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m%;? What is the most energetic gravitons we could detect?

?@
mﬁi Look at the inverse-Gertsenshtein effect

We checked magnetars, the GMF, the IMF

téﬂ Our best bet is: just shy of a PeV, not beyond

( JcAPO6 (2023) 019 ]

S. Ramazanov, R. Samanta, G. Trenkler, F. R. Urban
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= obser vationss =

Increasing strength of gravitational waves —>»

—NANOGrav 2015

Inspiral of
billion-solar-mass
bla les

Million-solar-mass black holes
(inspiral and collision)

Inspiral of GEO600
white dwarfs o

| Binaries of extremely
unequal masses
(inspiral and collision)

Unresolvable /

Neutron stars

kground
sources 2 ‘E‘i‘!‘?ﬁ.’iﬁ: Supernovae
(inspiral and
Relicof ~ <allision) Pulsars

the Big Bang

! !
0001 001 1,000 10,000 100,000
Frequency (hertz)

© Moore, Cole and Berry, gwplotter




ey ations =



ey ations =

© Experimental efforts to detect GWs at a variety of frequencies



ey ations =

© Experimental efforts to detect GWs at a variety of frequencies

3 The observed nHz to kHz range of the SGWB and BBH mergers



ey ations =

© Experimental efforts to detect GWs at a variety of frequencies
3 The observed nHz to kHz range of the SGWB and BBH mergers

5 The 10716 Hz range of the CMB B-mode polarisation



ey ations =

© Experimental efforts to detect GWs at a variety of frequencies
3 The observed nHz to kHz range of the SGWB and BBH mergers
5 The 10716 Hz range of the CMB B-mode polarisation

83 The MHz-GHz-THz range of repurposed ALP detectors

(Aggarwal + '20; Ita, Kohri, Nakayama '23)
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1018 Hz is about 1 keV

© Aggarwal et al., 2019



= light shming through the wall =
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# High-energy GWs can be converted to photons in an external
magnetic field

# Good: MFs are everywhere from the Earth to galaxies to the IGM,
and they can have huge correlation lengths

t Bad: MFs are weak and the coupling is Planck-suppressed

This is just good old SM

£ =/|glg"g" FurFpo

which generates the coupling

(Raffelt and Stodolsky 1987 and many more)
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= conuersion probabilify -
i. Neglect photon interactions
Lint o< qVPH ALY

ii. The magnetic fields in galaxies and the IGM are
B=1-100puG, 107G <B<107°uG

iii. The correlation lengths for these fields are about
L~0.1-10kpc, L =Mpc-GCpc

ib. The conversion probability is similar to axion-photon

Py = B2L12/2M3
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¢ Photons interact via the Euler-Heisenberg Lagrangian
W a2 == 2 7(F v 2
gomz |(FnF™)" + 2 (FnF
Physically this gives three “mass” terms (~ refraction index)
R Yhi -13,,-1 -1
Ap = =50 = =1.1-107Pwpy kpe

2,2 T& _ —
M Acws = 42222 Top ) ~ 8.102wpekpe > w < 100 Tev
e

2 2
> Agep = 75 (B%) w =~ 0.15wpey (%) kpc’l

iAyyd

R This suppresses the oscillations by e (Byy ~ Aol + AcwiB + AoED)

. 2
Beyond the PeV we find P, ~ ’R/I’cgfifA% ~ #
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= The flng:

Photon flux [107(-11) GeV/(cm2 s sr)]
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© Ramazanov, Samanta, Trenkler, FU, 2023

From the GMF of Jansson and Farrar, 2012



= e flux s

Photon flux [107(-11) GeV/(cm2 s sr)]
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© Ramazanov, Samanta, Trenkler, FU, 2023

From the GMF of Pshirkov, Tinyakov, Kronberg, Newton-McGee, 2011
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€ In either model the peak flux is around
d, = few x 107! GeV/cm?secsr - 2, h3

= At these energies, we know that LHAASO can do

®,, ~ 1071% GeV/cm?secsr

(Neronov, Semikoz "20)

%Da So we would need Q4h2 ~ 1
We failed! But not miserably: €,h3 ~ 0.1 —0.01 next gen

ﬁﬁ The question now is: how to make these GWs?
We study the late decay of SHDM
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© Planck+BAO 2018
But post-recombination there can be much more

This is possible via late dark matter decay

Two options:
S decays completely by now (it is a small fraction of DM): Q,h3 ~ fomQpmh3

S is still decaying (and is all of DM): ©,h2 ~ 0.01

© Audren+ 2014, Chudaykin+ 2017, Ema+ 2021, Bucko+ 2022
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GE We look at the graviton-photon conversion in magnetic fields GH
We find a at PeV energies
This is where the conversion probability is maximal
¥l The Universe is opaque to PeV photons, so we look at the Galaxy only &
® Realistic relic abundances of gravitons are out of reach, but not by much ®
® These gravitons come from late dark matter decay &

@ In the future we could detect shimmering gravitons in the gamma-ray sky ©f

JCAPO06 (2023) 019

Ideas welcome for how to make h — 7 work for EeV+!



