Gravitational Lensing of High-Frequency Gravitational Waves by Supermassive Black Holes in the Presence and Absence of the Cosmological Constant

Torben C. Frost

Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China

Gravity and Cosmology Workshop 2024, YITP, Kyoto University, Kyoto, Japan 23.2.2024

Outline of the Talk

2 Spacetime and the Equations of Motion

3 Gravitational Lensing

Motivation

- Why should we investigate gravitational lensing of gravitational waves?
- address questions from fundamental physics:
 - Is gravity really described by general relativity?
 - Is the gravitational interaction described by a massless or a massive particle? Can it be described as a particle at all?
- astrophysics: needed for correct interpretation of observed gravitational waves signals
 - gravitational wave signals from several binary black hole mergers indicate existence of stellar mass black holes with masses higher than anticipated
 - correct identification of lensed gravitational wave signals
 - without better detectors: may provide a better view on gravity or, e.g., neutron star physics from the point of view of the source

3/22

Light versus Gravitational Waves

- on first view light and gravitational waves are quite different
- light rays:
 - strongly interacting with their environment
 - wavelength short compared to astrophysical objects
- gravitational waves
 - weakly interacting with their environment
 - wavelength variable but commonly on same or longer length scales as many astrophysical objects
 - consequence: have to be treated as waves in most astrophysical environments
 - exception: as shown by Isaacson (1968) in high-frequency limit gravitational waves move along lightlike geodesics
- in this talk: gravitational lensing of high-frequency gravitational waves (and light) by supermassive black holes

Why Using Analytical Methods?

- one large class of black hole spacetimes in general relativity: Plebanski-Demianski metric (Plebanski and Demianski, 1976)
 - exact solution to Einstein's electrovacuum field equation with cosmological constant
 - includes Kerr-de Sitter metric
 - equations of motion for lightlike geodesics are separable and exactly analytically solvable
- benefits of using analytical methods:
 - arbitrarily precise
 - can reduce calculation time
 - allow very high-resolution calculations
- in this talk: application to calculation of lensing features caused by
 - cosmological constant
 - spin

The Kerr-de Sitter Spacetime

• the line element of the Kerr-de Sitter spacetime reads (Griffiths and Podolský, 2009; c = G = 1):

$$g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} = \frac{a^{2}\sin^{2}\vartheta P(\vartheta) - Q(r)}{\rho(r,\vartheta)}\mathrm{d}t^{2} + \frac{2a\sin^{2}\vartheta \left(Q(r) - (r^{2} + a^{2})P(\vartheta)\right)}{\rho(r,\vartheta)}\mathrm{d}t\mathrm{d}\varphi \quad (1)$$
$$+ \frac{\sin^{2}\vartheta \left((r^{2} + a^{2})^{2}P(\vartheta) - a^{2}\sin^{2}\vartheta Q(r)\right)}{\rho(r,\vartheta)}\mathrm{d}\varphi^{2} + \frac{\rho(r,\vartheta)}{Q(r)}\mathrm{d}r^{2} + \frac{\rho(r,\vartheta)}{Q(\vartheta)}\mathrm{d}\vartheta^{2},$$

where

$$Q(r) = -\frac{\Lambda}{3}r^4 + \left(1 - \frac{\Lambda}{3}a^2\right)r^2 - 2mr + a^2,$$
(2)
$$Q(\vartheta) = 1 + \frac{\Lambda}{3}a^2\cos^2\vartheta, \quad \rho(r,\vartheta) = r^2 + a^2\cos^2\vartheta.$$

- m: mass parameter
- a: spin parameter
- Λ: cosmological constant

Equations of Motion

• the equations of motion of the Kerr-de Sitter metric read, see e.g., Grenzebach *et al.* (2015)

$$\frac{\mathrm{d}t}{\mathrm{d}\lambda} = (r^2 + a^2) \frac{(r^2 + a^2)E - aL_z}{Q(r)} + a \frac{L_z - a\sin^2\vartheta E}{P(\vartheta)},$$

$$\left(\frac{\mathrm{d}r}{\mathrm{d}\lambda}\right)^2 = ((r^2 + a^2)E - aL_z)^2 - Q(r)K,$$

$$\left(\frac{\mathrm{d}\vartheta}{\mathrm{d}\lambda}\right)^2 = P(\vartheta)K - \frac{(a\sin^2\vartheta E - L_z)^2}{\sin^2\vartheta},$$

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\lambda} = a \frac{(r^2 + a^2)E - aL_z}{Q(r)} + \frac{L_z - a\sin^2\vartheta E}{\sin^2\vartheta P(\vartheta)},$$

• where the Mino parameter λ (Mino, 2003) is related to the affine parameter s by

$$\frac{\mathrm{d}\lambda}{\mathrm{d}s} = \frac{1}{\rho(r,\vartheta)}$$

Figure: Illustration of the lens-observer geometry and the tetrad vectors e_1 , e_2 , and e_3 (from Frost (2022)) as defined in Gernzebach *et al.* (2015).

T. C. Frost (KIAA, PKU)

Carter Observer

- in this work: Carter observer (stationary)
- orthonormal tetrad given by (Grenzebach et al., 2015):

$$e_{0} = \frac{(r^{2}+a^{2})\partial_{t}+a\partial_{\varphi}}{\sqrt{\rho(r,\vartheta)Q(r)}}\Big|_{(x_{O})}, \quad e_{1} = \sqrt{\frac{P(\vartheta)}{\rho(r,\vartheta)}}\partial_{\vartheta}\Big|_{(x_{O})}, \quad (3)$$

$$e_{2} = -\frac{\partial_{\varphi}+a\sin^{2}\vartheta\partial_{t}}{\sqrt{\rho(r,\vartheta)P(\vartheta)}\sin\vartheta}\Big|_{(x_{O})}, \quad e_{3} = -\sqrt{\frac{Q(r)}{\rho(r,\vartheta)}}\partial_{r}\Big|_{(x_{O})}$$

- relate constants of motion E, L_z , and K to angles on the celestial sphere of the observer
- advantage: can also be used for observers inside the ergoregion

Integration Approach

- reparameterise equations of motion using angles on the celestial sphere
- derive radius coordinates of photon orbits in terms of celestial longitude
- use celestial latitude and longitude to distinguish different types of motion
- solve equations of motion using elementary and Jacobi's elliptic functions and Legendre's elliptic integrals
- use analytic solutions to:
 - **(**) calculate Mino parameter $\lambda_L < \lambda_O = 0$ from fixed $r_O < r_L$
 - 2 determine number of turning points of the ϑ motion
 - **③** calculate $\vartheta_L(\Sigma, \Psi)$ and $\varphi_L(\Sigma, \Psi)$ (for $\varphi_O = 0$) and use them to define lens map

$$(\Sigma, \Psi) \to (\vartheta_L(\Sigma, \Psi), \varphi_L(\Sigma, \Psi))$$
 (4)

calculate redshift from r_O, ϑ_O, r_L, and ϑ_L(Σ, Ψ)
calculate travel time T(Σ, Ψ) (for t_O = 0)

Lens Map: Sphere of Light Sources

Figure: Illustration of the lens map (adapted from Frost (2022)) following the colour convention in Bohn *et al.* (2015).

T. C. Frost (KIAA, PKU)

Lens Map: Influence of the Cosmological Constant

Schwarzschild Metric

Schwarzschild-de Sitter Metric

Figure: Lens maps for $\Lambda = 1/(200m^2)$, $r_O = 10m$, $\vartheta_O = \pi/2$, and $r_L = 20m$.

T. C. Frost (KIAA, PKU)

Grav. Lens. of High-Freq. Grav. Wav

Lens Map: Effects of the Spin

Figure: Lens maps for a = 95m/100, $r_O = 10m$, $\vartheta_O = \pi/2$, and $r_L = 20m$.

T. C. Frost (KIAA, PKU)

Grav. Lens. of High-Freq. Grav. Wave

Redshift: Definition

• energy measured at position of the light source and the observer:

observer:
$$E_O=-p_\mu \dot{x}^\mu_O$$
 source: $E_L=-p_\mu \dot{x}^\mu_L$ (5)

*p*_μ: four-momentum of the light ray x^μ: four-velocities of observer and light source

•
$$p_t = -E$$
 and $p_{\varphi} = L_z$

• using the definitions of the energies the redshift now reads:

$$z = \frac{E_L}{E_O} - 1 \tag{6}$$

- Schwarzschild metric: z = -0.057
- Schwarzschild-de Sitter metric: z = 0.648
- in general: depends directly and indirectly on celestial coordinates

Redshift: Effects of the Spin - Static Light Sources

Figure: Redshift map for a = 95m/100, $r_O = 10m$, $\vartheta_O = \pi/2$, and $r_L = 20m$.

• Schwarzschild metric: z = -0.057

T. C. Frost (KIAA, PKU)

Grav. Lens. of High-Freq. Grav. Wav

Redshift: Effects of the Spin - Carter Light Sources

Figure: Redshift map for a = 95m/100, $r_O = 10m$, $\vartheta_O = \pi/2$, and $r_L = 20m$.

• Schwarzschild metric: z = -0.057

T. C. Frost (KIAA, PKU)

Grav. Lens. of High-Freq. Grav. Wav

Travel Time: Effects of the Cosmological Constant

Figure: Travel time maps for $\Lambda = 1/(200m^2)$, $r_0 = 10m$, $\vartheta_0 = \pi/2$, and $r_L = 20m$.

T. C. Frost (KIAA, PKU)

Grav. Lens. of High-Freq. Grav. Waves

Travel Time: Effects of the Spin

Figure: Travel time maps for a = 95m/100, $r_O = 10m$, $\vartheta_O = \pi/2$, and $r_L = 20m$.

T. C. Frost (KIAA, PKU)

Figure: Event Horizon Telescope images of the shadows of the supermassive black holes in the centres of the galaxy M87 (left) and the Milky Way (right). Taken from Fig. 3 in EHT *et al.* (2019) and Fig. 3 in EHT *et al.* (2022).

Summary & Outlook on Applications

- cosmological constant:
 - shadow shrinks and images shift to lower celestial latitudes
 - redshift and travel time increase (in our case significantly)
- spin:
 - noncircular shadow
 - images up to fourth order visible
 - redshift is function on celestial sphere
 - asymmetry in travel time maps
- potential applications to gravitational wave astrophysics:
 - lensing of stellar mass binary black hole mergers close to supermassive black holes
 - reconstructing the shadow when combined with detection of gravitational waves for which wave optics becomes important?
- next step: extend approach to wave optics

Longterm Goal: Einstein-Maxwell-Pauli Observatory

Figure: Schematic of the Maxwell-Einstein-Pauli Observatory.

T. C. Frost (KIAA, PKU)

Grav. Lens. of High-Freq. Grav. Waves

Announcement

• On March 13th, 2024, we start a new seminar series on Gravity and Cosmology. Feel welcome to join! Use the QR code or ask us for the subscription link.

References Part I

- [1] R. A. Isaacson. Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geometrical Optics. Phys. Rev. 166(5), 1263-1271, 1968. doi: 10.1103/PhysRev.166.1263.
- [2] J. F. Plebanski and M. Demianski. Rotating, charged, and uniformly accelerating mass in general relativity. Annals of Physics (N. Y.), 98(1):98–127, 1976. doi: 10.1016/0003-4916(76)90240-2.
- [3] J. B. Griffiths and J. Podolský: Exact Space-Times in Einstein's General Relativity. Cambridge University Press, Cambridge, 2009. ISBN: 978-0-521-88927-8.
- [4] A. Grenzebach, V. Perlick and C. Lämmerzahl: Photon regions and shadows of accelerated black holes. Int. J. Mod. Phys. D, 24(9), 1542024, 2015. doi: 10.1142/S0218271815420249.
- [5] Y. Mino: Perturbative approach to an orbital evolution around a supermassive black hole. Phys. Rev. D, 67(8), 084027, 2003. doi: 10.1103/PhysRevD.67.084027.

References Part II

- [6] T. C. Frost. Gravitational lensing in the charged NUT–de Sitter spacetimePhys. Rev. D, 105(6), 064064, 2022. doi: 10.1103/PhysRevD.105.064064.
- [7] A. Bohn, W. Throwe, F. Hebert, K. Henriksson, D. Bunandar, M. A. Scheel and N. W. Taylor: What does a binary black hole merger look like? Class. Quantum Grav., 32(6), 065002, 2015. doi: 10.1088/0264-9381/32/6/065002.
- [8] The Event Horizon Telescope Collaboration et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875(1), L1, 2019. doi: 10.3847/2041-8213/ab0ec7.
- [9] The Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2), L12, 2022. doi: 10.3847/2041-8213/ac6674.