LISA (and PTA) and γ -ray telescopes as multi-messenger probes of a first-order cosmological phase transition

YITP Workshop "Gravity and Cosmology"
Yukawa Institute for Theoretical Physics, Kyoto University
Feb. 21, 2024

Alberto Roper Pol ろぺる ほる あるべると *University of Geneva*



SNSF Ambizione grant: "Exploring the early universe with gravitational waves and primordial magnetic fields"

Collaborators: A. Brandenburg (Nordita), T. Boyer (APC), C. Caprini (UniGe/CERN), T. Kahniashvili (CMU), A. Kosowsky (PittU), S. Mandal (CMU), A. Neronov (APC/EPFL), S. Procacci (UniGe), D. Semikoz (APC)

arXiv: 1903.08585, 2009.14174, 2201.05630, 2307.10744, 2308.12943

https://github.com/AlbertoRoper/cosmoGW [CosmoGW]

Cosmological GW background

Cosmological GWs have the potential to provide us with direct information on early universe physics that is not accessible via electromagnetic observations, possibly complementary to collider experiments:

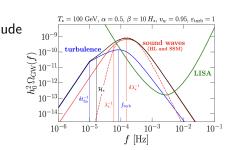
nature of first-order phase transitions (baryogenesis, BSM physics, high-energy physics),

primordial origin of intergalactic magnetic fields.

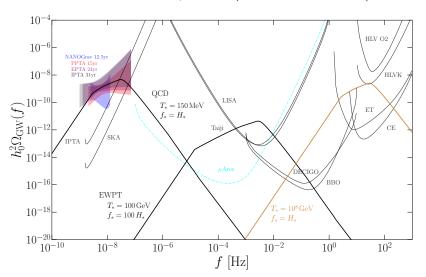
Probing the early Universe with GWs

Cosmological (pre-recombination) GW background

 Why background? Individual sources are not resoluble, superposition of single events occurring in the whole Universe.


$$f_* \simeq 1.64 \times 10^{-3} \frac{100}{R_* \mathcal{H}_*} \frac{T_*}{100 \, {\rm GeV}} \, {\rm Hz}$$

- Phase transitions
 - Ground-based detectors (LVK, ET, CE) frequencies are 10–1000 Hz Peccei-Quinn, B-L, left-right symmetries $\sim 10^7, 10^8$ GeV.
 - Space-based detectors (LISA) frequencies are 10^{-5} – 10^{-2} Hz Electroweak phase transition ~ 100 GeV
 - Pulsar Timing Array (PTA) frequencies are 10^{-9} – 10^{-7} Hz • Quark confinement (QCD) phase transition ~ 100 MeV
- From inflation
 - *B*-modes of CMB anisotropies ($f_c \sim 10^{-18}$ Hz).
 - Can cover all f spectrum, depending on end-of-reheating T, and blue-tilted (beyond slow-roll inflation).

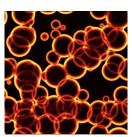

GW sources in the early universe

- Magnetohydrodynamic (MHD) sources of GWs:
 - Sound waves generated from first-order phase transitions.
 - Primordial magnetic fields.
 - (M)HD turbulence from first-order phase transitions.
- High-conductivity of the early universe leads to a high-coupling between magnetic and velocity fields.
- Other sources of GWs include
 - Bubble collisions.
 - Cosmic strings.
 - Primordial black holes.
 - Inflation.

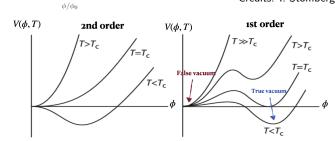
ARP et al., 2307.10744, 2308.12943

Gravitational spectrum (turbulence from PTs)¹

ARP, C. Caprini, A. Neronov, D. Semikoz, PRD 105, 123502 (2022)
 A. Neronov, ARP, C. Caprini, D. Semikoz, PRD 103, L041302 (2021)
 ARP et al., arXiv:2307.10744 (2023).

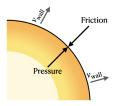

First-order phase transition

$$V(\phi, T) = \frac{1}{2}M^{2}(T)\phi^{2} - \frac{1}{3}\delta(T)\phi^{3} + \frac{1}{4}\lambda\phi^{4}$$


$$\sum_{j=1,0}^{2.5} \frac{1.5}{1.0}$$

$$0.5$$

True vacuum

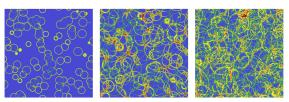


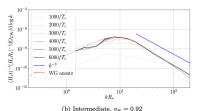
Credits: I. Stomberg

Hydrodynamics of first-order phase transitions²

- Broken-phase bubbles are nucleated and expand
- Friction from particles yield a terminal velocity ξ_w of the bubbles
- The bubble can run away when the friction is not enough to stop the bubble's acceleration

$$\begin{split} \nabla_{\mu} T_{\text{field}}^{\mu\nu} &= \frac{\partial V}{\partial \phi} \partial^{\nu} \phi + \eta u^{\mu} \partial_{\mu} \phi \partial^{\nu} \phi \,, \\ \nabla_{\mu} T_{\text{fluid}}^{\mu\nu} &= -\frac{\partial V}{\partial \phi} \partial^{\nu} \phi - \eta u^{\mu} \partial_{\mu} \phi \partial^{\nu} \phi \,, \end{split}$$


$$abla_{\mu}T^{\mu\nu}_{\mathrm{fluid}} = -rac{\partial V}{\partial \phi}\partial^{
u}\phi - \eta u^{\mu}\partial_{\mu}\phi\partial^{
u}\phi \, .$$

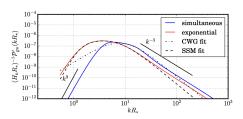


GWs from sound waves³

 Numerical simulations of the scalar + fluid system can be performed including an effective friction term

• Two scales are found that determine the GW spectrum: R_* and ΔR_* (sound-shell thickness).

³Hindmarsh *et al.*, 2013, 2015, 2017.

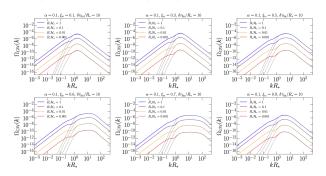


GWs from sound waves: Sound Shell Model⁴

The sound shell model assumes linear superposition of velocity fields from each
of the single bubbles and averages over nucleation locations and bubbles
lifetimes (semi-analytical model), and the development of sound waves at the
time of collisions.

$$\Omega_{\mathrm{GW}}(f) \propto S(f) \, K^2 \, \tau_{\mathrm{sw}} \, R_*$$

• It predicts a steep k^9 spectrum and linear growth with time, according to HH19, and k^{-3} at large frequencies, with an intermediate k between $1/R_*$ and $1/\Delta R_*$.


(b) Intermediate, $v_{\rm w} = 0.92$

⁴Hindmarsh, 2016; Hindmarsh & Hijazi, 2019.

GWs from sound waves: Sound Shell Model revisited⁵

- Extended Sound Shell model to an expanding Universe and omitted assumptions that were not holding at small k.
- Recovered k^3 at small frequencies and found a $\ln^2(1+\delta\tau_{\rm sw}H_*)$ time evolution of the causal branch and the "linear-in-time" evolution $\Upsilon=1-1/(1+\delta\tau_{\rm sw}H_*)$ around the peak, as well as a sharp bump.

⁵ARP *et al.*, Phys. Rev. D, arXiv:2308.12943.

Primordial magnetic fields

- Magnetic fields can either be produced at or present during cosmological phase transitions.
- The magnetic fields are strongly coupled to the primordial plasma and inevitably lead to MHD turbulence.⁶
- Present magnetic fields can be amplified by primordial turbulence via dynamo.⁷

⁶ J. Ahonen and K. Enqvist, *Phys. Lett. B* **382**, 40 (1996).

⁷ A. Brandenburg *et al.* (incl. ARP), *Phys. Rev. Fluids* **4**, 024608 (2019). □ → ⟨ ∅ → ⟨ ≧ → ⟨ ≧ → ⟨ ≧ → ⟨ ≧ → ⟨ ≥

Generation of primordial magnetic fields

- Bubble collisions and velocity fields induced by first-order phase transitions can amplify seed magnetic fields.
- Parity-violating processes during the EWPT are predicted by SM extensions that account for baryogenesis and can produce helical magnetic fields through sphaleron decay or B+L anomalies.⁸

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A} - i \frac{2 \sin \theta_w}{g v^2} \boldsymbol{\nabla} \Phi^\dagger \times \boldsymbol{\nabla} \Phi$$

Axion fields can amplify and produce magnetic field helicity.⁹

$$\mathcal{L}\supsetrac{\phi}{f}F_{\mu
u} ilde{F}^{\mu
u}$$

⁸T. Vachaspati, Phys. Rev. B **265**, 258 (1991), T. Vachaspati, Phys. Rev. Lett. **87**, 251302 (2001), J. M. Cornwall, Phys. Rev. D **56**, 6146 (1997).

⁹ M. M. Forbes and A. R. Zhitnitsky, *Phys. Rev. Lett.* **85**, 5268 (2000). < □ > < ♂ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

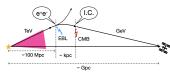
Generation of primordial magnetic fields

- Inhomogeneities in the Higgs field in low-scale electroweak hybrid inflation.¹⁰
- Magnetic fields from inflation can be present during phase transitions (non-helical¹¹ and helical¹²).
- Low-scale (QCD and EWPT) magnetogenesis during reheating.¹³
- Chiral magnetic effect.¹⁴

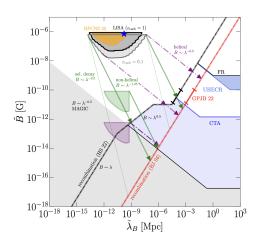
¹⁰ M. Joyce and M. E. Shaposhnikov, *Phys. Rev. Lett.* **79**, 1193 (1997),

J. García-Bellido et al., Phys. Rev. D 60, 123504 (1999).

¹¹ M. S. Turner and L. M. Widrow, *Phys. Rev. D* 37, 2743 (1988).


¹²M. Giovannini, *Phys. Rev. D* **58**, 124027 (1998).

¹³R. Sharma, *Phys. Rev. D* **97**, 083503 (2018).


¹⁴ M. Joyce and M. E. Shaposhnikov, PRL 79, 1193 (1997).

Primordial magnetic fields³

 Primordial magnetic fields would evolve through the history of the universe up to the present time and could explain the lower bounds in cosmic voids derived by the Fermi collaboration.⁴

- Maximum amplitude of primordial magnetic fields is constrained by the big bang nucleosynthesis.⁵
- Additional constraints from CMB,
 Faraday Rotation, ultra-high energy cosmic rays (UHECR).

³ARP et al., arXiv:2307.10744 (2023).

⁴A. Neronov and I. Vovk, *Science* **328**, 73 (2010).

⁵V. F. Shvartsman, Pisma Zh. Eksp. Teor. Fiz. 9, 315 (1969).

GWs from (M)HD turbulence

- Direct numerical simulations using the Pencil Code¹⁵ to solve:
 - Relativistic MHD equations adapted for radiation-dominated era (after electroweak symmetry is broken).
 - ② Gravitational waves equation.
- In general, large-resolution simulations are necessary to solve the MHD nonlinearities (e.g., unequal-time correlators UETC and non-Gaussianities, which require simplifying assumptions in analytical studies).

¹⁵ Pencil Code Collaboration, JOSS 6, 2807 (2020), https://github.com/pencil-code/
ARP et al., Geophys. Astrophys. Fluid Dyn. 114, 130 (2020).

Conservation laws for MHD turbulence

$$T^{\mu\nu}_{\ ;\nu} = 0, \quad F^{\mu\nu}_{\ ;\nu} = -J^{\mu}, \quad \tilde{F}^{\mu\nu}_{\ ;\nu} = 0$$

In the limit of subrelativistic bulk flow:

$$\gamma^2 \sim 1 + (v/c)^2 + \mathcal{O}(v/c)^4$$

Relativistic MHD equations are reduced to 16

$$\begin{split} \frac{\partial \ln \rho}{\partial t} &= -\frac{4}{3} \left(\nabla \cdot \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \ln \rho \right) + \frac{1}{\rho} \left[\boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) + \eta \boldsymbol{J}^2 \right], \\ \frac{D \boldsymbol{u}}{D t} &= \frac{1}{3} \boldsymbol{u} \left(\nabla \cdot \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \ln \rho \right) - \frac{\boldsymbol{u}}{\rho} \left[\boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) + \eta J^2 \right] \\ &- \frac{1}{4} \nabla \ln \rho + \frac{3}{4\rho} \boldsymbol{J} \times \boldsymbol{B} + \frac{2}{\rho} \nabla \cdot (\rho \nu \boldsymbol{S}), \\ \frac{\partial \boldsymbol{B}}{\partial \boldsymbol{x}} &= \nabla \times (\boldsymbol{u} \times \boldsymbol{B} - \eta \boldsymbol{J}), \quad \boldsymbol{J} = \nabla \times \boldsymbol{B}, \end{split}$$

for a flat expanding universe with comoving and normalized $p=a^4p_{\rm phys}, \rho=a^4\rho_{\rm phys}, B_i=a^2B_{i,{
m phys}}, u_i$, and conformal time t (${
m d}t=a{
m d}t_c$).

¹⁶ A. Brandenburg, et al., Phys. Rev. D **54**, 1291 (1996).

GW equation for a flat expanding Universe

- Assumptions: isotropic and homogeneous Universe.
- Friedmann–Lemaître–Robertson–Walker (FLRW) metric $\gamma_{ij}=a^2\delta_{ij}$.
- Tensor-mode perturbations above the FLRW model:

$$g_{ij} = a^2 \left(\delta_{ij} + h_{ij}^{\mathrm{phys}}
ight), \quad |h_{ij}^{\mathrm{phys}}| \ll |g_{ij}|$$

GW equation is¹⁷

$$\left(\partial_t^2 - \frac{\mathbf{a''}}{\mathbf{a}} - c^2 \nabla^2\right) h_{ij} = \frac{16\pi G}{\mathbf{a}c^2} T_{ij}^{\text{TT}}$$

- h_{ii} are rescaled $h_{ii} = ah_{ii}^{phys}$.
- Comoving spatial coordinates $\nabla = a\nabla^{\text{phys}}$.
- Conformal time $dt = a dt_c$.
- Comoving stress-energy tensor components $T_{ij} = a^4 T_{ij}^{\rm phys}$.
- Radiation-dominated epoch such that a'' = 0.

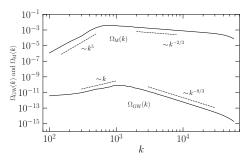
¹⁷L. P. Grishchuk, Sov. Phys. JETP **40**, 409 (1974).

Numerical results for decaying MHD turbulence¹⁸

Initial conditions

• Initial stochastic magnetic (or velocity) field with fractional helicity $\sigma_{\rm M}.$

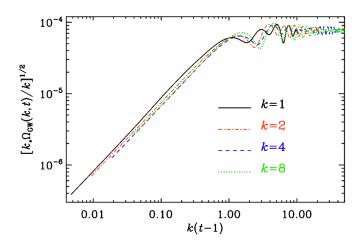
$$kB_i(\mathbf{k}) = \left(\delta_{ij} - \hat{k}_i\hat{k}_j - i\sigma_{\mathrm{M}}\varepsilon_{ijl}\hat{k}_l\right)g_j\sqrt{2\Omega_{\mathrm{M}}(k)/k}$$


- Batchelor spectrum for magnetic (or vortical velocity) fields, i.e., $\Omega_{\rm M} \propto k^5$ for small $k < k_* \sim \mathcal{O}(\xi_{\rm M}^{-1})$.
- Kolmogorov spectrum in the inertial range, i.e., $\Omega_{\rm M} \propto k^{-2/3}$.

¹⁸A. Brandenburg *et al.* (incl. ARP), *Phys. Rev. D* **96**, 123528 (2017).
ARP *et al.*, *Phys. Rev. D* **102**, 083512 (2020).
ARP *et al.*, *JCAP* **04** (2022), 019.
ARP *et al.*, *Phys. Rev. D* **105**, 123502 (2022).

Numerical results for decaying MHD turbulence¹⁹

$$1152^3, k_* = 2\pi \times 100, \Omega_{\rm M} \sim 10^{-2}, \sigma_{\rm M} = 1$$



- Characteristic k scaling in the subinertial range for the GW spectrum.
- k^2 expected at scales $k < k_*$ and k^3 at $k < H_*$ according to the "top-hat" model (Caprini *et al.*, 2020).

¹⁹ARP *et al.*, *Phys. Rev. D* **102**, 083512 (2020).

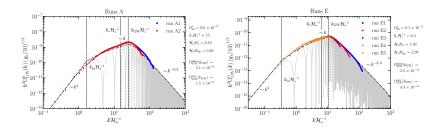
Early time evolution of the GW spectrum

Analytical model for GWs from decaying turbulence

- Assumption: magnetic or velocity field evolution $\delta t_{\rm e} \sim 1/(u_* k_*)$ is slow compared to the GW dynamics $(\delta t_{\rm GW} \sim 1/k)$ at all $k \gtrsim u_* k_*$.
- We can derive an analytical expression for nonhelical fields of the envelope of the oscillations²⁰ of $\Omega_{\rm GW}(k)$.

$$\Omega_{\text{GW}}(k, t_{\text{fin}}) \approx 3 \left(\frac{k}{k_*}\right)^3 \Omega_{\text{M}}^{*2} \frac{\mathcal{C}(\alpha)}{\mathcal{A}^2(\alpha)} p_{\Pi} \left(\frac{k}{k_*}\right) \\
\times \begin{cases} \ln^2[1 + \mathcal{H}_* \delta t_{\text{fin}}] & \text{if } k \, \delta t_{\text{fin}} < 1, \\ \ln^2[1 + (k/\mathcal{H}_*)^{-1}] & \text{if } k \, \delta t_{\text{fin}} \ge 1. \end{cases}$$

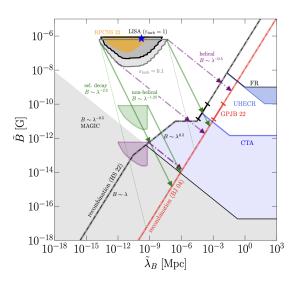
• p_{Π} is the anisotropic stress spectrum and depends on spectral shape, can be approximated for a von Kárman spectrum as²¹


$$p_{\Pi}(k/k_*) \simeq \left[1 + \left(\frac{k}{2.2k_*}\right)^{2.15}\right]^{-11/(3\times2.15)}$$

²⁰ARP et al., Phys. Rev. D **105**, 123502 (2022).

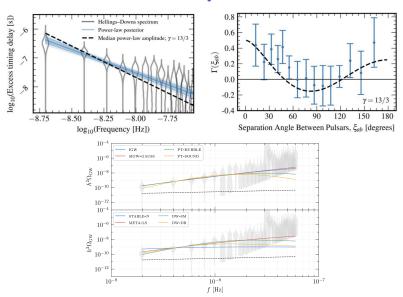
²¹ ARP et al., arXiv:2307.10744 (2023).

Numerical results for nonhelical decaying MHD turbulence²²

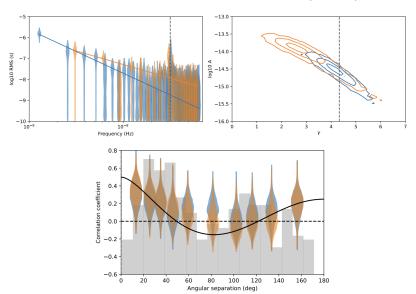


run	Ω_{M}^{*}	$k_*\mathcal{H}_*^{-1}$	$\mathcal{H}_*\delta t_e$	$\mathcal{H}_*\delta t_{\mathrm{fin}}$	$\Omega_{\rm GW}^{\rm num}(k_{\rm GW})$	$[\Omega_{\rm GW}^{\rm env}/\Omega_{\rm GW}^{\rm num}](k_{\rm GW})$	n	\mathcal{H}_*L	$\mathcal{H}_*t_{\mathrm{end}}$	$\mathcal{H}_*\eta$
A1	9.6×10^{-2}	15	0.176	0.60	2.1×10^{-9}	1.357	768	6π	9	10^{-7}
A2	-	-	-	-	-	-	768	12π	9	10^{-6}
E1	8.1×10^{-3}	6.5	1.398	2.90	5.5×10^{-11}	1.184	512	4π	8	10^{-7}
E2	-	-	-	-	-	-	512	10π	18	10^{-7}
E3	-	-	-	-	-	-	512	20π	61	10^{-7}
E4	-	-	-	-	-	-	512	30π	114	10^{-7}
E5	-	-	-	-	-	-	512	60π	234	10^{-7}

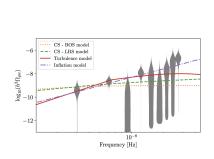
²²ARP et al., Phys. Rev. D **105**, 123502 (2022).

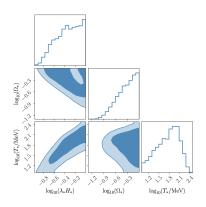

Multi-messenger constraints with LISA and CTA 23

²³ARP *et al.*, arXiv:2307.10744 (2023).


NANOGrav 15 yr data observation²⁴

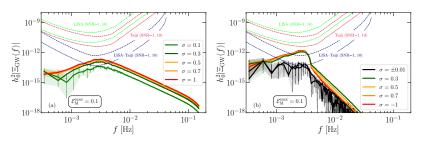
²⁴[NANOGrav collaboration], *ApJ Lett.* **951**, 8 & 11 (2023).


EPTA 24.7 yr data observation (DR 2)²⁵



²⁵[EPTA Collaboration], arXiv:2306.16224.

Primordial magnetic fields constraints with EPTA DR 2²⁶



 $^{^{26} [{\}sf EPTA\ collab.}] \ \hbox{(incl.\ ARP),\ arXiv:} 2306.16227 \ \hbox{(2023)}.$

Using LISA and Taiji to detect the GW polarization²⁹

- LISA's dipole response function can provide us with a polarized gravitational wave background due to our proper motion.²⁷
- Cross-correlation of LISA and an additional space-based GW detector can improve the detectability of a polarized GW background.²⁸

$$\mathcal{P}_{\mathrm{GW}}(k) = rac{\Xi_{\mathrm{GW}}(k)}{\Omega_{\mathrm{GW}}(k)} = rac{\left\langle \ddot{\hat{h}}_{ imes} \ddot{\hat{h}}_{+}^{*} - \ddot{\hat{h}}_{+} \ddot{\hat{h}}_{ imes}^{*}
ight
angle}{\left\langle \ddot{\hat{h}}_{+} \ddot{\hat{h}}_{+}^{*} + \ddot{\hat{h}}_{ imes} \ddot{\hat{h}}_{+}^{*}
ight
angle}$$

²⁷V. Domcke *et al., JCAP* **05** (2020), 028.

²⁸G. Orlando, M. Pieroni and A. Ricciardone, JCAP 03 (2021), 069.

²⁹ARP et al., JCAP **04** (2022), 019.

Conclusions

- Velocity and magnetic fields in the early universe can significantly contribute to the stochastic GW background (SGWB) via sound waves and (M)HD turbulence.
- MHD requires, in general, performing high-resolution numerical simulations, which can be done using the Pencil Code.
- Since the SGWB is a superposition of different sources, it is extremely
 important to characterize the different sources, to be able to extract clean
 information from the early universe physics.
- The interplay between sound waves and the development of turbulence is not well understood. It plays an important role on the relative amplitude of both sources of GWs.
- LISA, PTA, and next-generation ground-based detectors can potentially be used to probe the origin of magnetic fields in the largest scales of our Universe, which is still an open question in cosmology.
- Bubble nuccleation, sound wave production, and magnetogenesis physics can be coupled to our equations for more realistic production analysis (future work).

ありがとう ございます

alberto.roperpol@unige.ch

github.com/AlbertoRoper/cosmoGW cosmology.unige.ch/users/alberto-roper-pol