Cosmological constraints from

low redshift 21 cm intensity mapping

with machine learning

Camila Paiva Novaes

Based on: CPN et al. MNRAS, 528, 2078 (2024) [arXiv:2309.07868]

Kavli IPMU

Instituto Nacional de Pesquisas Espaciais - INPE

February 22, 2024

YITP long-term workshop, Gravity and Cosmology 2024

The new observational window: 21 cm Intensity Mapping

- → New technique to trace large scale structure.
- → Low resolution: temperature fluctuations.
- → We can use much of what we have learned from CMB.
- → Tomographic approach.
- → Precise determination in redshift: $\lambda = \lambda o (1 + z)$.

[Credits: Alessandro Marins]

Cosmology with 21 cm

We investigate:

- → Performance of
 - non-Gaussian (higher order) statistics +
 - simulation based inference with machine learning.
- \rightarrow Impact of contaminants and sky area.
- \rightarrow Evolution with redshift.
- → Case study: BINGO telescope.

Cosmology with ... machine learning

Cosmology with alternative techniques

Standard method: Bayesian inference

Technical problems:

Cosmology with alternative techniques

Alternative method: Likelihood-free with machine learning

- \checkmark Simulation based inference,
- \checkmark No assumptions for likelihood,
- \checkmark No need for data modeling,
- \checkmark Able to recognise complex patterns,
- ✓ Easier combination of different data sets!

Cosmology with alternative techniques

Alternative method: Likelihood-free with machine learning

✓ Easier combination of different data sets!

[CPN et al. JCAP 2014, 2015]

Simulations → Summary statistics

Simulations

(Convolutional neural networks)

Cosmological parameters

Cosmology with machine learning

Simulations

Case study: BINGO telescope

- 21 cm IM: **30 frequency bins** [0.127 < z < 0.449],
- Foreground contamination,

╬

- Beam size (~40 arcmin),
- Instrumental noise (white noise).
- Foreground cleaning.

Methodology

Features - Summary statistics:

- Minkowski functionals (MF):
 - Area (V_0)
 - Perimeter (V_j)
 - Genus (V_2)

map >

 $map > 0\sigma$

2.2e-06

 $map > 1\sigma$

Why NG statistics?

Methodology

Features - Summary statistics:

- Minkowski functionals (MF):
 - Area (V_0)
 - Perimeter (V_j)
 - Genus (V₂)

[CPN et al. MNRAS 2016] [CPN et al. MNRAS 2018]

Why NG statistics?

• Angular power spectrum (C_{ℓ})

Methodology

Targets - Cosmological parameters:

Cosmology with machine learning

Architecture: Optuna [Akiba et al. 2019]

Results (2 parameters)

Results (2 parameters)

Impact of individual systematics

Main impact: **noise**

Results (2 parameters)

Impact of individual systematics 21cm+WN+FG **← 0.7** 21cm+WN **<0.5** 21cm 0.02 Δh 0.00 -0.020.02 0.02 0,00 0.02 0,00 0.02 $\Delta\Omega_c$ Δh Main impact: noise

Dependence with Cosmological parameters

Summary of results and conclusions

- ✓ Promising results for 2 and 4 params constraints: $\{\Omega_c, h\}$ and $\{\Omega_c, h, w_0, w_a\}$.
- ✓ Larger sky coverage: significant improvements (SKA).
- Robustness to foreground contamination: method can be used outside the training set*.
- To be improved:
 - Simulations,
 - Instruments characteristics,
 - Foregrounds,
 - ...
- → Easy combination of different data sets.
- → Several possibilities for applications.

Thank you!

