Chaotic vZLK oscillations of a binary system around SMBH and gravitational waves

Waseda Univ. and YITP Kei-ichi Maeda

Collaboration with P. Gupta, H. Okawa, H. Suzuki,

Introduction: Hierarchical Triple System (Newtonian and 1PN)

- Indirect Observation of GWs
- Direct Observation of GWs
- H. Suzuki, P. Gupta, H. Okawa, K. M. Mon.Not.Roy.Astron.Soc. 486 (2019) L52
- P. Gupta, H. Suzuki, H. Okawa, K.M. Phys.Rev.D 101 (2020) 10, 104053
- H. Suzuki, P. Gupta, H. Okawa, K.M. Mon.Not.Roy.Astron.Soc.500(2020)2,1645

Binary System near SMBH

- vZLK Oscillations near ISCO
- K.M., P. Gupta, H. Okawa Phys.Rev.D 107 (2023) 12, 124039
- K.M., P. Gupta, H. Okawa Phys.Rev.D 108 (2023) 12, 123041

Hierarchical Triplet System

In a hierarchical triple system

z-component of angular momentum : conserved (Newtonian,quadrupole approx)

$$\sqrt{1 - e_{\rm in}^2} \cos I = {\rm const.}$$

Secular exchange in orbital eccentricity e_{in} and inclination I

vZLK timescale
$$T_{\rm vZLK} \sim \frac{P_{\rm out}^2}{P_{\rm in}} \gg P_{\rm out} \,, P_{\rm in}$$

Indirect Observation of Gravitational Waves from Hierarchical Triple System

In a binary pulsar

Cumulative shift of periatron time

periastron time shift: $\Delta_p \equiv T_N - P_0 N$

 T_N : the $\it N$ -th periastron time P_0 : initial period of periastron passing

$$\Delta_p \approx \frac{\dot{P}}{2P} t^2$$
 if \dot{P} is constant

Indirect Observation of Gravitational Waves

H. Suzuki, P. Gupta, H. Okawa, KM,(2019)

vZLKTimescale
$$t_{KL} \simeq \frac{16}{15} \frac{a_{\text{out}}^3}{a_{\text{in}}^{3/2}} \sqrt{\frac{m_1}{Gm_3^2}} (1 - e_{\text{out}}^2)^{\frac{3}{2}}$$

Time Scales for our Model

$$P_{in} = 0.258 \ days$$

 $P_{out} = 3.334 \ days$
 $\tau_{KL} \sim 66 \ days$
 $\tau_{merger} \sim 10^9 \ years$

 $P_{in} \ll P_{out} \ll \tau_{KL} \ll \tau_{merger}$

the eccentricity will oscillate for long time period

Cumulative shift of periatron time

$$\Delta_p = -\frac{192\pi}{5P_0} \left(\frac{G}{c^3} \frac{2\pi}{P_0}\right)^{5/3} \frac{m_1 m_2}{(m_1 + m_2)^{1/3}} \\ \times \int_0^{T_N} dt \int_0^t dt' \frac{\left(1 + \frac{73}{24}\bar{e}^2(t') + \frac{37}{96}\bar{e}^4(t')\right)}{(1 - \bar{e}^2(t'))^{7/2}}$$

Evolution of Δ_p

Direct Observation of Gravitational Waves from Hierarchical Triple System

➢ inspiral phase
frequency
circular orbit $f_0 = \frac{(Gm)^{1/2}}{\pi a^{3/2}}$ For observable band $f > 10^{-4} \text{Hz}$ $\frac{(m/M_{\odot})}{(a/R_{\odot})^3} > 0.25$ Unless very close binary, difficult to be observed

However, for highly eccentric orbit, we may observe higher harmonics

peak frequency of emitted GW powerPeter-Mathews (1963)
Wen (2003) $f_p = n_m f_0$ $n_m = \frac{(1+e)^{1.1954}}{(1-e^2)^{3/2}}$ $(10^{-6} < 1-e^2 < 1)$

If the eccentricity is close to 1, the peak frequency may fit to the observable band

vZLK mechanism

in hierarchical triple system

We analyze the following models by solving 1PN equations of motion

P. Gupta, H. Suzuki, H. Okawa, KM (2020)

The parameters of our models. We use the formula (2.6) and (2.7) for P_{in} and P_{out} , while t_{KL} and e_{max} TABLE III. are evaluated by numerical calculation except for Models IV6, VA6, VIA6, for which we use the formula (2.8). The number N defined by (5.3) denotes how many cycles the inner orbit evolves during highly eccentric stage.

Model	$m_1 \ [M_\odot]$	$m_2~[M_\odot]$	$m_3 \ [M_\odot]$	a _{in} [AU]	$a_{\rm out}$ [AU]	P _{in} [days]	P _{out} [days]	$t_{\rm KL}$ [days]	$e_{\rm in,max}$	N
IA1	10	10	10	0.01	0.1	0.082	2.10	~176	~0.98	20
IA1 ₃	30	30	30	0.01	0.1	0.047	1.22	~123	~0.96	20
IB3	10	10	10^{3}	0.01	0.5	0.082	4.04	~255	~0.99	25
IB6	10	10	10^{6}	0.01	5	0.082	4.08	~96	~0.99	25
IIA3	10	10^{3}	10^{3}	0.12	1	0.478	8.15	~158	~0.99	5.8
IIB6	10	10^{3}	10^{6}	0.12	10	0.478	11.5	~185	~0.99	5.8
IIIA3	10^{3}	10^{3}	10^{3}	0.15	1	0.474	6.67	~226	~0.97	5.9
IIIB6	10^{3}	10^{3}	10^{6}	0.15	10	0.474	11.5	~142	~0.99	5.9
IVA6	10	10^{6}	10^{6}	15	100	21.2	258	17 [yrs]	-	-
VA6	10^{3}	10^{6}	10^{6}	15	100	21.2	258	17 [yrs]	-	-
VIA6	10^{6}	10^{6}	10^{6}	10^{2}	10^{3}	258	6669	1400 [yrs]	-	-

 $10M_{\odot}$ or $30M_{\odot}$

Wave Form and Energy Spectra

Evolution curve of vZLK binary and sensitivity of space GW observatories

Short Summary (Hierachical Triple System)

A binary system with tertiary companion is interesting.

Indirect observation

Bend of cumulative curve of periastron shift

Direct observation

Inspiral phase of vZLK binary Observable period is periodic (vZLK period)

Binary System near SMBH:

a binary orbiting around SMBH $m_1, m_2 \ll M$

A binary can be treated as perturbation ?

Black hole perturbation cannot be applied because of self-gravity of a binary

Instead, we consider a local inertial frame and set a "Newtonian" binary there

Local Inertial Frame and Binary Motion:

Background spacetime (SMBH) $d\bar{s}^2 = \bar{g}_{\mu\nu} dx^{\mu} dx^{\nu}$

Observer's world line (γ) $z^{\mu}(\tau)$ $u^{\mu}(\tau)$ $a^{\mu}(\tau)$ 4 velocity acceleration

Construct a local coordinate system

$$(c au, x^{\hat{a}})$$

 $x^{\hat{a}}$ is measured from γ along $\Sigma(au)$
 $\Sigma(au)$ is perpendicular to γ

 ω_{μ}

rotation

metric form of this reference frame up to the second order of $\,x^a\,$ $g_{\hat{\mu}\hat{\nu}} = \eta_{\hat{\mu}\hat{\nu}} + \varepsilon_{\hat{\mu}\hat{\nu}} + O(|x^{\hat{k}}|^3), \qquad \text{F.K. Manasse, C.W. Misner (`63), MTW(`73)} \\ \text{A. Gorbatsievich, A. Bobrik (2010)}$
$$\begin{split} \varepsilon_{\hat{0}\hat{0}} &= -\frac{1}{c^2} \left[2a_{\hat{k}}x^{\hat{k}} + \left(c^2 \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{0}\hat{\ell}} - \omega_{\hat{j}\hat{k}}\omega^{\hat{j}}_{\ \hat{\ell}}\right) x^{\hat{k}}x^{\hat{\ell}} + \frac{\left(a_{\hat{k}}x^{\hat{k}}\right)^2}{c^2} \right], \\ \varepsilon_{\hat{0}\hat{j}} &= -\frac{1}{c^2} \left[c\,\omega_{\hat{j}\hat{k}}x^{\hat{k}} + \frac{2}{3}c^2 \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}}x^{\hat{k}}x^{\hat{\ell}} \right], \qquad \varepsilon_{\hat{i}\hat{j}} = -\frac{1}{c^2} \left[\frac{1}{3}c^2 \bar{\mathcal{R}}_{\hat{i}\hat{k}\hat{j}\hat{\ell}}x^{\hat{k}}x^{\hat{\ell}} \right] \end{split}$$

Self-gravitating Newtonian binary with a scale of $\ell_{\rm binary}$

$$\ell_{\text{binary}} \ll \min\left[\frac{1}{|a^{\hat{j}}|}, \frac{1}{|\omega^{\hat{j}}|}, \ell_{\bar{\mathcal{R}}}\right],$$
$$\ell_{\bar{\mathcal{R}}} \equiv \min\left[|\bar{\mathcal{R}}_{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}}|^{-\frac{1}{2}}, |\bar{\mathcal{R}}_{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma};\hat{\alpha}}|^{-\frac{1}{3}}, |\bar{\mathcal{R}}_{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma};\hat{\alpha};\hat{\beta}}|^{-\frac{1}{4}}\right]$$

minimum curvature radius

Lagrangian up to 0.5 PN

$$\mathcal{L}_{ ext{binary}} = \mathcal{L}_{ ext{N}} + \mathcal{L}_{1/2}$$

$$\begin{split} \mathcal{L}_{\mathrm{N}} &\equiv \frac{1}{2} \sum_{I=1}^{2} m_{I} \dot{x}_{I}^{2} + \frac{Gm_{1}m_{2}}{|x_{1} - x_{2}|} + \mathcal{L}_{a} + \mathcal{L}_{\omega} + \mathcal{L}_{\bar{\mathcal{R}}} \\ \mathcal{L}_{a} &= -\sum_{I=1}^{2} m_{I} a_{\hat{k}} x_{I}^{\hat{k}}, \\ \mathcal{L}_{\omega} &= -\sum_{I=1}^{2} m_{I} \left[\epsilon_{\hat{j}\hat{k}\hat{\ell}} \omega^{\hat{\ell}} x_{I}^{\hat{k}} \dot{x}_{I}^{\hat{j}} - \frac{1}{2} \left(\omega^{2} x_{I}^{2} - (\omega \cdot x_{I})^{2} \right) \right] \\ \mathcal{L}_{\bar{\mathcal{R}}} &= -\frac{1}{2} \sum_{I=1}^{2} m_{I} \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{0}\hat{\ell}} x_{I}^{\hat{k}} x_{I}^{\hat{\ell}} \\ \mathcal{L}_{1/2} &\equiv -\frac{2}{3} \sum_{I=1}^{2} m_{I} c^{2} \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}} x_{I}^{\hat{k}} x_{I}^{\hat{\ell}} \frac{\dot{x}_{I}^{\hat{j}}}{c} \end{split}$$

A binary system \Rightarrow center of mass R and relative coordinates r

$$R = rac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$
 $r = x_2 - x_1$

"Newtonian" Lagrangian

$$\begin{split} \mathcal{L}_{\mathrm{N}} &= \mathcal{L}_{\mathrm{CM}}(\boldsymbol{R}, \dot{\boldsymbol{R}}) + \mathcal{L}_{\mathrm{rel}}(\boldsymbol{r}, \dot{\boldsymbol{r}}) \\ \mathcal{L}_{\mathrm{CM}}(\boldsymbol{R}, \dot{\boldsymbol{R}}) &= \frac{1}{2} (m_1 + m_2) \dot{\boldsymbol{R}}^2 + \mathcal{L}_{\mathrm{CM-}a} + \mathcal{L}_{\mathrm{CM-}\omega} + \mathcal{L}_{\mathrm{CM-}\bar{\boldsymbol{R}}} \\ \mathcal{L}_{\mathrm{CM-}a} &= -(m_1 + m_2) \boldsymbol{a} \cdot \boldsymbol{R} \\ \mathcal{L}_{\mathrm{CM-}\omega} &= -(m_1 + m_2) \left[\epsilon_{\hat{j}\hat{k}\hat{\ell}} \omega^{\hat{\ell}} R^{\hat{k}} \dot{R}^{\hat{j}} - \frac{1}{2} \left(\boldsymbol{\omega}^2 \boldsymbol{R}^2 - (\boldsymbol{\omega} \cdot \boldsymbol{R})^2 \right) \right] \\ \mathcal{L}_{\mathrm{CM-}\bar{\boldsymbol{\kappa}}} &= -\frac{1}{2} (m_1 + m_2) \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{0}\hat{\ell}} R^{\hat{k}} R^{\hat{\ell}} \\ \mathcal{L}_{\mathrm{rel}}(\boldsymbol{r}, \dot{\boldsymbol{r}}) &= \frac{1}{2} \mu \dot{\boldsymbol{r}}^2 + \frac{Gm_1m_2}{r} + \mathcal{L}_{\mathrm{rel-}\omega} + \mathcal{L}_{\mathrm{rel-}\bar{\mathcal{R}}} \\ \mathcal{L}_{\mathrm{rel-}\omega} &= -\mu \left[\epsilon_{\hat{j}\hat{k}\hat{\ell}} \omega^{\hat{\ell}} r^{\hat{k}} \dot{r}^{\hat{j}} - \frac{1}{2} \left(\boldsymbol{\omega}^2 \boldsymbol{r}^2 - (\boldsymbol{\omega} \cdot \boldsymbol{r})^2 \right) \right], \\ \mathcal{L}_{\mathrm{rel-}\bar{\mathcal{R}}} &= -\frac{1}{2} \mu \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{0}\hat{\ell}} r^{\hat{k}} r^{\hat{\ell}} \\ \end{split}$$

"0.5 PN" Lagrangian Choice of the origin $\mathcal{L}_{1/2} = \mathcal{L}_{1/2\text{-}\mathrm{CM}}(\boldsymbol{R}, \dot{\boldsymbol{R}}) + \mathcal{L}_{1/2\text{-}\mathrm{rel}}(\boldsymbol{r}, \dot{\boldsymbol{r}}) + \mathcal{L}_{1/2\text{-}\mathrm{int}}(\boldsymbol{R}, \dot{\boldsymbol{R}}, \boldsymbol{r}, \dot{\boldsymbol{r}}),$ $\mathcal{L}_{1/2\text{-CM}}(\boldsymbol{R}, \dot{\boldsymbol{R}}) = -\frac{2}{3}(m_1 + m_2)\bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}}R^{\hat{k}}R^{\hat{\ell}}\dot{R}^{\hat{j}}$ $\mathcal{L}_{1/2 ext{-rel}}(m{r}, \dot{m{r}}) = -rac{2}{3} \mu rac{(m_1 - m_2)}{(m_1 + m_2)} ar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}} r^{\hat{k}} r^{\hat{\ell}} \dot{r}^{\hat{j}}$ $\mathcal{L}_{1/2\text{-int}}(\boldsymbol{R}, \dot{\boldsymbol{R}}, \boldsymbol{r}, \dot{\boldsymbol{r}}) = -\frac{2}{3} \mu \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}} \left[r^{\hat{k}} r^{\hat{\ell}} \dot{R}^{\hat{j}} + \left(R^{\hat{k}} r^{\hat{\ell}} + r^{\hat{k}} R^{\hat{\ell}} \right) \dot{r}^{\hat{j}} \right]$ Coupling between *R* and *r* integration by part $\mathcal{L}_{1/2\text{-int}}(\boldsymbol{R}, \dot{\boldsymbol{R}}, \boldsymbol{r}, \dot{\boldsymbol{r}}) = 2\mu \left[\frac{1}{3} \frac{d\bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}}}{d\tau} r^{\hat{k}} r^{\hat{\ell}} + \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}} r^{\hat{k}} \dot{r}^{\hat{\ell}} \right] R^{\hat{j}}$ $\mathcal{L}_{ ext{CM-}a} = -(m_1 + m_2) oldsymbol{a} \cdot oldsymbol{R}$ Interaction terms disappear if $a_{\hat{j}} = \frac{2\mu}{m_1 + m_2} \left[\frac{1}{3} \frac{d\mathcal{R}_{\hat{0}\hat{k}\hat{j}\hat{\ell}}}{d\tau} r^{\hat{k}} r^{\hat{\ell}} + \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}} r^{\hat{k}} \dot{r}^{\hat{\ell}} \right]$ $\boldsymbol{R}=0$ is a solution The CM follows the observer's orbit

The observer's orbit is no longer a geodesic motion

$$\begin{split} \frac{Du_{\rm CM}^{\mu}}{d\tau} &= a^{\mu} = \frac{2\mu}{m_1 + m_2} e^{\mu \hat{j}} \left[\frac{1}{3} \frac{d\bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}}}{d\tau} r^{\hat{k}} r^{\hat{\ell}} + \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}} r^{\hat{k}} r^{\hat{\ell}} \right] \\ & \searrow \frac{Dp_{\rm CM}^{\mu}}{d\tau} = e^{\mu \hat{j}} \left[\frac{1}{2} \bar{\mathcal{R}}_{\hat{0}\hat{j}\hat{k}\hat{\ell}} L^{\hat{k}\hat{\ell}} + \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}} \frac{dQ^{\hat{k}\hat{\ell}}}{d\tau} + \frac{2}{3} \frac{d\bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}}}{d\tau} Q^{\hat{k}\hat{\ell}} \right] \\ & L^{\hat{k}\hat{\ell}} \equiv r^{\hat{k}} p^{\hat{\ell}} - r^{\hat{\ell}} p^{\hat{k}} \qquad \text{angular momentum of a binary} \\ & Q^{\hat{k}\hat{\ell}} \equiv r^{\hat{k}} r^{\hat{\ell}} - \frac{1}{3} r^2 \delta^{\hat{k}\hat{\ell}} \qquad \text{mass quadrupole moment} \end{split}$$

The first term in r.h.s.: Mathisson-Papapetrou-Dixon equation for a spinning particle $\left(L^{\hat{k}\hat{\ell}} \rightarrow S^{\hat{k}\hat{\ell}}\right)$ (1) Solve the EOM for the relative coordinate ~~ r

$$\mathcal{L}_{\rm rel}(\boldsymbol{r},\dot{\boldsymbol{r}}) = \frac{1}{2}\mu\dot{\boldsymbol{r}}^{2} + \frac{Gm_{1}m_{2}}{r} + \mathcal{L}_{\rm rel-\omega} + \mathcal{L}_{\rm rel-\bar{\mathcal{R}}}$$

$$\mathcal{L}_{\rm rel-\omega} = -\mu \left[\epsilon_{\hat{j}\hat{k}\hat{\ell}} \omega^{\hat{\ell}} r^{\hat{k}} \dot{r}^{\hat{j}} - \frac{1}{2} \left(\omega^{2} \boldsymbol{r}^{2} - (\omega \cdot \boldsymbol{r})^{2} \right) \right],$$

$$\mathcal{L}_{\rm rel-\bar{\mathcal{R}}} = -\frac{1}{2}\mu\bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{0}\hat{\ell}}r^{\hat{k}}r^{\hat{\ell}}$$

$$\Longrightarrow \boldsymbol{r} = \boldsymbol{r}(\tau)$$
(2) Solve the EOM for the CM
$$\frac{Du_{\rm CM}^{\mu}}{d\tau} \frac{2\mu}{m_{1} + m_{2}} e^{\mu\hat{j}} \left[\frac{1}{3} \frac{d\bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}}}{d\tau} r^{\hat{k}}r^{\hat{\ell}} + \bar{\mathcal{R}}_{\hat{0}\hat{k}\hat{j}\hat{\ell}}r^{\hat{k}}\dot{r}^{\hat{\ell}} \right]$$

$$\Longrightarrow x_{\rm CM}^{\mu} = x_{\rm CM}^{\mu}(\tau), \quad x_{2}^{\mu} = x_{2}^{\mu}(\tau) \quad \text{which are measured from } \gamma$$

a binary motion in a background SMBH spacetime

Binary Motion in Kerr Spacetime:

Kerr metric in Boyer-Lindquist coordinates

$$d\bar{s}^{2} = -\frac{\Delta}{\Sigma} \left(dt - a\sin^{2}\theta d\phi \right)^{2} + \frac{\sin^{2}\theta}{\Sigma} \left[(r^{2} + a^{2})d\phi - adt \right]^{2} + \frac{\Sigma}{\Delta} dr^{2} + \Sigma d\theta^{2}$$

$$\Sigma = r^2 + a^2 \sin^2 \theta \,, \ \Delta = r^2 - 2Mr + a^2$$

a circular geodesic with the radius r_0 on the equatorial plane of a test particle (observer) with a unit mass

Energy
$$E = \frac{r_0^2 - 2Mr_0 + a\sigma\sqrt{Mr_0}}{r_0F_0}$$
Angular momentum
$$L_z = \frac{\sigma\sqrt{Mr_0} \left(r_0^2 + a^2 - 2a\sigma\sqrt{Mr_0}\right)}{r_0F_0}$$

$$F_0 \equiv \left(r_0^2 - 3Mr_0 + 2a\sigma\sqrt{Mr_0}\right)^{1/2}$$

$$\sigma = \pm 1 \quad \text{prograde orbit}$$
retrograde orbit

non-rotating inertial frame $(\tau, \mathbf{x}, \mathbf{y}, \mathbf{z})$ $\omega^{\mu} = 0$

$$\mathcal{L}_{\mathrm{rel}} = \frac{1}{2} \mu \left(\frac{d\mathbf{r}}{d\tau} \right)^2 + \frac{Gm_1m_2}{\mathsf{r}} + \mathcal{L}_{\mathrm{rel}-\bar{\mathcal{R}}}(\mathbf{r},\tau)$$
$$\mathcal{L}_{\mathrm{rel}-\bar{\mathcal{R}}}(\mathbf{r},\tau) = -\frac{\mu M}{2r_0^3} \left[\mathsf{r}^2 + \frac{3}{F_0^2} \left(-\Delta(r_0) \left(\mathsf{x} \cos \omega_{\mathrm{R}}\tau + \mathsf{y} \sin \omega_{\mathrm{R}}\tau \right)^2 + \left(\sigma \sqrt{Mr_0} - a \right)^2 \mathsf{z}^2 \right) \right]$$

: tidal force by SMBH

time dependent

$$\omega_{
m R} = rac{M^{1/2}}{r_0^{3/2}}$$
 angular frequency

The binary motion may be close to elliptic orbit in hierarchical triplet orbital parameters $a, e, I, \omega, \Omega, f$ a: semi-major axis e: eccentricity I: inclination Ω :longitude of the ascending node ω :argument of periapsis Z*f*: true anomaly object periapsis Yascending node reference frame X

numerical results

Model	a/M	a_0/M	r_0/M	e_0	I_0	ω_0	Ω_0
Ι	0.9	0.005	10	0.01	85°	60°	30°
II	0.9	0.005	2.9	0.01	60°	60°	30°
III	0.9	0.005	3.2	0.01	85°	60°	30°
IV	0.9	0.015	10	0.01	85°	60°	30°

Model I

 $r_0 \gg r_{0(cr)}$ $I_0 = 85^{\circ}$

 $r_0 = r_{0(\mathrm{cr})}$ $I_0 = 60^{\circ}$ Model II

Model III

 $r_0 = r_{0(cr)}$ $I_0 = 85^{\circ}$ $r_0 \sim r_{0(cr)}$ $I_0 = 85^{\circ}$ Model IV

regular vZLK oscillations

chaotic vZLK oscillations

Model I

regular oscillations between the eccentricity and inclination

0.4

0.2

0

200

400

600

800

Model II $r_0 = 2.9M$ $(= r_{0(cr)})$ $I_0 = 85^{\circ}$

Choatic vZLK oscillations

Irregular oscillation period Irregular oscillation amplitude Orbital flip

Model III $r_0 = 3.2M$ $(= r_{0(cr)})$ $I_0 = 60^\circ$

 45°

au

1000

Choatic vZLK oscillations

Irregular oscillation period Irregular oscillation amplitude

$\mathsf{Model}\ \mathrm{IV}$

a = 0.9M $a_0 = 0.015M$ $r_0 = 10M$ $(\sim r_{0(cr)})$ $I_0 = 85^{\circ}$ $e_0 = 0.01$ $\omega_0 = 60^{\circ}$ $\Omega_0 = 30^{\circ}$

Choatic vZLK oscillations

Irregular oscillation amplitude Orbital flip

rotation dependence is small when we fix r_0 and a_0 (compactness)

The curvature components on the equatorial plane are the same as those in Schwarzschild case

The difference may be found in

how closely a binary system can approach a black hole

 $r_{\rm ISCO}: 6M(a=0) - M(a=M)$

Observer (CM)

$$\begin{aligned} z^{\mu} &= z^{\mu}_{(0)} + z^{\mu}_{(1)} \qquad z^{\mu}_{(0)} = \left(\frac{r_0^2 + a\sigma\sqrt{Mr_0}}{r_0F_{\sigma}(r_0)}\tau, r_0, \frac{\pi}{2}, \frac{\sigma\sqrt{Mr_0}}{r_0F_0}\tau\right) \\ u^{\mu} &= u^{\mu}_{(0)} + u^{\mu}_{(1)} \qquad \qquad \text{: circular motion} \end{aligned}$$

$$z^{\mu}_{(1)} \equiv e^{\mu}_{\ \hat{\ell}} R^{\hat{\ell}} = (t_{(1)}, r_{(1)}, \theta_{(1)}, \varphi_{(1)})$$

EOM of CM

 $rac{Du^{\mu}}{d au} = a^{\mu}$ $z^{\mu}_{(1)}, u^{\mu}_{(1)}$ perturbations $\frac{du^{\mu}_{(1)}}{d\tau} + 2\Gamma^{\mu}_{\ \rho\sigma}(r_0)u^{\rho}_{(0)}u^{\sigma}_{(1)} + \frac{\partial\Gamma^{\mu}_{\ \rho\sigma}}{\partial x^{\alpha}}(r_0) z^{\alpha}_{(1)} u^{\rho}_{(0)}u^{\sigma}_{(0)} = a^{\mu},$ $a^{\mu} = \frac{6\mu}{m_1 + m_2} \frac{\sqrt{\Delta}(\sigma\sqrt{Mr_0} - a)}{F_{\sigma}^2(r_0)} \frac{M}{r_0^3} \Big[\delta_1^{\mu} \frac{\sqrt{\Delta}}{r_0} \dot{y}x + \delta_2^{\mu} \frac{1}{r_0} \dot{y}z\Big]$ $+\frac{1}{r_0F_{\sigma}(r_0)\sqrt{\Delta}}\Big(\delta_0^{\mu}\sigma\sqrt{Mr_0}(r_0^2+a^2-2a\sigma\sqrt{Mr_0})\Big)$ $+\delta_3^{\mu}(r_0^2 - 2Mr_0 + a\sigma\sqrt{Mr_0}))(-\dot{x}x + \dot{z}z)$

$$\frac{d^2 r_{(1)}}{d\tau^2} + k_r^2 r_{(1)} + A \left(x^2 - z^2 \right) + B \dot{y}x = 0$$
$$k_r^2 \equiv \frac{M}{r_0^3 F_0^2} \left(r_0^2 - 6Mr_0 - 3a^2 + 8a\sigma\sqrt{Mr_0} \right)$$

$$\begin{split} \frac{d^2\theta_{(1)}}{d\tau^2} + k_{\theta}^2 \,\theta_{(1)} + B \,\dot{y}z &= 0 \,, \\ k_{\theta}^2 &\equiv \frac{M}{r_0^3 F_0^2} \left(r_0^2 + 3a^2 - 4a\sigma \sqrt{Mr_0} \right) \\ A &\equiv \frac{6\mu M\Delta}{(m_1 + m_2)r_0^5 F_0^4} \left(r_0^2 - 3Mr_0 - 2a^2 \right) \\ B &\equiv -\frac{6\mu M\Delta}{(m_1 + m_2)r_0^4 F_0^2} \left(\sigma \sqrt{Mr_0} - a \right) \,. \end{split}$$

- homogeneous parts harmonic oscillations if $k_r^2, k_{\theta}^2 > 0$ $\leftrightarrow r_0 > r_{\rm ISCO}$
- inhomogeneous parts \leftarrow binary motion $(x(\tau), y(\tau), z(\tau))$

Model I

Model III

can be described by elliptic functions

Future Issues:

- gravitational waves
 - > Quadrupole formula may not be applicable
 - > A binary motion in a background SMBH spacetime

$$x_1^{\mu} = x_1^{\mu}(\tau) , \ x_2^{\mu} = x_2^{\mu}(\tau)$$

BH perturbation method

Their motions are quite complicated

- ✓ outer binary + inner binary
- \checkmark time-domain perturbation

Summary

We discuss vZLK oscillations in hierarchical triple system

◆ Newtoninan/1PN

Indirect observation of GWs

- Direct observation of GWs
- ◆ A binary system around SMBH
 - Local Inertial Frame and Binary Motion
 - Chaotic vZLK Oscillations near ISCO

Thank you for your attention