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Background and Motivation



Spin-up of Neutron Stars

ESA, NASA, and Felix Mirabel

• Neutron stars (NSs) are sometimes

found in binary systems such as

Low Mass X-Ray Binaries

(LMXBs);

• The infalling matter should spin-up

NS close to their breaking

frequency. But that is not

experimentally verified1;

• NSs in accreting systems also show

reduced magnetic fields.

1Chakrabarty et al., 2003
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Spin-down Mechanisms

Rota�on Axis • We need mechanisms for the NS to

lose angular momentum;

• One possibility is for the star to

spin down due to GW emission;

• Therefore, we need a time-varying

quadrupole;

• For a rotating star, this can be

non-axisymmetric deformations,

the so-called ’mountains’.
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Elastic of Mountains

Gittins, Andersson and Jones, 2021

• The two main categories of

mountains are: elastic (see image)

and magnetic;

• The elastic mountains come from

elastic deformation of the crust;

• Mountain size is determined by the

maximum stress the crust can

sustain.
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Magnetic Mountains

• Magnetic mountains are present in

isolated and accreting systems;

• In isolated systems, the presence of

magnetic field itself deforms the

NS away from spherical symmetry;

• This is more relevant for magnetars

and depends on the internal

magnetic field.
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Magnetically Confined Mountains

on Neutron Stars



Magnetically Driven Accretion

Source: NASA

• In the inner regions of the

accretion disk, the fluid motion is

dominated by the magnetic field

(magnetosphere);

• Matter is accreted on the magnetic

poles;

• The accreted plasma distorts the

magnetic field of the star.
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Magnetically Confined Mountain

• Mountains start to form in the

polar regions;

• Gravity tries to smooth out the

mountain;

• The mountain deforms the

magnetic field;

• Magnetic field resists and holds the

mountains in place.
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Newtonian Analysis

• The Newtonian analysis of this mechanism is already very

explored in the literature 2;

• The overall result is a decrease of the magnetic dipole moment

of the star and an increase of the mass-quadrupole moment;

• These results partially help understand the observed properties

of LMXBs.

2See, for example, Uchida, 1981; Payne and Melatos, 2004; Vigelius and

Melatos, 2008; Wette et al., 2010; Fujisawa et al., 2022.
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Formulation of the Problem in General Relativity

• The goal of my research was to approach this problem in

General Relativity;

• The first principle equations are:

Rest mass conservation

∇a(ρu
a) = 0

Conservation of Energy Momentum

∇aT
ab = ∇a(T

ab
fluid + T ab

EM) = 0
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Formulation of the Problem in General Relativity

Einstein’s Equations

Gab = 8πTab

Maxwell’s Equations

dF = 0

d ⋆ F = ⋆J
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Relevant Approximations

• In the small accretion limit, we fix a background geometry of

spacetime as Schwarzschild;

ds2 = −e2Φ dt2 + e−2Φ dr2 + r2 dθ2 + r2 sin2 θ dϕ2

where

Φ(r) =
1

2
ln

(
1− 2M∗

r

)
• The fluid is a perfect conductor (σ → ∞)

Eb = uaFab = 0

11



Relevant Approximations

• The system evolves through quasi-static steps of

magnetostatic equilibrium;

ua = e−Φta

• The system is axisymmetric (LλF = 0), where λa = (dϕ)a is

the axisymmetric Killing vector;

• The magnetic field is poloidal;

F =
2

|λ|
dϕ ∧ dψ
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General Relativistic Grad-Shafranov Equation

• Using these approximations in the first principle equations, we

obtain:

GR Grad-Shafranov Equation

1

λ

(
∇a∇aψ − 1

λ
∇aλ∇aψ

)
= −ρhF ′(ψ)

In spherical coordinates:

1

r2 sin2 θ

[
∂2ψ

∂r2
− ∂

∂r

(
2M

r

∂ψ

∂r

)
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)]
=

= −ρhF ′(ψ)
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The Grad-Shafranov Equation

• The function F (ψ) is defined self-consistently by the magnetic

flux freezing condition and imposing a rest mass-flux ratio.

GR self-consistant F

F (ψ) =

(
dM

dψ

)1+c2s
(
2π

c2s

∫
C
r sin θ|∇ψ|−1e−(Φ−Φ0)/c2s ds

)−(1+c2s )

• The general form of the problem is maintained in GR.
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Numerical Approach

• The GR Grad-Shafranov equation is solved with Successive

Over Relaxation (SOR);

• The mass-flux constraint is maintained through an iterative

process.
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Numerical Convergence

• The system does reach a final equilibrium.

• The relativistic results reproduce the Newtonian one in the

appropriate limit (c → ∞).
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Hydromagnetic Structure



Numerical Results

• The distortion of the magnetic field lines is attenuated in GR.

(a) GR vs. Dipole (b) GR vs. Newtonian
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• The attenuation of the magnetic field is also found in the

magnetic dipole moment:
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Reduction of the magnetic dipole for different masses: 10−6M⊙

(blue), 10−5M⊙ (orange) and 3× 10−5M⊙ (orange). General

relativistic results in solid lines, and Newtonian in dashed lines.
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• And in the total magnetic dipole moment per accreted mass:
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• In the plot above the GR curve is 3 times less steep than the

Newtonian one!
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• Because of the different deformation of the magnetic field, the

density distribution also changes.

(a) Newtonian (b) GR
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Paper Published

• These results were summarized in a paper published at

MNRAS.
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Continuous Gravitational Waves



Continuous Gravitational Waves

scienceblog.com/496929/ with alterations.

• Continuous gravitational waves

(CGWs) are GW with constant

frequency;

• The best source candidates for

these waves are massive rotating

non-axisymmetric objects;

• That is: neutron stars with

mountains!
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Continuous Gravitational Waves

scienceblog.com/496929/ with alterations.

• Continuous gravitational waves

(CGWs) are GW with constant

frequency;

• The best source candidates for

these waves are massive rotating

non-axisymmetric objects;

• That is: neutron stars with

mountains!
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• In accreting systems, the continuous aspect is due to the spin

torque balance;

Source: OzGrav ARC Centre of Excellence
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Ellipticity

• Given the hydromagnetic structure of the solutions, we can

calculate the mass ellipticity of the star:

ϵ =
π

I0

∫
V ′

(
e +

B2

2

)
r ′
4
sin θ(3 cos2 θ − 1)dr ′ dθ

• Which is related to the amplitude of continuous gravitational

waves via:

h0 =
4π2I0f

2
GW

r
ϵ
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Magnetic Contribution
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• An interesting theoretical

contribution is due to the

magnetic field B2/2;

• In our case the ellipticities

are small, in the order of

ϵ ∼ 1011;

• This contribution is relevant

for magnetars, but their

rotation frequency is small

which hinders gravitational

wave emission.
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Ellipticity
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• We observe a reduction of

the ellipticity of the star in

GR;

• For some parameters of the

model, the difference

between relativistic and

Newtonian can get to 10%;

• The ellipticity values are too

high due to the simplifying

assumptions of the model

(isothermal equation of state

and rigid stellar surface).
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Ellipticity
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• We observe a reduction of

the ellipticity of the star in

GR;

• For some parameters of the

model, the difference

between relativistic and

Newtonian can get to 10%;

• The ellipticity values are too

high due to the simplifying

assumptions of the model

(isothermal equation of state

and rigid stellar surface).
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Conclusion

• GR has an important role to play in the model of magnetically

confined mountains on neutron stars;

– The relativistic effects on the magnetic properties of the star

are large, yielding three times less magnetic screening;

– Relativistic effects reduce the ellipticity of the star, reducing

the amplitude of gravitational waves;

• The general relativistic model needs to be expanded.
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Future Work

• Several improvements can be done as future work in order to

have more complete and astrophysically relevant model. They

include:

– Generalising the equation of state;

– Consider time-dependent effects, mountain sinking and Ohmic

diffusion;

– Analyse the stability using GRMHD solvers, such as GRHydro;

– Consider the effects of the neutron star rotation in the

curvature of spacetime.
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Thank you!
Any questions?
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