
pact of the EOS-insensitive relations focusing on the cur-
rent quadrupole, mass octupole, and f-mode dynamical
tidal correction for BNS signals have been studied.

In this study, we present the component form of
the multipole tidal phases (MultipoleTidal), including
the mass quadrupole, the current quadrupole, and the
mass octupole. By using the component form, we com-
pare the match between the multipole tidal phase and
the numerical relativity (NR) calibrated model for the
tidal part (NRTidalv2) and the match between the mass
quadrupole and the NRTidalv2 model. We find that the
match between the multipole tidal and NRTidalv2 model
is better than the match between the mass quadrupole
and NRTidalv2 model, in particular, for large masses and

⇤
narikawa@icrr.u-tokyo.ac.jp

the tidal deformabilities.
The outline of the paper is as follows. In Section II,

we present the component form of the multipole tidal
phases. In Section III B, we demonstrate the impact of
the multipole tidal contributions by comparing the phase
evolution with the NRTidalv2, the phase di↵erence be-
tween the MultipleTidal and the PNTidal. We also com-
pare the match between the MultipoleTidal and the NR-
Tidalv2 and the match between the PNTidal and the
NRTidalv2. Section IV is devoted to a conclusion. In
Section A, we summarize the EOS-insensitive relations
for the multipole moments.
We employ the units c = G = 1, where c and G are

the speed of light and the gravitational constant, respec-
tively.

II. WAVEFORM MODELS FOR INSPIRALING
BINARY NEUTRON STARS

A. Multipole tidal interactions

The mass quadrupole, the current quadrupole, and the
mass octupole tidal interactions are defined as [10]

Gµ(2)
A ⌘

✓
GmA

c2

◆5

⇤A =
2

3
k(2)A R5

A, (2)

G�(2)
A ⌘

✓
GmA

c2

◆5

⌃A =
1

48
j(2)A R5

A, (3)

Gµ(3)
A ⌘

✓
GmA

c2

◆7

⇤(3)
A =

2

15
k(3)A R7

A, (4)

where k(2)A , j(2)A , and k(3)A are Love numbers for the mass
quadrupole, the current quadrupole, and the mass oc-
tupole moments of the body, with a radius RA, and ⇤A,
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Sij = −σHij (2)

Qijk = −λ(3)Eijk (3)

We present the component form of the multipole tidal phases (MultipoleTidal), including the
mass quadrupole, the current quadrupole, and the mass octupole. By using the component form,
we demonstrate the phase evolution and the phase difference between the MultipoleTidal and the
mass quadrupole (PNTidal). We compare the match between the MultipoleTidal and the numerical-
relativity calibrated model for the tidal part (NRTidalv2) and the match between the PNTidal and
the NRTidalv2 model. We find that the former is better than the latter, in particular, for large
masses and the tidal deformabilities.

I. FOR PRESENTATION

ΨMass−Quad
Tidal (f)

∼ −Λ̃x5/2
[
1 + aMass−Quad

6PN x+ aMass−Quad
6.5PN x3/2

+aMass−Quad
7PN x2 + aMass−Quad

7.5PN x5/2
]

(4)

ΨCurrent−Quad
Tidal (f)

∼ −Σ̃x5/2
[
x+ aCurrent−Quad

7PN x2 + aCurrent−Quad
7.5PN x5/2

]
(5)

ΨMath−Oct
Tidal (f) ∼ −Λ̃(3)x5/2

[
x2

]
. (6)

II. INTRODUCTION

PN tidal waveform for the mass quadrupole (hereafter
we call it PNTidal) have been derived up to 2.5PN (rel-
ative 5+2.5PN) order for phase [? ? ? ] and have used
in analyses of the BNS signals detected by the Advanced
LIGO and Advanced Virgo detectors, GW170817 and/or
GW190425 [? ? ? ? ? ? ? ? ? ? ? ? ] (see also
Refs. [? ? ? ? ]).

∗ narikawa@icrr.u-tokyo.ac.jp

Recently, the complete and correct PN tidal phase up
to 5+2.5PN order for mass quadrupole, mass octupole,
and current quadrupole interactions have been derived
by the PN-matched multiplolar-post-Minkowskian for-
malism [? ]. In our previous study [? ? ], we rewrite the
the complete and correct form for the mass quadrupole
interactions as a function of the dimensionless tidal de-
formability for the individual stars, Λ, in a convenient
way for data analyses. And we have reanalyzed the data
around low-mass events identified as binary black holes
by using the corrected version of the PNTidal model to
test the exotic compact object hypothesis. The corrected
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We present the component form of the multipole tidal phases (MultipoleTidal), including the
mass quadrupole, the current quadrupole, and the mass octupole. By using the component form,
we demonstrate the phase evolution and the phase difference between the MultipoleTidal and the
mass quadrupole (PNTidal). We compare the match between the MultipoleTidal and the numerical-
relativity calibrated model for the tidal part (NRTidalv2) and the match between the PNTidal and
the NRTidalv2 model. We find that the former is better than the latter, in particular, for large
masses and the tidal deformabilities.
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II. INTRODUCTION

PN tidal waveform for the mass quadrupole (hereafter
we call it PNTidal) have been derived up to 2.5PN (rel-
ative 5+2.5PN) order for phase [? ? ? ] and have used
in analyses of the BNS signals detected by the Advanced
LIGO and Advanced Virgo detectors, GW170817 and/or
GW190425 [? ? ? ? ? ? ? ? ? ? ? ? ] (see also
Refs. [? ? ? ? ]).
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Recently, the complete and correct PN tidal phase up
to 5+2.5PN order for mass quadrupole, mass octupole,
and current quadrupole interactions have been derived
by the PN-matched multiplolar-post-Minkowskian for-
malism [? ]. In our previous study [? ? ], we rewrite the
the complete and correct form for the mass quadrupole
interactions as a function of the dimensionless tidal de-
formability for the individual stars, Λ, in a convenient
way for data analyses. And we have reanalyzed the data
around low-mass events identified as binary black holes
by using the corrected version of the PNTidal model to
test the exotic compact object hypothesis. The corrected

≡ λ
m5

≡ σ
m5

≡ λ(3)

m7

[cf. Luc Blanchet’s talk in symposium]
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Update for the “mass” quad. (Λ), “current” quad. (Σ), and “mass” oct. (Λ(3)) 
by Henry, Faye, Blanchet, ’20 (HFB-form).

Complete and correct PN tidal waveform, 7.5PN

The result for the tidal part of the SPA phase in the case of
equal bodies, with the same mass and identical polar-
izability parameters, has already been provided in Eq. (1.7).

VII. SUMMARY AND CONCLUSIONS

In this paper and the preceding one [22], we have solved
the problem of the dynamics and GW emission of compact
binary systems without spins for tidal, internal structure-
dependent effects at the NNL order, meaning formally the
order 7.5PN (taking into account tails) in the GW phase
evolution. We used the formalism of the effective matter
action of Ref. [21], which describes massive pointlike
particles with internal structure by introducing specific
non-minimal couplings to the space-time curvature that
model the finite-size effects of the compact bodies due to
the tidal interactions. Since the matter action is localized on
the worldline of the particles, it is sometimes referred to as a
“skeletonized” action. To the NNL order there appear three
polarizability coefficients corresponding to mass quadru-
pole, current quadrupole, and mass octupole tidal inter-
actions. In Ref. [22], we derived the associated effective
Fokker action to obtain the conservative dynamics, i.e.,
EOM and conserved integrals of the motion.
In the present paper, we computed the matter stress-

energy tensor of the compact binary from the same effective
action, and inserted it into a GW generation formalism
based on MPM approximations for the external field [25],
which are matched to the PN expansion of the inner field
[30,31]. The MPM-PN approach constitutes a very general
way for computing the GW emission (and radiation
reaction onto the source) once one is given the matter
stress-energy tensor. In particular, we resorted to general
ready-to-use expressions for the source multipole moments
and nonlinear interactions between those moments (tails,
etc.) leading to the observable waveform at infinity and,
thus, the energy flux. At last, once the flux to NNL order for
tidal effects had been obtained and reduced for circular
orbits, we combined it with the result for the conservative
energy found in [22]. Namely, we employed the standard
flux-balance argument to determine the binary’s chirp, i.e.,
the orbital phase and frequency evolution through GW
emission for compact binaries on quasicircular orbits.

Our results extend and complete several previous results
in the literature. In Table I, we summarize the previous
achievements in the field for each PN order and multipole
component. We agree with all the previous results quoted in
Table I. Finally, with the present paper, the tidal phase of
nonspinning NS binaries is complete up to the NNL order
including NL tails, which means formally up to the high
7.5PN level.14
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APPENDIX A: PROOF THAT DIMENSIONAL
AND HADAMARD REGULARIZATIONS ARE

EQUIVALENT AT NNL ORDER

In order to show that dimensional and Hadamard
regularizations are equivalent at NNL order, we need to
show that the multipole moments integrated with these two
regularizations have the same value. The regularizations

TABLE I. Comparison with the existing literature. We indicate for each order and each multipolar piece
contributing to the tidal phase φtidal the previous references having achieved it and with which we agree (note that
Ref. [18] considers only the case of equal bodies). The contributions obtained with the present paper are indicated as
a check mark ✓. Up to NNL order including tails, the tidal phase is now complete.

φtidal Mass Quadrupole Current Quadrupole Mass Octupole

5PN (L) [6,7,18,44,45] ✓ ✗ ✗
6PN (NL) [18,44,46] ✓ [46,47] ✓ ✗
6.5PN (tail) [18,46] ✓ ✗ ✗
7PN (NNL) ✓ ✓ [46,48] ✓
7.5PN (tail) ✓ ✓ ✓

14However we disagree with some coefficients in the literature:
first, with the 6PN coefficient due to the current quadrupole
moment computed in Ref. [48] and second, with the mass
quadrupole contribution to the tail term at the 7.5PN order as
reported in Ref. [18]. The latter reference obtains for the mass
quadrupole contributions to the SPA phase of two identical NS
[see Eq. (31) in [18] ]:

ψDNV
tidal ¼ −κT2

39

4
v5
!
1þ 3115

1248
v2 − πv3

þ
"
23073805

3302208
þ 20

81
ᾱð2Þ2 þ 20

351
β222

#
v4 −

4283

1092
πv5

$
;

with κT2 ¼ 6μ̃ð2Þþ in their notation (recall that we have μ̃ð2Þ− ¼ 0 for
identical NS). Further work [21] fixed ᾱð2Þ2 ¼ 85=14 to be the
contribution of the NNL equations of motion to the phasing.
Now, the comparison with our present results, given for two equal
bodies by Eq. (1.2) in the Introduction, permits inferring that
β222 ¼ 642083=1016064, so that, with this value, we are in
agreement up to the NNL level for the mass quadrupole
interaction; but we find that the NL 7.5PN tail term has the
coefficient − 2137

546 π ≃ −12.296 instead of the coefficient − 4283
1092 π ≃

−12.322 obtained in Ref. [18].

TIDAL EFFECTS IN THE GRAVITATIONAL-WAVE PHASE … PHYS. REV. D 102, 044033 (2020)

044033-17

[FH08] Flanagan, Hinderer ’08; [F14] Favata ’14; [DNV12] Damour, Nagar, Villain ’12; [VF13] Vines, 
Flanagan ’13; [VHF11] Vines, Hinderer, Flanagan ’11; [AGP18] Abdelsalhin, Gualtieri, Pani ’18; 
[BV20] Banihashemi, Vines ’20; [L18] Landry ‘18

[FH08, F14, DNV12, VF13, VHF11] ✔
[DNV12, VF13, AGP18] ✔
[DNV12, AGP18]

[VF13, AGP18]

[AGP18, L18]

Mass quad. Current quad. Mass oct.Σ Λ(3)Λ
within MPM-PN formalism

Tidal polarizabilities

Here, uncalculated coefficients at 7PN order are completed 
and coefficients at 7.5PN order for mass quad. are corrected.

The contributions obtained by Henry, Faye, Blanchet, ’20 are indicated as a 
check mark ✔.
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I. TIDAL DEFORMABILITY

Mass quadrupole, current quadrupole, and mass oc-
tupole tidal interactions are defined as
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where k(2)A , j(2)A , and k(3)A are Love numbers for the mass
quadrupole, current quadrupole, and mass octupole mo-
ments of the body, with a radius RA [1], and ⇤A, ⌃A,

and ⇤(3)
A are dimensionless multipole tidal deformability

parameters of each object with a mass mA.

II. WAVEFORM MODELS FOR INSPIRALING
BINARY NEUTRON STARS

A. HFB form

The polarizability parameters are defined as [1]
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where M = mA +mB is the total mass.
HFB-form for the tidal phase are derived as

 HFB(f) = � 9
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where � = (mA � mB)/M is the normalized mass dif-
ference. By using XA,B = mA,B/M , we can rewirte as

follows: XB = 1�XA, � = 2XA � 1,

2µ̃(2)
± = (1�XA)X

4
A⇤A ± (A $ B), (9)

2�̃(2)
± = (1�XA)X

4
A⌃A ± (A $ B), (10)

2µ̃(3)
± = (1�XA)X

4
A⇤

(3)
A ± (A $ B). (11)

Mass quadrupole

13

Λ 5-7.5PN

Rewrite HFB-form to “more familiar” form for Λ
[Narikawa, Uchikata, T. Tanaka ’21]

complete 7PN corrected 7.5PN

convenient form for data analysis

The component form is used for PN tidal base of NRTidalv3 
(latest NR calibrated model).

[Abac+ ’23 and private communication for corrections with them.]

x = (πMf )2/3
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Qij = −λEij (1)

We present the component form of the multipole tidal phases (MultipoleTidal), including the
mass quadrupole, the current quadrupole, and the mass octupole. By using the component form,
we demonstrate the phase evolution and the phase difference between the MultipoleTidal and the
mass quadrupole (PNTidal). We compare the match between the MultipoleTidal and the numerical-
relativity calibrated model for the tidal part (NRTidalv2) and the match between the PNTidal and
the NRTidalv2 model. We find that the former is better than the latter, in particular, for large
masses and the tidal deformabilities.

I. FOR PRESENTATION

ΨMass−Quad
Tidal (f)

∼ −Λ̃x5/2
[
1 + aMass−Quad

6PN x+ aMass−Quad
6.5PN x3/2

+aMass−Quad
7PN x2 + aMass−Quad

7.5PN x5/2
]

(2)

II. INTRODUCTION

PN tidal waveform for the mass quadrupole (hereafter
we call it PNTidal) have been derived up to 2.5PN (rel-
ative 5+2.5PN) order for phase [21–23] and have used in
analyses of the BNS signals detected by the Advanced
LIGO and Advanced Virgo detectors, GW170817 and/or
GW190425 [1–9, 11, 27, 30] (see also Refs. [13–16]).

Recently, the complete and correct PN tidal phase up
to 5+2.5PN order for mass quadrupole, mass octupole,
and current quadrupole interactions have been derived
by the PN-matched multiplolar-post-Minkowskian for-
malism [10]. In our previous study [12, 30], we rewrite the
the complete and correct form for the mass quadrupole
interactions as a function of the dimensionless tidal de-
formability for the individual stars, Λ, in a convenient
way for data analyses. And we have reanalyzed the data
around low-mass events identified as binary black holes
by using the corrected version of the PNTidal model to
test the exotic compact object hypothesis. The corrected
PNTidal model has also been used in analyses of binary
neutron star (BNS) signals [11, 30] In Ref. [16], the im-
pact of the EOS-insensitive relations focusing on the cur-

∗ narikawa@icrr.u-tokyo.ac.jp

rent quadrupole, mass octupole, and f-mode dynamical
tidal correction for BNS signals have been studied.
In this study, we present the component form of

the multipole tidal phases (MultipoleTidal), including
the mass quadrupole, the current quadrupole, and the
mass octupole. By using the component form, we com-
pare the match between the multipole tidal phase and
the numerical relativity (NR) calibrated model for the
tidal part (NRTidalv2) and the match between the mass
quadrupole and the NRTidalv2 model. We find that the
match between the multipole tidal and NRTidalv2 model
is better than the match between the mass quadrupole
and NRTidalv2 model, in particular, for large masses and
the tidal deformabilities.
The outline of the paper is as follows. In Section III,

we present the component form of the multipole tidal
phases. In Section IVB, we demonstrate the impact of
the multipole tidal contributions by comparing the phase
evolution with the NRTidalv2, the phase difference be-
tween the MultipleTidal and the PNTidal. We also com-
pare the match between the MultipoleTidal and the NR-
Tidalv2 and the match between the PNTidal and the
NRTidalv2. Section V is devoted to a conclusion. In
Section A, we summarize the EOS-insensitive relations
for the multipole moments.
We employ the units c = G = 1, where c and G are

the speed of light and the gravitational constant, respec-
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I. TIDAL DEFORMABILITY

Mass quadrupole, current quadrupole, and mass oc-
tupole tidal interactions are defined as
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where k(2)A , j(2)A , and k(3)A are Love numbers for the mass
quadrupole, current quadrupole, and mass octupole mo-
ments of the body, with a radius RA [1], and ⇤A, ⌃A,

and ⇤(3)
A are dimensionless multipole tidal deformability

parameters of each object with a mass mA.

II. WAVEFORM MODELS FOR INSPIRALING
BINARY NEUTRON STARS

A. HFB form

The polarizability parameters are defined as [1]
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where M = mA +mB is the total mass.
HFB-form for the tidal phase are derived as
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where � = (mA � mB)/M is the normalized mass dif-
ference. By using XA,B = mA,B/M , we can rewirte as

follows: XB = 1�XA, � = 2XA � 1,

2µ̃(2)
± = (1�XA)X

4
A⇤A ± (A $ B), (9)

2�̃(2)
± = (1�XA)X

4
A⌃A ± (A $ B), (10)

2µ̃(3)
± = (1�XA)X

4
A⇤

(3)
A ± (A $ B). (11)

Current quadrupole

Mass octupole

x = (πMf )2/3
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Qij = −λEij (1)

We present the component form of the multipole tidal phases (MultipoleTidal), including the
mass quadrupole, the current quadrupole, and the mass octupole. By using the component form,
we demonstrate the phase evolution and the phase difference between the MultipoleTidal and the
mass quadrupole (PNTidal). We compare the match between the MultipoleTidal and the numerical-
relativity calibrated model for the tidal part (NRTidalv2) and the match between the PNTidal and
the NRTidalv2 model. We find that the former is better than the latter, in particular, for large
masses and the tidal deformabilities.

I. FOR PRESENTATION

ΨMass−Quad
Tidal (f)

∼ −Λ̃x5/2
[
1 + aMass−Quad

6PN x+ aMass−Quad
6.5PN x3/2

+aMass−Quad
7PN x2 + aMass−Quad

7.5PN x5/2
]

(2)

ΨCurrent−Quad
Tidal (f)

∼ −Σ̃x5/2
[
x+ aCurrent−Quad

7PN x2 + aCurrent−Quad
7.5PN x5/2

]
(3)

II. INTRODUCTION

PN tidal waveform for the mass quadrupole (hereafter
we call it PNTidal) have been derived up to 2.5PN (rel-
ative 5+2.5PN) order for phase [21–23] and have used in
analyses of the BNS signals detected by the Advanced
LIGO and Advanced Virgo detectors, GW170817 and/or
GW190425 [1–9, 11, 27, 30] (see also Refs. [13–16]).

Recently, the complete and correct PN tidal phase up
to 5+2.5PN order for mass quadrupole, mass octupole,
and current quadrupole interactions have been derived
by the PN-matched multiplolar-post-Minkowskian for-
malism [10]. In our previous study [12, 30], we rewrite the
the complete and correct form for the mass quadrupole
interactions as a function of the dimensionless tidal de-
formability for the individual stars, Λ, in a convenient
way for data analyses. And we have reanalyzed the data
around low-mass events identified as binary black holes

∗ narikawa@icrr.u-tokyo.ac.jp

by using the corrected version of the PNTidal model to
test the exotic compact object hypothesis. The corrected
PNTidal model has also been used in analyses of binary
neutron star (BNS) signals [11, 30] In Ref. [16], the im-
pact of the EOS-insensitive relations focusing on the cur-
rent quadrupole, mass octupole, and f-mode dynamical
tidal correction for BNS signals have been studied.

In this study, we present the component form of
the multipole tidal phases (MultipoleTidal), including
the mass quadrupole, the current quadrupole, and the
mass octupole. By using the component form, we com-
pare the match between the multipole tidal phase and
the numerical relativity (NR) calibrated model for the
tidal part (NRTidalv2) and the match between the mass
quadrupole and the NRTidalv2 model. We find that the
match between the multipole tidal and NRTidalv2 model
is better than the match between the mass quadrupole
and NRTidalv2 model, in particular, for large masses and
the tidal deformabilities.

The outline of the paper is as follows. In Section III,
we present the component form of the multipole tidal
phases. In Section IVB, we demonstrate the impact of
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where k(2)A , j(2)A , and k(3)A are Love numbers for the mass
quadrupole, current quadrupole, and mass octupole mo-
ments of the body, with a radius RA [1], and ⇤A, ⌃A,

and ⇤(3)
A are dimensionless multipole tidal deformability

parameters of each object with a mass mA.
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where M = mA +mB is the total mass.
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where � = (mA � mB)/M is the normalized mass dif-
ference. By using XA,B = mA,B/M , we can rewirte as

follows: XB = 1�XA, � = 2XA � 1,

2µ̃(2)
± = (1�XA)X

4
A⇤A ± (A $ B), (9)

2�̃(2)
± = (1�XA)X

4
A⌃A ± (A $ B), (10)

2µ̃(3)
± = (1�XA)X

4
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A ± (A $ B). (11)
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Σ

Λ(3)

6-7.5PN

7PN

Here, coefficients up to 7.5PN order are completed.

Rewrite HFB-form to “more familiar” form for Σ and Λ(3)
[Narikawa ’23]
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Qij = −λEij (1)

We present the component form of the multipole tidal phases (MultipoleTidal), including the
mass quadrupole, the current quadrupole, and the mass octupole. By using the component form,
we demonstrate the phase evolution and the phase difference between the MultipoleTidal and the
mass quadrupole (PNTidal). We compare the match between the MultipoleTidal and the numerical-
relativity calibrated model for the tidal part (NRTidalv2) and the match between the PNTidal and
the NRTidalv2 model. We find that the former is better than the latter, in particular, for large
masses and the tidal deformabilities.

I. FOR PRESENTATION

ΨMass−Quad
Tidal (f)

∼ −Λ̃x5/2
[
1 + aMass−Quad

6PN x+ aMass−Quad
6.5PN x3/2

+aMass−Quad
7PN x2 + aMass−Quad

7.5PN x5/2
]

(2)

ΨCurrent−Quad
Tidal (f)

∼ −Σ̃x5/2
[
x+ aCurrent−Quad

7PN x2 + aCurrent−Quad
7.5PN x5/2

]
(3)

ΨMath−Oct
Tidal (f) ∼ −Λ̃(3)x5/2

[
x2

]
. (4)

II. INTRODUCTION

PN tidal waveform for the mass quadrupole (hereafter
we call it PNTidal) have been derived up to 2.5PN (rel-
ative 5+2.5PN) order for phase [21–23] and have used in
analyses of the BNS signals detected by the Advanced
LIGO and Advanced Virgo detectors, GW170817 and/or
GW190425 [1–9, 11, 27, 30] (see also Refs. [13–16]).

Recently, the complete and correct PN tidal phase up
to 5+2.5PN order for mass quadrupole, mass octupole,
and current quadrupole interactions have been derived
by the PN-matched multiplolar-post-Minkowskian for-
malism [10]. In our previous study [12, 30], we rewrite the
the complete and correct form for the mass quadrupole
interactions as a function of the dimensionless tidal de-
formability for the individual stars, Λ, in a convenient
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way for data analyses. And we have reanalyzed the data
around low-mass events identified as binary black holes
by using the corrected version of the PNTidal model to
test the exotic compact object hypothesis. The corrected
PNTidal model has also been used in analyses of binary
neutron star (BNS) signals [11, 30] In Ref. [16], the im-
pact of the EOS-insensitive relations focusing on the cur-
rent quadrupole, mass octupole, and f-mode dynamical
tidal correction for BNS signals have been studied.

In this study, we present the component form of
the multipole tidal phases (MultipoleTidal), including
the mass quadrupole, the current quadrupole, and the
mass octupole. By using the component form, we com-
pare the match between the multipole tidal phase and
the numerical relativity (NR) calibrated model for the
tidal part (NRTidalv2) and the match between the mass
quadrupole and the NRTidalv2 model. We find that the
match between the multipole tidal and NRTidalv2 model
is better than the match between the mass quadrupole

convenient form for data analysis



PNTidal (Λ)
MultipoleTidal (Λ,Σ,Λ(3))

NRTidalv2

NRTidal

MultipoleTidal (Λ,Σ,Λ(3)) gives a larger phase shift than PNTidal (Λ), and is 
closer to the NRTidalv2.

KyotoTidal
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larger shift
Equal mass mA=mB=1.35 M◉, ΛA=ΛB=300, ΣA=ΣB=3.1, Λ(3)A=Λ(3)B=483

Phase evolution Compare waveform models
With quasiuniversal (Multipole Love) relations [Yagi ’13]

NRTidalv3



GW170817
Application to GW170817

MultipoleTidal (Λ,Σ,Λ(3)) gives a smaller inferred  than PNTidal (Λ), and is 
closer to the NRTidalv2, which is consistent with the phase shift. 
MultipoleTidal (Λ,Σ,Λ(3)) is not significant impact on the estimates of  for GW170817 
(consistent with the results in [Pradhan+ ’22]). 

Λ̃

Λ̃
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low-spin prior |χ|<0.05, fhigh=1000 Hz

Compare waveform models

Posteriors of Λ̃
With quasiuniversal (Multipole Love) relations [Yagi ’13]

Less compact EOS models: MS1 
and MS1B lie outside 90% 
credible regions for GW170817.



Summary
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Conclusion
MultipoleTidal (Λ,Σ,Λ(3)) gives a smaller inferred  than PNTidal (Λ), 
and is closer to the NRTidalv2, which is consistent with the phase shift. 
MultipoleTidal (Λ,Σ,Λ(3)) is not significant impact on the estimates of  
for GW170817.   

Λ̃

Λ̃

Rewrite the updated PN tidal phase for Λ, Σ, and Λ(3)  
to the convenient form for the data analysis. 
It is useful for waveform modeling.

Thank you very much for the attention.


